2019-10-18 11:19:20 +02:00
% I don't have this first fragent in my notes
2019-07-03 07:06:01 +02:00
Let $ M $ be compact, oriented, connected four-dimensional manifold. If $ { H _ 1 ( M, \mathbb { Z } ) = 0 } $ then there exists a
bilinear form - the intersection form on $ M $ :
\begin { center}
\begin { tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = { draw=none,"\textstyle #1" description,sloped} ,
isomorphic/.style = { ar symbol={ \cong } } ,
]
H_ 2(M, \mathbb { Z} )&
\times & H_ 2(M, \mathbb { Z} )
\longrightarrow &
\mathbb { Z}
\\
\ar [u,isomorphic] \mathbb { Z} ^ n & & & \\
\end { tikzcd}
\end { center}
\noindent
Let us consider a specific case: $ M $ has a boundary $ Y = \partial M $ .
Betti number $ b _ 1 ( Y ) = 0 $ , $ H _ 1 ( Y, \mathbb { Z } ) $ is finite.
Then the intersection form can be degenerated in the sense that:
\begin { align*}
H_ 2(M, \mathbb { Z} )
\times H_ 2(M, \mathbb { Z} )
& \longrightarrow
\mathbb { Z} \quad &
H_ 2(M, \mathbb { Z} ) & \longrightarrow \Hom (H_ 2(M, \mathbb { Z} ), \mathbb { Z} )\\
(a, b) & \mapsto \mathbb { Z} \quad &
a & \mapsto (a, \_ ) \in H_ 2(M, \mathbb { Z} )
\end { align*}
has coker precisely $ H _ 1 ( Y, \mathbb { Z } ) $ .
\\ ???????????????\\
2019-10-18 11:19:20 +02:00
% Here my notes begin:
2019-07-03 07:06:01 +02:00
Let $ K \subset S ^ 3 $ be a knot, $ X = S ^ 3 \setminus K $ a knot complement and
$ \widetilde { X } \xrightarrow { \enspace \rho \enspace } X $ an infinite cyclic cover (universal abelian cover).
%By Hurewicz theorem we know that:
%\begin{align*}
%\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
%\end{align*}
\noindent
$ C _ { * } ( \widetilde { X } ) $ has a structure of a $ \mathbb { Z } [ t, t ^ { - 1 } ] \cong \mathbb { Z } [ \mathbb { Z } ] $ module. \\
Let $ H _ 1 ( \widetilde { X } , \mathbb { Z } [ t, t ^ { - 1 } ] ) $ be the Alexander module of the knot $ K $ with an intersection form:
\begin { align*}
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \times
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \longrightarrow \quot { \mathbb { Q} } { \mathbb { Z} [t, t^ { -1} ]}
\end { align*}
\begin { fact}
\begin { align*}
& H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \cong
\quot { \mathbb { Z} { [t, t^ { -1} ]} ^ n} { (tV - V^ T)\mathbb { Z} [t, t^ { -1} ]^ n} \; , \\
& \text { where $ V $ is a Seifert matrix.}
\end { align*}
\end { fact}
\begin { fact}
\begin { align*}
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \times
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) & \longrightarrow \quot { \mathbb { Q} } { \mathbb { Z} [t, t^ { -1} ]} \\
(\alpha , \beta ) \quad & \mapsto \alpha ^ { -1} (t -1)(tV - V^ T)^ { -1} \beta
\end { align*}
\end { fact}
\noindent
2019-10-18 11:19:20 +02:00
Note that $ \mathbb { Z } [ t, t ^ { - 1 } ] $ is not PID.
2019-07-03 07:06:01 +02:00
Therefore we don't have primary decomposition of this module.
