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Lecture 1 Basic definitions February 25, 2019

Definition 1.1
A knot K in S3 is a smooth (PL - smooth) embedding of a circle St in S3:

p: St 83
Usually we think about a knot as an image of an embedding: K = ¢(S?).

Example 1.1

. Knots: O (unknot), @ (trefoil).

Ve
e Not knots: OQ (it is not an injection), _/ (it is not smooth).

Definition 1.2
Two knots Ky = ¢o(S1), K; = p,(S1) are equivalent if the embeddings i,
and @, are isotopic, that is there exists a continues function

P : St x[0,1] = 53
O(x,t) = ()

such that ®, is an embedding for any t € [0,1], &5 = @, and &, = ¢;.

Theorem 1.1

Two knots K, and K, are isotopic if and only if they are ambient isotopic,
i.e. there ezists a family of self-diffeomorphisms ¥ = {4, : t € [0,1]} such
that:

W(t) =1, is continius on t € [0, 1]

% : 83 — 837
77bO:Z'd7
%(Ko) = K.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding ¢(t) = (cost,sint,0),
where t € [0,27] is a parametrisation of St.
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Definition 1.4 i

e e
A link with k - components is a (smooth) embedding of ST U ... U St in S3

Example 1.2
Links:

OOC
a trivial link with 3 components: _/,
a hopf link: @,

@
o Whitehead link: S0

&)
Definition 1.5

A link diagram D, is a picture over projection w of a link L in R3(S3) to R?
(S?) such that:

Borromean link:

(1) D”‘L is non degenerate: >,

(2) the double points are not degenerate: K,

(3) there are no triple point: ><<

There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.

Every link admits a link diagram.

Let D be a diagram of an oriented link (to each component of a link we add
an arrow in the diagram).

We can distinguish two types of crossings: right-handed (\/\'>, called a pos-

itive crossing, and left-handed (X), called a negative crossing.
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1.1 Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram
as shown below:

<\""’/:/>.

Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by
smoothing each crossing:

A= )(
X )(

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in R? (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive
and left-handed for a negative one. We get an orientable surface X such that
0¥ = L.



Figure 1: Constructing a Seifert surface.

Note: the obtained surface isn’t unique and in general doesn’t need to be
connected, but by taking connected sum of all components we can easily get
a connected surface (i.e. we take two disconnected components and cut a
disk in each of them: D; and D,; now we glue both components on the
boundaries: 0D, and 9D,.

Theorem 1.3 (Seifert)
Every link in S® bounds a surface ¥ that is compact, connected and orientable.
Such a surface is called a Seifert surface.

Definition 1.6
The three genus g3(K) (9(K)) of a knot K is the minimal genus of a Seifert
surface 3 for K.

Corollary 1.1
A knot K is trivial if and only g5(K) = 0.
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Figure 2: Connecting two surfaces.

. genus 0 @

Figure 3: Genus of an orientable surface.

genus 2

genus 3

Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (Andrés Juhész, 2008).

Definition 1.7
Suppose a and 3 are two simple closed curves in R3. On a diagram L consider

all crossings between o and 3. Let N be the number of positive crossings,
N_ - negative. Then the linking number: lk(c, 8) = £(N, — N_).

Let o and 3 be two disjoint simple cross curves in S®. Let v(3) be a tubular
neighbourhood of 3. The linking number can be interpreted via first ho-
mology group, where lk(a, 8) is equal to evaluation of a as element of first
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homology group of the complement of j:

a€ H (S*\v(B),Z)=7.
Example 1.3
e Hopf link:
k(a, 8) = —1
)
T(6,2) link:
Ik(a, B) = 3
Fact 1.1
1 1 .
93(2) = 5b,(2) = 5 dimg H,(Z, R),

2
where by is first Betti number of X.

2

1.3 Seifert matrix

Let L be a link and ¥ be an oriented Seifert surface for L. Choose a basis for
H,(X,Z) consisting of simple closed ay,...,a,,. Let af,...a; be copies of
«a; lifted up off the surface (push up along a vector field normal to ¥)). Note
that elements «; are contained in the Seifert surface while all a are don t
intersect the surface Let lk(a;, o) = {a;;}. Then the matrix S = {a;;}}';_,
is called a Seifert matrix for L. Note that by choosing a different ba81s we
get a different matrix.



