wiki-historian/hf_roberta_base/04_predict_from_file.py

54 lines
1.6 KiB
Python
Raw Normal View History

2022-07-02 12:02:13 +02:00
import pickle
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
#with open('train_dataset.pickle','rb') as f_p:
# train_dataset = pickle.load(f_p)
#
#with open('eval_dataset_small.pickle','rb') as f_p:
# eval_dataset_small = pickle.load(f_p)
#
#with open('eval_dataset_full.pickle','rb') as f_p:
# eval_dataset_full = pickle.load(f_p)
#
#with open('test_dataset_A.pickle','rb') as f_p:
# test_dataset_A = pickle.load(f_p)
with open('dev-0_huggingface_format.csv','r') as f_p:
eval_dataset_full = f_p.readlines()
with open('test-A_huggingface_format.csv','r') as f_p:
test_dataset = f_p.readlines()
device = 'cuda'
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction/epoch_best')
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
model.eval()
model.to(device)
with open('scalers.pickle', 'rb') as f_scaler:
scalers = pickle.load(f_scaler)
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
def predict(dataset, out_f):
outputs = []
for sample in tqdm(dataset[1:]):
y, t = sample.split('\t')
t = t.rstrip()
t = tokenizer(t, padding="max_length", truncation=True, max_length=512, return_tensors='pt').to('cuda')
outputs.extend(model(**t).logits.tolist())
outputs_transformed = scalers['year'].inverse_transform(outputs)
with open(out_f,'w') as f_out:
for o in outputs_transformed:
f_out.write(str(o[0]) + '\n')
predict(eval_dataset_full, '../dev-0/out.tsv')
predict(test_dataset, '../test-A/out.tsv')