We can simplify this problem by replacing $ \mathbb { Z } $ by $ \mathbb { R } $ . We lose some date by doing this transition, but we can
\begin { align*}
\xi \in S^ 1 \setminus \{ \pm 1\}
& \quad
p_ { \xi } =
(t - \xi )(t - \xi ^ { -1} ) t^ { -1}
\\
\xi \in \mathbb { R} \setminus \{ \pm 1\}
& \quad
q_ { \xi } = (t - \xi )(t - \xi ^ { -1} ) t^ { -1}
\\
\xi \notin \mathbb { R} \cup S^ 1
& \quad
q_ { \xi } = (t - \xi )(t - \overbar { \xi } )(t - \xi ^ { -1} )
(t - \overbar { \xi } ^ { -1} ) t^ { -2}
\end { align*}
Let $ \Lambda = \mathbb { R } [ t, t ^ { - 1 } ] $ . Then:
\begin { align*}
H_ 1(\widetilde { X} , \Lambda ) \cong \bigoplus _ { \substack { \xi \in S^ 1 \setminus \{ \pm 1 \} \\ k\geq 0} }
( \quot { \Lambda } { p_ { \xi } ^ k } )^ { n_ k, \xi }
\oplus
\bigoplus _ { \substack { \xi \notin S^ 1 \\ l\geq 0} }
(\quot { \Lambda } { q_ { \xi } ^ l} )^ { n_ l, \xi } &
\end { align*}
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace { 0.5cm} \\
Historical remark:
\begin { itemize}
\item John Milnor, \textit { On isometries of inner product spaces} , 1969,
\item Walter Neumann, \textit { Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223– 232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit { The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities} , 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit { The unknotting number and classical invariants II} , 2014.
\end { itemize}
\vspace { 0.5cm}
Let $ p = p _ { \xi } $ , $ k \geq 0 $ .
\begin { align*}
\quot { \Lambda } { p^ k \Lambda } \times
\quot { \Lambda } { p^ k \Lambda } & \longrightarrow \quot { \mathbb { Q} (t)} { \Lambda } \\
(1, 1) & \mapsto \kappa \\
\text { Now: } (p^ k \cdot 1, 1) & \mapsto 0\\
p^ k \kappa = 0 & \in \quot { \mathbb { Q} (t)} { \Lambda } \\
\text { therfore } p^ k \kappa & \in \Lambda \\
\text { we have } (1, 1) & \mapsto \frac { h} { p^ k} \\
\end { align*}
$ h $ is not uniquely defined: $ h \rightarrow h + g p ^ k $ doesn't affect paring. \\
Let $ h = p ^ k \kappa $ .
\begin { example}
\begin { align*}
\phi _ 0 ((1, 1))=\frac { +1} { p} \\
\phi _ 1 ((1, 1)) = \frac { -1} { p}
\end { align*}
$ \phi _ 0 $ and $ \phi _ 1 $ are not isomorphic.
\end { example}
\begin { proof}
Let $ \Phi :
\quot { \Lambda } { p^ k \Lambda } \longrightarrow
\quot { \Lambda } { p^ k \Lambda } $
be an isomorphism. \\
Let: $ \Phi ( 1 ) = g \in \lambda $
\begin { align*}
\quot { \Lambda } { p^ k \Lambda }
\xrightarrow { \enspace \Phi \enspace } &
\quot { \Lambda } { p^ k \Lambda } \\
\phi _ 0((1, 1)) = \frac { 1} { p^ k} \qquad & \qquad
\phi _ 1((g, g)) = \frac { 1} { p^ k} \quad \text { ($ \Phi $ is an isometry).}
\end { align*}
Suppose for the paring $ \phi _ 1 ( ( g, g ) ) = \frac { 1 } { p ^ k } $ we have $ \phi _ 1 ( ( 1 , 1 ) ) = \frac { - 1 } { p ^ k } $ . Then:
\begin { align*}
\frac { -g\overbar { g} } { p^ k} = \frac { 1} { p^ k} & \in \quot { \mathbb { Q} (t)} { \Lambda } \\
\frac { -g\overbar { g} } { p^ k} - \frac { 1} { p^ k} & \in \Lambda \\
-g\overbar { g} & \equiv 1\pmod { p} \text { in } \Lambda \\
-g\overbar { g} - 1 & = p^ k \omega \text { for some } \omega \in \Lambda \\
\text { evalueting at $ \xi $ : } \\
\overbrace { -g(\xi )g(\xi ^ { -1} )} ^ { >0} - 1 = 0 \quad \contradiction
\end { align*}
\end { proof}
????????????????????\\
\begin { align*}
g & = \sum { g_ i t^ i} \\
\overbar { g} & = \sum { g_ i t^ { -i} } \\
\overbar { g} (\xi ) & = \sum g_ i \xi ^ i \quad \xi \in S^ 1\\
\overbar { g} (\xi ) & =\overbar { g(\xi )}
\end { align*}
Suppose $ g = ( t - \xi ) ^ { \alpha } g ^ { \prime } $ . Then $ ( t - \xi ) ^ { k - \alpha } $ goes to $ 0 $ in $ \quot { \Lambda } { p ^ k \Lambda } $ .