Theorem 1.4
The Seifert matrices S, and Sy for the same link L are S-equivalent, that is,
S, can be obtained from S| by a sequence of following moves:

(1) V.— AV AT where A is a matriz with integer coefficients,

* 0 * 0
\%4 H v Do
(2) V — x 0 or V— * 0
* ... %[0 0 * x|0 1
0 ... 0j/1 0 0 00 O
(3) inverse of (2)
Lecture 2 March 4, 2019

Theorem 2.1
For any knot K C S? there exists a connected, compact and orientable surface
Y(K) such that 0X(K) = K

Proof. ("joke”)
Let K € S3 be a knot and N = v(K) be its tubular neighbourhood. Because
K and N are homotopy equivalent, we get:

HY(S*\ N) = H'(S%\ K).



Let us consider a long exact sequence of cohomology of a pair (53, 5%\ N)
with integer coefficients:

Z
I

HO(S3) — HO(S3\ N) —

— HY(S3,83\ N) —» HY(S3) — HY(S*\N)—
2l

0
I

— H?(S3,83\ N) — H?*(S3) — H?*S*\N)—

— H3(S3, 83\ N) — H3(S) — 0
2l
Z

H*(S83,8%\ N) =~ H*(N,0N)

PPPPPPP0??

O

Definition 2.1
Let S be a Seifert matriz for a knot K. The Alexander polynomial A i (t) is
a Laurent polynomial:

Ag(t) :==det(tS — ST) € Z]t,t 1] =~ 7[7]

Theorem 2.2
A (t) is well defined up to multiplication by +t*, for k € Z.

Proof. We need to show that Ay (t) doesn’t depend on S-equivalence rela-
tion.

(1) Suppose S’ = CSCT, C € GL(n, Z) (matrices invertible over Z). Then
det C' =1 and:

det(tS’ — §'T) = det(tCSCT — (CSCTT) =
det(tCSCT — CSTCT) = det C(tS — ST)CT = det(tS — ST)
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* 0 * 0 * 0
S o ST : tS — ST |
A=t * 0 |— * 0 | = x 0
* ... x|0 0 * ... x|0 1 * *10 —1
0O ... 0|1 O 0O .. 0]0 O 0 Ot O

Using the Laplace expansion we get det A = +tdet(tS — ST).

Example 2.1

If K is a trefoil then we can take S = <_1 -1

0 _1). Then

—t+1 —t

A (t) = det ( 1 i 1) = (t—1)%2+t = t2—t+1 #+ 1 = trefoil is not trivial.

Fact 2.1
Ay (t) is symmetric.

Proof. Let S be an n X n matrix.

Ap(t1) =det(t 1S — ST) = (—t) ™ det(tST — 9) =
(—t) ™ det(tS — ST) = (—t) " Ax(t)

If K is a knot, then n is necessarily even, and so Ax(t71) =t A (t). O
Lemma 2.1

1

5 deg Ay (t) < g5(K), where deg(a, t" + - +at') =k — 1.

Proof. If ¥ is a genus g - Seifert surface for K then H,(X) = 729, s0 S is an
2g x 2g matrix. Therefore det(tS — ST) is a polynomial of degree at most
2g. 0

Example 2.2
There are not trivial knots with Alezander polynomial equal 1, for example:

10



/\B
C /
\5 A
Lemma 2.2 (Dehn)
f
Let M be a 3-manifold and D?> — M3 be a map of a disk such that f|aD2 s

11n34 = 1.

g
an embedding. Then there exists an embedding D* < M such that:

g\am - f|az)2.

Lecture 3
Example 3.1
F:C? = C a polynomial
F(0)=0
PPPPVVPPVPP?

as a corollary we see that K7 7777
is not slice unless m = 0.

Theorem 3.1
The map j: C — Z°° is a surjection that maps K,, to a linear independent
set. Moreover C = 7
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Fact 3.1 (Milnor Singular Points of Complex Hypersurfaces)

An oriented knot is called negative amphichiral if the mirror image m(K) of
K is equivalent the reverse knot of K: K.

Problem 3.1
Prove that if K is negative amphichiral, then K#K =0 in C.

Example 3.2
Figure 8 knot is negative amphichiral.

Lecture 4 Concordance group March 18, 2019

Definition 4.1

A knot K is called (smoothly) slice if K is smoothly concordant to an unknot.
A knot K is smoothly slice if and only if K bounds a smoothly embedded disk
in B*.

