Compare commits
5 Commits
master
...
hf_challam
Author | SHA1 | Date | |
---|---|---|---|
|
6fa3498573 | ||
|
b661fbc411 | ||
|
b766117a35 | ||
|
9af4dd453e | ||
|
33e11dad3d |
38240
dev-0/out.tsv
38240
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
16
hf_roberta_base/01_create_datasets.py
Normal file
16
hf_roberta_base/01_create_datasets.py
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
|
||||||
|
for split in 'train', 'dev-0':
|
||||||
|
with open(f'../{split}/in.tsv') as f_in, open(f'../{split}/expected.tsv') as f_exp, open(f'./{split}_huggingface_format.csv', 'w') as f_hf:
|
||||||
|
f_hf.write('year_start_float\tyear_end_float\tyear_middle_float\tyear_middle_int\ttext\n')
|
||||||
|
for line_in, line_exp in zip(f_in, f_exp):
|
||||||
|
year_start_float, year_end_float = line_exp.rstrip().split(',')
|
||||||
|
year_middle_float = (float(year_start_float) + float(year_end_float)) / 2
|
||||||
|
year_middle_int = round(year_middle_float)
|
||||||
|
f_hf.write(f'{year_start_float}\t{year_end_float}\t{year_middle_float}\t{year_middle_int}\t{line_in}')
|
||||||
|
|
||||||
|
for split in ('test-A',):
|
||||||
|
with open(f'../{split}/in.tsv') as f_in, open(f'./{split}_huggingface_format.csv', 'w') as f_hf:
|
||||||
|
f_hf.write('year_start_float\tyear_end_float\tyear_middle_float\tyear_middle_int\ttext\n')
|
||||||
|
for line_in in f_in:
|
||||||
|
expected = '0.0\t0.0\t0.0\t0'
|
||||||
|
f_hf.write(expected + '\t' + line_in)
|
70
hf_roberta_base/02_load_dataset.py
Normal file
70
hf_roberta_base/02_load_dataset.py
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
from config import MODEL, TEST
|
||||||
|
import pickle
|
||||||
|
from datasets import load_dataset, Dataset
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from tqdm import tqdm
|
||||||
|
from sklearn.preprocessing import MinMaxScaler
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
values = ('year_start_float', 'year_end_float', 'year_middle_float', 'year_middle_int', 'text')
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||||
|
def tokenize_function(examples):
|
||||||
|
t = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
||||||
|
return t
|
||||||
|
|
||||||
|
def get_dataset_dict(dataset):
|
||||||
|
with open(dataset) as f_in:
|
||||||
|
next(f_in)
|
||||||
|
d = dict()
|
||||||
|
for v in values:
|
||||||
|
d[v] = list()
|
||||||
|
for l in f_in:
|
||||||
|
args = l.rstrip().split('\t')
|
||||||
|
for v, a in zip(values, args):
|
||||||
|
d[v].append(a)
|
||||||
|
return d
|
||||||
|
|
||||||
|
train_dataset = Dataset.from_dict(get_dataset_dict('train_huggingface_format.csv')).map(tokenize_function, batched=True).shuffle(seed=42)
|
||||||
|
eval_dataset_full = Dataset.from_dict(get_dataset_dict('dev-0_huggingface_format.csv')).map(tokenize_function, batched=True)
|
||||||
|
eval_dataset_small = eval_dataset_full.shuffle(seed=42).select(range(2000))
|
||||||
|
test_dataset_A = Dataset.from_dict(get_dataset_dict('test-A_huggingface_format.csv')).map(tokenize_function, batched=True)
|
||||||
|
|
||||||
|
if TEST:
|
||||||
|
train_dataset = train_dataset.select(range(500))
|
||||||
|
eval_dataset_full = eval_dataset_full.select(range(400))
|
||||||
|
eval_dataset_small = eval_dataset_small.select(range(50))
|
||||||
|
test_dataset_A = test_dataset_A.select(range(200))
