import os import torch import random import copy from fairseq.models.roberta import RobertaModel, RobertaHubInterface from fairseq import hub_utils from fairseq.data.data_utils import collate_tokens from tqdm import tqdm import numpy as np from sklearn.preprocessing import MinMaxScaler EVAL_OFTEN = False EVAL_EVERY = 3000 BATCH_SIZE = 5 model_type = 'base' # base or large roberta = torch.hub.load('pytorch/fairseq', f'roberta.{model_type}', pretrained=False) roberta.cuda() device='cuda' # LOAD DATA train_in = [l.rstrip('\n') for l in open('../train/in.tsv',newline='\n').readlines()] # shuffled dev_in = [l.rstrip('\n') for l in open('../dev-0/in.tsv',newline='\n').readlines()] # shuffled train_year = [float(l.rstrip('\n')) for l in open('../train/expected.tsv',newline='\n').readlines()] dev_year = [float(l.rstrip('\n')) for l in open('../dev-0/expected.tsv',newline='\n').readlines()] dev_in_not_shuffled = copy.deepcopy(dev_in) # not shuffled test_in = [l.rstrip('\n') for l in open('../test-A/in.tsv',newline='\n').readlines()] # not shuffled # SHUFFLE DATA c = list(zip(train_in,train_year)) random.shuffle(c) train_in, train_year = zip(*c) c = list(zip(dev_in,dev_year)) random.shuffle(c) dev_in, dev_year = zip(*c) # SCALE DATA scaler = MinMaxScaler() train_year_scaled = scaler.fit_transform(np.array(train_year).reshape(-1,1)) dev_year_scaled = scaler.transform(np.array(dev_year).reshape(-1,1)) class RegressorHead(torch.nn.Module): def __init__(self): super(RegressorHead, self).__init__() in_dim = 768 if model_type == 'base' else 1024 self.linear = torch.nn.Linear(in_dim, 1) self.m = torch.nn.LeakyReLU(0.1) def forward(self, x): x = self.linear(x) x = self.m(x) x = - self.m(-x + 1 ) +1 return x def get_features_and_year(dataset_in,dataset_y): for i in tqdm(range(0,len(dataset_in), BATCH_SIZE)): batch_of_text = dataset_in[i:i+BATCH_SIZE] batch = collate_tokens([roberta.encode(p)[:512] for p in batch_of_text], pad_idx=1) features = roberta.extract_features(batch).mean(1) years = torch.FloatTensor(dataset_y[i:i+BATCH_SIZE]).to(device) yield features, years def eval_dev(short=False): criterion_eval = torch.nn.MSELoss(reduction='sum') roberta.eval() regressor_head.eval() loss = 0.0 loss_clipped = 0.0 loss_scaled = 0.0 if short: dataset_in = dev_in[:1000] dataset_years = dev_year_scaled[:1000] else: dataset_in = dev_in dataset_years = dev_year_scaled predictions_sum = 0 for batch, year in tqdm(get_features_and_year(dataset_in, dataset_years)): predictions_sum += year.shape[0] x = regressor_head(batch.to(device)) x_clipped = torch.clamp(x,0.0,1.0) original_x = torch.FloatTensor(scaler.inverse_transform(x.detach().cpu().numpy().reshape(1,-1))) original_x_clipped = torch.FloatTensor(scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1))) original_year = torch.FloatTensor(scaler.inverse_transform(year.detach().cpu().numpy().reshape(1,-1))) loss_scaled += criterion_eval(x, year).item() loss += criterion_eval(original_x, original_year).item() loss_clipped += criterion_eval(original_x_clipped, original_year).item() print('valid loss scaled: ' + str(np.sqrt(loss_scaled/predictions_sum))) print('valid loss: ' + str(np.sqrt(loss/predictions_sum))) print('valid loss clipped: ' + str(np.sqrt(loss_clipped/predictions_sum))) def train_one_epoch(): roberta.train() regressor_head.train() loss_value=0.0 iteration = 0 for batch, year in get_features_and_year(train_in,train_year_scaled): iteration +=1 roberta.zero_grad() regressor_head.zero_grad() predictions = regressor_head(batch.to(device)) loss = criterion(predictions, year) loss_value += loss.item() loss.backward() optimizer.step() roberta.zero_grad() regressor_head.zero_grad() if EVAL_OFTEN and (iteration > 1) and (iteration % EVAL_EVERY == 1): print('train loss: ' + str(np.sqrt(loss_value / (EVAL_EVERY*BATCH_SIZE)))) eval_dev(True) roberta.train() regressor_head.train() loss_value = 0.0 def predict(dataset='dev'): if dataset=='dev': f_out_path = '../dev-0/out.tsv' dataset_in_not_shuffled = dev_in_not_shuffled elif dataset=='test': f_out_path = '../test-A/out.tsv' dataset_in_not_shuffled = test_in roberta.eval() regressor_head.eval() f_out = open(f_out_path,'w') for batch, year in tqdm(get_features_and_year(dataset_in_not_shuffled, dev_year_scaled)): x = regressor_head(batch) x_clipped = torch.clamp(x,0.0,1.0) original_x_clipped = scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1)) for y in original_x_clipped[0]: f_out.write(str(y) + '\n') f_out.close() regressor_head = RegressorHead().to(device) optimizer = torch.optim.Adam(list(roberta.parameters()) + list(regressor_head.parameters()), lr=1e-6) criterion = torch.nn.MSELoss(reduction='sum').to(device) roberta.load_state_dict(torch.load('checkpoints/roberta_to_regressor0.pt')) regressor_head.load_state_dict(torch.load('checkpoints/regressor_head0.pt')) for i in range(1,3): print('epoch ' + str(i)) train_one_epoch() print(f'epoch {i} done, EVALUATION ON FULL DEV:') eval_dev() print('evaluation done') predict('dev') predict('test') torch.save(roberta.state_dict(),'checkpoints/roberta_to_regressor' + str(i) + '.pt') torch.save(regressor_head.state_dict(),'checkpoints/regressor_head' + str(i) + '.pt') roberta.load_state_dict(torch.load('checkpoints/roberta_to_regressor2.pt')) regressor_head.load_state_dict(torch.load('checkpoints/regressor_head2.pt')) predict('dev') predict('test')