wiki-historian/hf_roberta_base/02_load_dataset.py
2022-07-02 12:02:13 +02:00

71 lines
2.5 KiB
Python

from config import MODEL, TEST
import pickle
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer
from tqdm import tqdm
from sklearn.preprocessing import MinMaxScaler
import numpy as np
values = ('year_start_float', 'year_end_float', 'year_middle_float', 'year_middle_int', 'text')
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def tokenize_function(examples):
t = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
return t
def get_dataset_dict(dataset):
with open(dataset) as f_in:
next(f_in)
d = dict()
for v in values:
d[v] = list()
for l in f_in:
args = l.rstrip().split('\t')
for v, a in zip(values, args):
d[v].append(a)
return d
train_dataset = Dataset.from_dict(get_dataset_dict('train_huggingface_format.csv')).map(tokenize_function, batched=True).shuffle(seed=42)
eval_dataset_full = Dataset.from_dict(get_dataset_dict('dev-0_huggingface_format.csv')).map(tokenize_function, batched=True)
eval_dataset_small = eval_dataset_full.shuffle(seed=42).select(range(2000))
test_dataset_A = Dataset.from_dict(get_dataset_dict('test-A_huggingface_format.csv')).map(tokenize_function, batched=True)
if TEST:
train_dataset = train_dataset.select(range(500))
eval_dataset_full = eval_dataset_full.select(range(400))
eval_dataset_small = eval_dataset_small.select(range(50))
test_dataset_A = test_dataset_A.select(range(200))
scalers = dict()
values_to_scale = ('year_start_float', 'year_end_float', 'year_middle_float')
for v in values_to_scale:
scalers[v] = MinMaxScaler().fit(np.array(train_dataset[v]).reshape(-1, 1))
def add_scaled(example):
for factor in values_to_scale:
example[factor + '_scaled'] = scalers[factor].transform(np.array(example[factor]).reshape(-1,1)).reshape(1,-1)[0].item()
return example
train_dataset = train_dataset.map(add_scaled)
eval_dataset_full = eval_dataset_full.map(add_scaled)
eval_dataset_small = eval_dataset_small.map(add_scaled)
test_dataset_A = test_dataset_A.map(add_scaled)
with open('train_dataset.pickle', 'wb') as f_p:
pickle.dump(train_dataset, f_p)
with open('eval_dataset_small.pickle', 'wb') as f_p:
pickle.dump(eval_dataset_small, f_p)
with open('eval_dataset_full.pickle', 'wb') as f_p:
pickle.dump(eval_dataset_full, f_p)
with open('test_dataset_A.pickle', 'wb') as f_p:
pickle.dump(test_dataset_A, f_p)
with open('scalers.pickle', 'wb') as f_p:
pickle.dump(scalers, f_p)