Definition 4.2
Two knots K and K’ are called (smoothly) concordant if there exists an annu-
lus A that is smoothly embedded in S® x [0, 1] such that 0A = K’ x {1} U K x {0}.

S3 % [0,1]

K
S3x {0} I S3x {1}

Let m(K) denote a mirror image of a knot K.

12



Fact 4.1
For any K, K#m(K) is slice.

Fact 4.2
Concordance is an equivalence relation.

Fact 4.3
IfK, ~ K, and K, ~ K, then K, #K, ~ K,'#K,’.

Ky

Annulus A,

Annulus A, Ko/ |
K,

Figure 4: Sketch for Fakt 4.3.

Fact 4.4
K#m(K) ~ the unknot.

Theorem 4.1

Let € denote a set of all equivalent classes for knots and {0} denote class of
all knots concordant to a trivial knot. C is a group under taking connected
sums. The neutral element in the group is {0} and the inverse element of an

element {K} € C is —{K} = {mK}.

Fact 4.5
The figure eight knot is a torsion element in C (2K ~ the unknot).

Problem 4.1 (open)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments?
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Remark: K ~ K’ < K# — K’ is slice.

Let Q be an oriented four-manifold.
PoPPP?

Suppose X is a Seifert surface and V' a Seifert form defined on 3: (a, 8) + lk(c, 87).

Suppose «, 5 € H,(X,Z) (i.e. there are cycles).
29722722772777

a,B € ker(H{(3,7) — H,(Q,7)). Then there are two cycles A,B € Q
such that A = o and 9B = 3. Let B be a push off of B in the positive
normal direction such that 9B = 7. Then lk(a,87) = A- B

Lecture 5 April 8, 2019

X is a closed orientable four-manifold. Assume 7, (X) = 0 (it is not needed to
define the intersection form). In particular H,(X) = 0. H, is free (exercise).

Poincaré duality evaluation

Hy(X,7) ————— = H%(X,7) 2 Hom(H,y (X, Z), Z)

Intersection form: Hy(X,Z) x Hy(X,Z) — Z - symmetric, non singular.
Let A and B be closed, oriented surfaces in X.

Proposition 5.1
A - B doesn’t depend of choice of A and B in their homology classes.

14



Lecture 6 March 11, 2019

Definition 6.1
A link L is fibered if there exists a map ¢ : S\ L +— St which is locally
trivial fibration.

Lecture 7 April 15, 2019

In other words:

Choose a basis (by, ..., b;)
77

of Hy(Y,Z, then A = (b;,b,)
7

is a matrix of intersection form:

L) ygn = H\(Y, Z).

In particular | det A |= #H,(Y,Z).
That means - what is happening on boundary is a measure of degeneracy.

H(Y,2) x H\(Y,2) — )/ -alinking form
2 2

“laz Yz
(a,b) = aA~pT

Vaddddddddddddddddddddddddddddada

The intersection form on a four-manifold determines the linking on the
boundary.

15



Let K € St be a knot, X(K) its double branched cover. If V is a Seifert
matrix for K, then H,(3(K),Z) = Zn/AZ where A =V x VT n=rankV.
Let X be the four-manifold obtained via the double branched cover of B*

Figure 5: Pushing the Seifert surface in 4-ball.

branched along .
Fact 7.1

e X is a smooth four-manifold,

H,(X,Z)=0,

Hy(X,Z) = 7"

The intersection form on X is V + VT,

<~ cycle a

pusched cycle «

Figure 6: Cycle pushed in 4-ball.
Let Y = ¥(K). Then:
Hy(Y,2)x H,(Y,2) — {/,
(a,b) = aA~1bT, A=V +VT,

16
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~ "
H\(Y,z)=%"/ A7
A — BACT Smith normal form

Vadddddddddddddddddddads

In general

Lecture 8 May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If H,(M,Z) =0
then there exists a bilinear form - the intersection form on M:

Hy(M,Z) x Hy(M,7)— Z
2
ZTL

Let us consider a specific case: M has a boundary Y = OM. Betti number
b(Y) =0, H,(Y,Z) is finite. Then the intersection form can be degenerated
in the sense that:

Hy(M,Z) x Hy(M,Z) —Z  Hy(M,Z) — Hom(H,(M,Z),Z)
(a,b) = Z at (a, )Hy(M,Z7)

has coker precisely H,(Y,Z).
227927927227727

Let K C S3 be a knot,
X = $3\ K - a knot complement,

= P . . . . .
X — X - an infinite cyclic cover (universal abelian cover).