\begin { theorem}
Every sesquilinear non-degenerate pairing
\begin { align*}
\quot { \Lambda } { p^ k} \times \quot { \Lambda } { p}
2019-10-18 11:19:20 +02:00
\longrightarrow \frac { h} { p^ k}
2019-07-03 07:06:01 +02:00
\end { align*}
is isomorphic either to the pairing wit $ h = 1 $ or to the paring with $ h = - 1 $ depending on sign of $ h ( \xi ) $ (which is a real number).
\end { theorem}
\begin { proof}
There are two steps of the proof:
\begin { enumerate}
\item
Reduce to the case when $ h $ has a constant sign on $ S ^ 1 $ .
\item
Prove in the case, when $ h $ has a constant sign on $ S ^ 1 $ .
\end { enumerate}
\begin { lemma}
If $ P $ is a symmetric polynomial such that $ P ( \eta ) \geq 0 $ for all $ \eta \in S ^ 1 $ , then $ P $ can be written as a product $ P = g \overbar { g } $ for some polynomial $ g $ .
\end { lemma}
2019-10-18 11:19:20 +02:00
\begin { proof} [Sketch of proof]:
2019-07-03 07:06:01 +02:00
Induction over $ \deg P $ .\\
Let $ \zeta \notin S ^ 1 $ be a root of $ P $ , $ P \in \mathbb { R } [ t, t ^ { - 1 } ] $ . Assume $ \zeta \notin \mathbb { R } $ . We know that polynomial $ P $ is divisible by
$ ( t - \zeta ) $ , $ ( t - \overbar { \zeta } ) $ , $ ( t ^ { - 1 } - \zeta ) $ and $ ( t ^ { - 1 } - \overbar { \zeta } ) $ .
Therefore:
\begin { align*}
& P^ { \prime } = \frac { P} { (t - \zeta )(t - \overbar { \zeta } )(t^ { -1} - \zeta )(t^ { -1} - \overbar { \zeta } )} \\
& P^ { \prime } = g^ { \prime } \overbar { g}
\end { align*}
We set $ g = g ^ { \prime } ( t - \zeta ) ( t - \overbar { \zeta } ) $ and
$ P = g \overbar { g } $ . Suppose $ \zeta \in S ^ 1 $ . Then $ ( t - \zeta ) ^ 2 \vert P $ (at least - otherwise it would change sign). Therefore:
\begin { align*}
& P^ { \prime } = \frac { P} { (t - \zeta )^ 2(t^ { -1} - \zeta )^ 2} \\
& g = (t - \zeta )(t^ { -1} - \zeta ) g^ { \prime } \quad \text { etc.}
\end { align*}
The map $ ( 1 , 1 ) \mapsto \frac { h } { p ^ k } = \frac { g \overbar { g } h } { p ^ k } $ is isometric whenever $ g $ is coprime with $ P $ .
\end { proof}
\begin { lemma} \label { L:coprime polynomials}
Suppose $ A $ and $ B $ are two symmetric polynomials that are coprime and that $ \forall z \in S ^ 1 $ either $ A ( z ) > 0 $ or $ B ( z ) > 0 $ . Then there exist
symmetric polynomials $ P $ , $ Q $ such that
$ P ( z ) , Q ( z ) > 0 $ for $ z \in S ^ 1 $ and $ PA + QB \equiv 1 $ .
\end { lemma}
\begin { proof} [Idea of proof]
For any $ z $ find an interval $ ( a _ z, b _ z ) $ such that if $ P ( z ) \in ( a _ z, b _ z ) $ and $ P ( z ) A ( z ) + Q ( z ) B ( z ) = 1 $ , then $ Q ( z ) > 0 $ , $ x ( z ) = \frac { az + bz } { i } $ is a continues function on $ S ^ 1 $ approximating $ z $ by a polynomial .
