#!/usr/bin/python3 import torch import pandas data = pandas.read_csv('mieszkania.tsv', sep='\t') x = torch.tensor(data['powierzchnia'], dtype=torch.float) y = torch.tensor(data['cena'], dtype=torch.float) w = torch.rand(1, requires_grad=True) learning_rate = torch.tensor(0.0000001) for _ in range(100): ypredicted = w * x cost = torch.sum((ypredicted - y) ** 2) print(w, " => ", cost) cost.backward() with torch.no_grad(): w = w - learning_rate * w.grad w.requires_grad_(True)