|
||||||
|
|
||||||
|
|
||||||
|
scalers = dict()
|
||||||
|
values_to_scale = ('year_start_float', 'year_end_float', 'year_middle_float')
|
||||||
|
for v in values_to_scale:
|
||||||
|
scalers[v] = MinMaxScaler().fit(np.array(train_dataset[v]).reshape(-1, 1))
|
||||||
|
|
||||||
|
def add_scaled(example):
|
||||||
|
for factor in values_to_scale:
|
||||||
|
example[factor + '_scaled'] = scalers[factor].transform(np.array(example[factor]).reshape(-1,1)).reshape(1,-1)[0].item()
|
||||||
|
return example
|
||||||
|
|
||||||
|
|
||||||
|
train_dataset = train_dataset.map(add_scaled)
|
||||||
|
eval_dataset_full = eval_dataset_full.map(add_scaled)
|
||||||
|
eval_dataset_small = eval_dataset_small.map(add_scaled)
|
||||||
|
test_dataset_A = test_dataset_A.map(add_scaled)
|
||||||
|
|
||||||
|
|
||||||
|
with open('train_dataset.pickle', 'wb') as f_p:
|
||||||
|
pickle.dump(train_dataset, f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_small.pickle', 'wb') as f_p:
|
||||||
|
pickle.dump(eval_dataset_small, f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_full.pickle', 'wb') as f_p:
|
||||||
|
pickle.dump(eval_dataset_full, f_p)
|
||||||
|
|
||||||
|
with open('test_dataset_A.pickle', 'wb') as f_p:
|
||||||
|
pickle.dump(test_dataset_A, f_p)
|
||||||
|
|
||||||
|
with open('scalers.pickle', 'wb') as f_p:
|
||||||
|
pickle.dump(scalers, f_p)
|
127
hf_roberta_base/03_train_pytorch_regression.py
Normal file
127
hf_roberta_base/03_train_pytorch_regression.py
Normal file
@ -0,0 +1,127 @@
|
|||||||
|
from config import MODEL, TEST
|
||||||
|
import pickle
|
||||||
|
from datasets import load_dataset
|
||||||
|
from transformers import AutoTokenizer, RobertaModel, RobertaTokenizer
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from transformers import AdamW
|
||||||
|
from transformers import get_scheduler
|
||||||
|
import torch
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
BATCH_SIZE = 24
|
||||||
|
EARLY_STOPPING = 3
|
||||||
|
WARMUP_STEPS = 10_000
|
||||||
|
|
||||||
|
STEPS_EVAL = 5_000
|
||||||
|
|
||||||
|
if TEST:
|
||||||
|
STEPS_EVAL = 100
|
||||||
|
WARMUP_STEPS = 10
|
||||||
|
|
||||||
|
with open('train_dataset.pickle', 'rb') as f_p:
|
||||||
|
train_dataset = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_small.pickle', 'rb') as f_p:
|
||||||
|
eval_dataset_small = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('eval_dataset_full.pickle', 'rb') as f_p:
|
||||||
|
eval_dataset_full = pickle.load(f_p)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=BATCH_SIZE)
|
||||||
|
eval_dataloader_small = DataLoader(eval_dataset_small, batch_size=BATCH_SIZE)
|
||||||
|
eval_dataloader_full = DataLoader(eval_dataset_full, batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL, num_labels=1)
|
||||||
|
optimizer = AdamW(model.parameters(), lr=1e-6)
|
||||||
|
|
||||||
|
|
||||||
|
num_epochs = 15
|
||||||
|
num_training_steps = num_epochs * len(train_dataloader)
|
||||||
|
lr_scheduler = get_scheduler(
|
||||||
|
"linear",
|
||||||
|
optimizer=optimizer,
|
||||||
|
num_warmup_steps=WARMUP_STEPS,
|
||||||
|
num_training_steps=num_training_steps
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
progress_bar = tqdm(range(num_training_steps))
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
