2019-06-25 04:58:03 +02:00
$ X $ is a closed orientable four-manifold. Assume $ \pi _ 1 ( X ) = 0 $ (it is not needed to define the intersection form). In particular $ H _ 1 ( X ) = 0 $ .
$ H _ 2 $ is free (exercise).
\begin { align*}
H_ 2(X, \mathbb { Z} ) \xrightarrow { \text { Poincar\' e duality} } H^ 2(X, \mathbb { Z} ) \xrightarrow { \text { evaluation} } \Hom (H_ 2(X, \mathbb { Z} ), \mathbb { Z} )
\end { align*}
Intersection form:
$ H _ 2 ( X, \mathbb { Z } ) \times
H_ 2(X, \mathbb { Z} ) \longrightarrow \mathbb { Z} $ is symmetric and non singular.
\\
Let $ A $ and $ B $ be closed, oriented surfaces in $ X $ .
\\
\begin { figure} [h]
\fontsize { 20} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.5\textwidth } { !} { \input { images/intersection_ form_ A_ B.pdf_ tex} }
}
\caption { $ T _ X A + T _ X B = T _ X X $
} \label { fig:torus_ alpha_ beta}
\end { figure}
???????????????????????
\begin { align*}
x \in A \cap B\\
T_ XA \oplus T_ X B = T_ X X\\
\{ \epsilon _ 1, \dots , \epsilon _ n \} = A \cap C\\
A \cdot B = \sum ^ n_ { i=1} \epsilon _ i
\end { align*}
\begin { proposition}
Intersection form $ A \cdot B $ doesn't depend of choice of $ A $ and $ B $ in their homology classes:
\[
[A], [B] \in H_ 2(X, \mathbb { Z} ).
\]
\end { proposition}
\noindent
\\
If $ M $ is an $ m $ - dimensional close, connected and orientable manifold, then $ H _ m ( M, \mathbb { Z } ) $ and the orientation if $ M $ determined a cycle $ [ M ] \in H _ m ( M, \mathbb { Z } ) $ , called the fundamental cycle.
\begin { example}
If $ \omega $ is an $ m $ - form then:
\[
\int _ M \omega = [\omega ]([M]), \quad [\omega ] \in H^ m_ \Omega (M), \ [M] \in H_ m(M).
\]
\end { example}
????????????????????????????????????????????????
\begin { figure} [h]
\fontsize { 20} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.8\textwidth } { !} { \input { images/torus_ alpha_ beta.pdf_ tex} }
}
\caption { $ \beta $ cross $ 3 $ times the disk bounded by $ \alpha $ .
$ T _ X \alpha + T _ X \beta = T _ X \Sigma $
} \label { fig:torus_ alpha_ beta}
\end { figure}
\begin { example}
?????????????????????????\\
Let $ X = S ^ 2 \times S ^ 2 $ .
We know that:
\begin { align*}
& H_ 2(S^ 2, \mathbb { Z} ) =\mathbb { Z} \\
& H_ 1(S^ 2, \mathbb { Z} ) = 0\\
& H_ 0(S^ 2, \mathbb { Z} ) =\mathbb { Z}
\end { align*}
We can construct a long exact sequence for a pair:
\begin { align*}
& H_ 2(\partial X) \to H_ 2(X)
\to H_ 2(X, \partial X) \to \\
\to & H_ 1(\partial X) \to H_ 1(X) \to H_ 1(X, \partial X) \to
\end { align*}
????????????????????\\
Simple case $ H _ 1 ( \partial X ) $ \\ ????????????\\
is torsion.
$ H _ 2 ( \partial X ) $ is torsion free (by universal coefficient theorem),\\
???????????????????????\\
therefore it is $ 0 $ .
\\ ?????????????????????\\
We know that $ b _ 1 ( X ) = b _ 2 ( X ) $ . Therefore by Poincar\' e duality:
\begin { align*}
b_ 1(X) =
\dim _ { \mathbb { Q} } H_ 1(X, \mathbb { Q} )
\overset { \mathrm { PD} } { =}
\dim _ { \mathbb { Q} } H^ 2(X, \mathbb { Q} ) =
\dim _ { \mathbb { Q} } H_ 2(X, \mathbb { Q} ) = b_ 2(X)
\end { align*}
???????????????????????????????\\
$ H _ 2 ( X, \mathbb { Z } ) $ is torsion free and
$ H _ 2 ( X _ 1 , \mathbb { Q } ) = 0 $ , therefore $ H _ 2 ( X, \mathbb { Z } ) = 0 $ .
The map
$ H _ 2 ( X, \mathbb { Z } ) \longrightarrow H _ 2 ( X, \partial X, \mathbb { Z } ) $ is a monomorphism. \\ ??????????\\ (because it is an isomorphism after tensoring by $ \mathbb { Q } $ .
\\
Suppose $ \alpha _ 1 , \dots , \alpha _ n $ is a basis of $ H _ 2 ( X, \mathbb { Z } ) $ .
Let $ A $ be the intersection matrix in this basis. Then:
\begin { enumerate}
\item
A has integer coefficients,
\item
$ \det A \neq 0 $ ,
\item
$ \vert \det A \vert =
\vert H_ 1 (\partial X, \mathbb { Z} ) \vert =
\vert \coker H_ 2(X) \longrightarrow H_ 2(X, \partial X) \vert $ .
\end { enumerate}
\end { example}
???????????????????\\
If $ CVC ^ T = W $ , then for
$ \binom { a } { b } = C ^ { - 1 } \binom { 1 } { 0 } $ we have $ \binom { a } { b } $ \\
????????????????\\
$ \omega \binom { a } { b } = \binom { 1 } { 0 } u \binom { 1 } { 0 } = 1 $ .
\begin { theorem} [Whitehead]
Any non-degenerate form
\[
A : \mathbb { Z} ^ 4 \times \mathbb { Z} ^ 4 \longrightarrow \mathbb { Z}
\]
can be realized as an intersection form of a simple connected $ 4 $ -dimensional manifold.
\end { theorem}
??????????????????????????
\begin { theorem} [Donaldson, 1982]
If $ A $ is an even definite intersection form of a smooth $ 4 $ -manifold then it is diagonalizable over $ \mathbb { Z } $ .
\end { theorem}
??????????????????????????
??????????????????????????
??????????????????????????
??????????????????????????
\begin { definition}
even define
\end { definition}
Suppose $ X $ us $ 4 $ -manifold with a boundary such that $ H _ 1 ( X ) = 0 $ .
%$A \cdot B$ gives the pairing as ??
\begin { proof}
Obviously:
\[ H _ 1 ( \partial X, \mathbb { Z } ) = \coker H _ 2 ( X ) \longrightarrow H _ 2 ( X, \partial X ) = \quot { H _ 2 ( X, \partial X ) } { H _ 2 ( X ) } .
\]
Let $ A $ be an $ n \times n $ matrix. $ A $ determines a \\
??????????????/\\
\begin { align*}
\mathbb { Z} ^ n \longrightarrow \Hom (\mathbb { Z} ^ n, \mathbb { Z} )\\
a \mapsto (b \mapsto b^ T A a)\\
\vert \coker A \vert = \vert \det A \vert
\end { align*}
all homomorphisms $ b = ( b _ 1 , \dots , b _ n ) $ ???????\\ ?????????\\
\end { proof}