T (X) — (X)) = H,(X,2)~7

[71(X), 71 (X)]

17



C,(X) has a structure of a Z[t, '] = Z[Z] module.

~

H,(X,Z[t,t71]) - Alexander module,

Hl(j\(iZ[t,t*l]) X Hl(yaz[ttil]) — Q/Z[t,t_l]
Fact 8.1

Hy (X, z[t, 1Y) = 2lb: tl]n/(tv —Vhzlt, e

where V' is a Seifert matriz.

Fact 8.2

Hy (X, Z[t, 1) x H (X, Z]t,t7}]) — Q/Z[t,t—l]
(,) = att—1)(tV —VT)1p

Note that Z is not PID. Therefore we don’t have primer decomposition of
this moduli. We can simplify this problem by replacing Z by R. We lose
some date by doing this transition.

e SI\{*1l} p=0—- -t
EERN{£L} ¢ =(—- -t

EERUS" qe=(t—t—-Ot—&N)t—&N)?

A = R[t, t71]
Then: B (X, 0= B A/ e A/ me
gesN\[x1) 16 ggst
k>0 >0

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:

e John Milnor, On isometries of inner product spaces, 1969,

o Walter Neumann, Invariants of plane curve singularities , 1983,
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o Andréas Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

o Maciej Borodzik, Stefan Friedl The unknotting number and classical
invariants 11, 2014.

Let p = pe, k> 0.

A/pkA 8 A/p’“A — 80/
(L,L1) =k
Now: (pF-1,1) 0
pk/{ =0e€ Q<t)/
therfore pFr € A

A

h
we have (1,1) = —
b

h is not uniquely defined: h — h + gp”* doesn’t affect paring.
Let h = p*k.

Example 8.1
1
Go((L.1) ==
ou((1,1) = —

@y and ¢, are not isomorphic.

Proof. Let @ : A/pkA — A/p"“A be an isomorphism.
Let: (1) =g € A

6]
A/ pFA —4/ prA
1 1

Gol(1.1)) = - 61((0.9)) = (@ s an isometry).
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Suppose for the paring ¢,((g,9)) = # we have ¢,((1,1)) = p,}. Then:

—_gﬁziew)/A

pk  pk
—g7 1
e
p p

—gg=1 (mod p)in A
—gg — 1 = pFw for some w € A

evalueting at &:

>0
— e

— 909 —1=0 =<«

O
PIVV00NNNNIVD0000T?
9= Zgiti
9= Zgit_i
g€ => g ¢es
9(&) = 9(§)
Suppose g = (t —&)%g’. Then (t — &)*~ goes to 0 in A/pkA‘
Theorem 8.1
Fuvery sesquilinear non-degenerate pairing
A A h
X — —
s isomorphic either to the pairing wit h = 1 or to the paring with h = —1

depending on sign of h(§) (which is a real number).
Proof. There are two steps of the proof:
1. Reduce to the case when h has a constant sign on S?.

2. Prove in the case, when h has a constant sign on S*.
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Lemma 8.1
If P is a symmetric polynomial such that P(n) > 0 for all n € S, then P
can be written as a product P = gg for some polynomial g.

Sketch of proof. Induction over deg P.
Let ¢ ¢ S* be a root of P, P € R[t,t"]. Assume ¢ ¢ R. We know that
polynomial P is divisible by (t—¢), (t—C), (t71—¢) and (t "' —(). Therefore:

We set g = ¢/ (t — ¢)(t — ¢) and P = gg. Suppose ¢ € S*. Then (t —()? | P
(at least - otherwise it would change sign). Therefore:

, P
P =t o
g=(t— Ot — o etc.

The map (1,1) — ]% = gpf;kh is isometric whenever ¢ is coprime with P. [

Lemma 8.2

Suppose A and B are two symmetric polynomials that are coprime and that
Vz € St either A(z) > 0 or B(z) > 0. Then there exist symmetric polyno-
mials P, Q such that P(z),Q(z) >0 for z € S* and PA+ QB = 1.