def transform_batch(batch):
|
||||||
|
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
||||||
|
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
||||||
|
batch['labels'] = batch['year_middle_float_scaled'].to(device).float()
|
||||||
|
|
||||||
|
batch['labels'].to(device)
|
||||||
|
batch['input_ids'].to(device)
|
||||||
|
batch['attention_mask'].to(device)
|
||||||
|
|
||||||
|
for c in set(batch.keys()) - {'input_ids', 'attention_mask', 'labels'}:
|
||||||
|
del batch[c]
|
||||||
|
return batch
|
||||||
|
|
||||||
|
|
||||||
|
def eval(full=False):
|
||||||
|
model.eval()
|
||||||
|
eval_loss = 0.0
|
||||||
|
dataloader = eval_dataloader_full if full else eval_dataloader_small
|
||||||
|
for i, batch in enumerate(dataloader):
|
||||||
|
batch = transform_batch(batch)
|
||||||
|
outputs = model(**batch)
|
||||||
|
loss = outputs.loss
|
||||||
|
eval_loss += loss.item()
|
||||||
|
print(f'epoch {epoch} eval loss: {eval_loss / i }')
|
||||||
|
model.train()
|
||||||
|
return eval_loss
|
||||||
|
|
||||||
|
|
||||||
|
best_eval_loss = 9999
|
||||||
|
epochs_without_progress = 0
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
train_loss = 0.0
|
||||||
|
for i, batch in enumerate(train_dataloader):
|
||||||
|
batch = transform_batch(batch)
|
||||||
|
outputs = model(**batch)
|
||||||
|
loss = outputs.loss
|
||||||
|
loss.backward()
|
||||||
|
train_loss += loss.item()
|
||||||
|
progress_bar.update(1)
|
||||||
|
|
||||||
|
# DELAYED UPDATE
|
||||||
|
#if i % 16 == 1 and i > 1:
|
||||||
|
# optimizer.step()
|
||||||
|
# #lr_scheduler.step()
|
||||||
|
# optimizer.zero_grad()
|
||||||
|
|
||||||
|
# DELAYED UPDATE
|
||||||
|
optimizer.step()
|
||||||
|
lr_scheduler.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
if i % STEPS_EVAL == 0 and i > 1:
|
||||||
|
print(f' epoch {epoch} train loss: {train_loss / STEPS_EVAL }', end='\t\t')
|
||||||
|
train_loss = 0.0
|
||||||
|
eval(full = False)
|
||||||
|
|
||||||
|
model.save_pretrained(f'roberta_year_prediction/epoch_{epoch}')
|
||||||
|
eval_loss = eval(full=True)
|
||||||
|
|
||||||
|
if eval_loss < best_eval_loss:
|
||||||
|
model.save_pretrained(f'roberta_year_prediction/epoch_best')
|
||||||
|
best_eval_loss = eval_loss
|
||||||
|
else:
|
||||||
|
epochs_without_progress += 1
|
||||||
|
|
||||||
|
if epochs_without_progress > EARLY_STOPPING:
|
||||||
|
break
|
48
hf_roberta_base/04_predict.py
Normal file
48
hf_roberta_base/04_predict.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
import pickle
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForSequenceClassification
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||||
|
eval_dataset_full = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('test_dataset_A.pickle','rb') as f_p:
|
||||||
|
test_dataset = pickle.load(f_p)
|
||||||
|
|
||||||
|
device = 'cuda'
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction/epoch_best')
|
||||||
|
model.eval()
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
with open('scalers.pickle', 'rb') as f_scaler:
|
||||||
|
scalers = pickle.load(f_scaler)
|
||||||
|
|
||||||
|
def predict(dataset, out_f):
|
||||||
|
eval_dataloader = DataLoader(dataset, batch_size=1)
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
progress_bar = tqdm(range(len(eval_dataloader)))
|
||||||