\\ ??????????????????????????\\
\begin { flalign*}
(1, 1) \mapsto \frac { h} { p^ k} \mapsto \frac { g\overbar { g} h} { p^ k} & \\
g\overbar { g} h + p^ k\omega = 1&
\end { flalign*}
Apply Lemma \ref { L:coprime polynomials} for $ A = h $ , $ B = p ^ { 2 k } $ . Then, if the assumptions are satisfied,
\begin { align*}
Ph + Qp^ { 2k} = 1\\
p>0 \Rightarrow p = g \overbar { g} \\
p = (t - \xi )(t - \overbar { \xi } )t^ { -1} \\
\text { so } p \geq 0 \text { on } S^ 1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar { \xi } \\
h(\xi ) > 0\\
h(\overbar { \xi } )>0\\
g\overbar { g} h + Qp^ { 2k} = 1\\
g\overbar { g} h \equiv 1 \mod { p^ { 2k} } \\
g\overbar { g} \equiv 1 \mod { p^ k}
\end { align*}
???????????????????????????????\\
If $ P $ has no roots on $ S ^ 1 $ then $ B ( z ) > 0 $ for all $ z $ , so the assumptions of Lemma \ref { L:coprime polynomials} are satisfied no matter what $ A $ is.
\end { proof}
?????????????????\\
\begin { align*}
2019-10-18 11:19:20 +02:00
\quot { \Lambda } { p_ { \xi } ^ k} \times
\quot { \Lambda } { p_ { \xi } ^ k} & \longrightarrow
2019-07-03 07:06:01 +02:00
\frac { \epsilon } { p_ { \xi } ^ k} , \quad \xi \in S^ 1 \setminus \{ \pm 1\} \\
2019-10-18 11:19:20 +02:00
\quot { \Lambda } { q_ { \xi } ^ k} \times
\quot { \Lambda } { q_ { \xi } ^ k} & \longrightarrow
2019-07-03 07:06:01 +02:00
\frac { 1} { q_ { \xi } ^ k} , \quad \xi \notin S^ 1\\
\end { align*}
??????????????????? 1 ?? epsilon?\\
2019-10-18 11:19:20 +02:00
\begin { theorem} [Matumoto, Borodzik-Conway-Politarczyk]
2019-07-03 07:06:01 +02:00
Let $ K $ be a knot,
\begin { align*}
2019-10-18 11:19:20 +02:00
H_ 1(\widetilde { X} , \Lambda ) \times
2019-07-03 07:06:01 +02:00
H_ 1(\widetilde { X} , \Lambda )
2019-10-18 11:19:20 +02:00
= \bigoplus _ { \substack { k, \xi , \epsilon \\ \xi \in S^ 1} }
2019-07-03 07:06:01 +02:00
(\quot { \Lambda } { p_ { \xi } ^ k} , \epsilon )^ { n_ k, \xi , \epsilon } \oplus \bigoplus _ { k, \eta }
2019-10-18 11:19:20 +02:00
(\quot { \Lambda } { p_ { \xi } ^ k} )^ { m_ k} \text { and} \\
\delta _ { \sigma } (\xi ) = \lim _ { \varepsilon \rightarrow 0^ { +} }
2019-07-03 07:06:01 +02:00
\sigma (e^ { 2\pi i \varepsilon } \xi )
- \sigma (e^ { -2\pi i \varepsilon } \xi ),\\
\text { then }
\sigma _ j(\xi ) = \sigma (\xi ) - \frac { 1} { 2} \lim _ { \varepsilon \rightarrow 0}
\sigma (e^ { 2\pi i \varepsilon } \xi )
+ \sigma (e^ { -2 \pi i \varepsilon } \xi )
\end { align*}
The jump at $ \xi $ is equal to
2019-10-18 11:19:20 +02:00
$ 2 \sum \limits _ { k _ i \odd } \epsilon _ i $ .\\
The peak of the signature function is equal to $ { \sum \limits _ { k _ i \even } } { \epsilon _ i } $ .
\\
?????????????????
\\
$ ( \eta _ { k, \xi _ l ^ { + } } - \eta _ { k, \xi _ l ^ { - } } $
% Livingston Pacific Jurnal of M. 2012
2019-07-03 07:06:01 +02:00
\end { theorem}
\end { proof}
2019-10-18 11:19:20 +02:00