Idea of proof. For any z find an interval (a,,b,) such that if P(z) € (a,,b,)
and P(z)A(2) + Q(2)B(z) = 1, then Q(2) > 0, z(z) = %2 is a continues
function on S! approximating z by a polynomial .
Vadddddddddddddddddddddadas

h gh
(1,1) |—>—k|—>—ggk

p p
ggh +pfw =1

21



Apply Lemma 8.2 for A = h, B = p?*. Then, if the assumptions are satisfied,
Ph+Qp* =1
p>0=p=g9

p=(t=t—-OHt!

sop>0on St
pt)=0st==Cort=¢
h(€§) >0

hE) >0

g9gh+ Qp* =1
ggh =1 mod p**
gg=1 mod pF
POVPTVINNVTVNNLVNN0NV0007?
If P has no roots on S! then B(z) > 0 for all z, so the assumptions of Lemma
8.2 are satisfied no matter what A is. ]

Vadddddddddddddadai

A x M) = e €€ STz

1
M — g €8S

Theorem 8.2
(Matumoto, Conway-Borodzik-Politarczyk) Let K be a knot,

H(X ) x (X0 = B O/ pamsca @/ m
kg ¢ koo 1E
&inS?t

Let §,,(€) = lim o(e®™€€) — (e 2™e¢),

e—0t

then 0,(§) = o(§) — L lim o (e2™¢) + o (e 2mEg)

J 2 e—0
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The jump at € is equal to 2 Y €,. The peak of the signature function is

k; odd
equal to > €.
k;even
O
Lecture 9 May 27, 2019
Definition 9.1
A square hermitian matriz A of size n.
field of fractions
Lecture 10 June 3, 2019

Theorem 10.1
Let K be a knot and u(K) its unknotting number. Let g,(K) be a minimal
four genus of a smooth surface S in B* such that 0S = K. Then:

u(K) > g4(K)

Proof. Recall that if u(K) = u then K bounds a disk A with w ordinary
double points.

Remove from A the two self intersecting and glue the Seifert surface for the
Hopf link. The reality surface S has Euler characteristic x(S) = 1 — 2u.

Therefore g,(S) = u . O
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Example 10.1 '
The knot 8y is slice: 0 =0 almost everywhere but 0(62‘75”) = +1.

Surgery

Recall that Hy(S*x S, 7) = 73. As generators for H, we can set o = [S x {pt}]
and B = [{pt} x S]. Suppose ¢ : St x St — St x St is a diffeomorphism.
Consider an induced map on homology group:

H,(S*x 5%,7)> ¢,(a) =pa+4qB, p,q€EL,

=0

As ¢, is diffeomorphis, it must be invertible over Z. Then for a direction
preserving diffeomorphism we have det ¢, = 1. Therefore ¢, € SL(2,7).

Lecture 11 balagan

Proof. By Poincaré duality we know that:

Therefore dimQ Hy(Y) / V= dimQ V. L]



Suppose g(K) = 0 (K is slice). Then H,(X,7Z) = H,(Y,Z). Let g5, be
the genus of ¥, dim H,(Y,Z) = 2g5x,. Then the Seifert form V on a 4 -
manifolds???

has a subspace of dimension gy, on which it is zero:

gs
e e
0O ... 0 % .. =
[ : S :
V= 0 ... 0 % .. =
* * %
295 X295,
Lecture 12 May 6, 2019

Definition 12.1
Let X be a knot complement. Then H,(X,Z) = Z and there exists an

epimorphism my (X) —Qb» Z.
The infinite cyclic cover of a knot complement X is the cover associated with
the epimorphism ¢.
XX
Formal sums )~ ¢;(t)a; + > ¢,(t)a;
finitely generated as a Z[t,t~!] module.
Let v;j = lk(a;,a}). Then V = {v;j}}";_, is the Seifert matrix associated to

the surface ¥ and the basis aq, -, a,,. Therefore a} = Zj v; Q;

25
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.................. 4 N So 4 No S,
t lalvt s, ’t‘Tlan Ay, 09,0, Oy
CLj ;‘r

Figure 7: Infinite cyclic cover of a knot complement.

Qpy o, &

n

S

Ay,

= éij

Figure 8: A knot complement.
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- dual generators of Hq(N)

, a,, - generators of Hy(S)
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