|
|
||||||
|
for batch in eval_dataloader:
|
||||||
|
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
||||||
|
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
||||||
|
batch['labels'] = batch['year_middle_float_scaled'].to(device).float()
|
||||||
|
|
||||||
|
batch['labels'].to(device)
|
||||||
|
batch['input_ids'].to(device)
|
||||||
|
batch['attention_mask'].to(device)
|
||||||
|
|
||||||
|
for c in set(batch.keys()) - {'input_ids', 'attention_mask', 'labels'}:
|
||||||
|
del batch[c]
|
||||||
|
outputs.extend(model(**batch).logits.tolist())
|
||||||
|
progress_bar.update(1)
|
||||||
|
outputs_transformed = scalers['year_middle_float'].inverse_transform(outputs)
|
||||||
|
|
||||||
|
with open(out_f,'w') as f_out:
|
||||||
|
|
||||||
|
for o in outputs_transformed:
|
||||||
|
f_out.write(str(o[0]) + '\n')
|
||||||
|
|
||||||
|
predict(eval_dataset_full, '../dev-0/out.tsv')
|
||||||
|
predict(test_dataset, '../test-A/out.tsv')
|
53
hf_roberta_base/04_predict_from_file.py
Normal file
53
hf_roberta_base/04_predict_from_file.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
import pickle
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
#with open('train_dataset.pickle','rb') as f_p:
|
||||||
|
# train_dataset = pickle.load(f_p)
|
||||||
|
#
|
||||||
|
#with open('eval_dataset_small.pickle','rb') as f_p:
|
||||||
|
# eval_dataset_small = pickle.load(f_p)
|
||||||
|
#
|
||||||
|
#with open('eval_dataset_full.pickle','rb') as f_p:
|
||||||
|
# eval_dataset_full = pickle.load(f_p)
|
||||||
|
#
|
||||||
|
#with open('test_dataset_A.pickle','rb') as f_p:
|
||||||
|
# test_dataset_A = pickle.load(f_p)
|
||||||
|
|
||||||
|
with open('dev-0_huggingface_format.csv','r') as f_p:
|
||||||
|
eval_dataset_full = f_p.readlines()
|
||||||
|
|
||||||
|
with open('test-A_huggingface_format.csv','r') as f_p:
|
||||||
|
test_dataset = f_p.readlines()
|
||||||
|
|
||||||
|
device = 'cuda'
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction/epoch_best')
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
|
||||||
|
model.eval()
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
with open('scalers.pickle', 'rb') as f_scaler:
|
||||||
|
scalers = pickle.load(f_scaler)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
|
||||||
|
def predict(dataset, out_f):
|
||||||
|
outputs = []
|
||||||
|
|
||||||
|
for sample in tqdm(dataset[1:]):
|
||||||
|
y, t = sample.split('\t')
|
||||||
|
t = t.rstrip()
|
||||||
|
|
||||||
|
t = tokenizer(t, padding="max_length", truncation=True, max_length=512, return_tensors='pt').to('cuda')
|
||||||
|
|
||||||
|
outputs.extend(model(**t).logits.tolist())
|
||||||
|
outputs_transformed = scalers['year'].inverse_transform(outputs)
|
||||||
|
|
||||||
|
with open(out_f,'w') as f_out:
|
||||||
|
|
||||||
|
for o in outputs_transformed:
|
||||||
|
f_out.write(str(o[0]) + '\n')
|
||||||
|
|
||||||
|
predict(eval_dataset_full, '../dev-0/out.tsv')
|
||||||
|
predict(test_dataset, '../test-A/out.tsv')
|
4
hf_roberta_base/config.py
Normal file
4
hf_roberta_base/config.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
MODEL = '/mnt/gpu_data1/kubapok/RoBERTa/without_date/checkpoint-1325000'
|
||||||
|
TEST=False
|
||||||
|
|
||||||
|
|
38190
test-A/out.tsv
38190
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user