diff --git a/images/ball_4_pushed_seifert.pdf b/images/ball_4_pushed_seifert.pdf index dd1e3e8..c46ffa1 100644 Binary files a/images/ball_4_pushed_seifert.pdf and b/images/ball_4_pushed_seifert.pdf differ diff --git a/images/ball_4_pushed_seifert.pdf_tex b/images/ball_4_pushed_seifert.pdf_tex index a089784..292170f 100644 --- a/images/ball_4_pushed_seifert.pdf_tex +++ b/images/ball_4_pushed_seifert.pdf_tex @@ -56,8 +56,8 @@ \put(0,0){\includegraphics[width=\unitlength,page=2]{ball_4_pushed_seifert.pdf}}% \put(0.59916734,0.31598118){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.90744424\unitlength}\raggedright $g(F) = g_4(K)$ \end{minipage}}}% \put(0.6042564,0.37550965){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.85985262\unitlength}\raggedright $F \subset B^4$ \end{minipage}}}% - \put(0.6549243,0.82850612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.03767986\unitlength}\raggedright $S^3$ \end{minipage}}}% + \put(0.72361375,0.82850612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.03767986\unitlength}\raggedright $S^3$ \end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=3]{ball_4_pushed_seifert.pdf}}% - \put(0.81311761,0.76290458){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30641817\unitlength}\raggedright $\Sigma$\end{minipage}}}% + \put(0.87332011,0.71316438){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.20662167\unitlength}\raggedright $\Sigma$\end{minipage}}}% \end{picture}% \endgroup% diff --git a/images/ball_4_pushed_seifert.svg b/images/ball_4_pushed_seifert.svg index b40c812..183dbfe 100644 --- a/images/ball_4_pushed_seifert.svg +++ b/images/ball_4_pushed_seifert.svg @@ -1538,13 +1538,13 @@ borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" - inkscape:zoom="1.3101783" - inkscape:cx="251.59804" - inkscape:cy="115.99934" + inkscape:zoom="2.2812777" + inkscape:cx="159.21118" + inkscape:cy="140.71061" inkscape:document-units="px" inkscape:current-layer="layer1" showgrid="false" - inkscape:window-width="1393" + inkscape:window-width="1392" inkscape:window-height="855" inkscape:window-x="0" inkscape:window-y="1" @@ -1624,33 +1624,30 @@ style="font-size:40px;line-height:1.25">$\Sigma$ - - - - - - + + + + $F \subset B^4$  + crossing_points_vector="113.40108 | 63.222085 | 0 | 0 | 0 | 5 | 0.6312852 | 6.3026953 | 1 | 82.948274 | 61.432802 | 0 | 0 | 1 | 4 | 1.060697 | 4.7438172 | 1 | 98.060004 | 143.61611 | 0 | 0 | 2 | 7 | 2.6579504 | 7.5171585 | -1 | 98.343835 | 80.092075 | 0 | 0 | 3 | 6 | 4.2295883 | 6.6117698 | -1" /> + inkscape:window-width="1397" + inkscape:window-height="855" + inkscape:window-x="0" + inkscape:window-y="1" + inkscape:window-maximized="1" + fit-margin-top="0" + fit-margin-left="0" + fit-margin-right="0" + fit-margin-bottom="0" /> @@ -62,14 +66,17 @@ + id="layer1" + transform="translate(-37.022916,-50.153379)"> + sodipodi:nodetypes="ssssssssss" + inkscape:export-xdpi="90" + inkscape:export-ydpi="90" /> diff --git a/images/satellite.pdf b/images/satellite.pdf index 0fa5a0c..0b258a4 100644 Binary files a/images/satellite.pdf and b/images/satellite.pdf differ diff --git a/images/satellite.pdf_tex b/images/satellite.pdf_tex index 4e1e065..25a4a55 100644 --- a/images/satellite.pdf_tex +++ b/images/satellite.pdf_tex @@ -52,10 +52,10 @@ \put(0.36109826,0.62183275){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.01757932\unitlength}\raggedright \end{minipage}}}% \put(0.42889331,0.62471825){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.01757932\unitlength}\raggedright \end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=1]{satellite.pdf}}% - \put(0.23032975,0.3332003){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02367358\unitlength}\raggedright $\lambda$\end{minipage}}}% + \put(0.23032974,0.3332003){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02367358\unitlength}\raggedright $\lambda$\end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=2]{satellite.pdf}}% \put(0.21066574,0.13578336){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04131521\unitlength}\raggedright $\mu$\end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=3]{satellite.pdf}}% - \put(0.4650512,0.44886999){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02273321\unitlength}\raggedright $\mu$\end{minipage}}}% + \put(0.46450745,0.42798995){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.0227986\unitlength}\raggedright $\mu$\end{minipage}}}% \end{picture}% \endgroup% diff --git a/images/satellite.svg b/images/satellite.svg index fb68a44..9e11cce 100644 --- a/images/satellite.svg +++ b/images/satellite.svg @@ -29,7 +29,7 @@ add_stroke_width="true" add_other_stroke_width="true" switcher_size="15" - crossing_points_vector="1290.2398 | 865.17554 | 0 | 0 | 0 | 3 | 8.455287 | 17.341895 | -1 | 779.3585 | 965.3581 | 0 | 0 | 1 | 4 | 9.2288445 | 22.421573 | 1 | 310.08513 | 1080.6316 | 0 | 0 | 2 | 5 | 10.502664 | 24.831919 | 1" /> + crossing_points_vector="1521.3825 | 1359.9656 | 3 | 4 | 0 | 0 | 6 | 0 | -1 | 1495.213 | 1248.9664 | 4 | 5 | 1 | 0 | 1 | 2.7869328e-13 | 1" /> + crossing_points_vector="1313.5623 | 805.02533 | 0 | 0 | 0 | 3 | 8.4104594 | 18.279706 | -1 | 829.65847 | 898.34753 | 0 | 0 | 1 | 4 | 9.3663943 | 23.295043 | -1 | 326.55758 | 1007.7342 | 0 | 0 | 2 | 5 | 10.326548 | 27.465011 | -1" /> + id="g5611" + transform="matrix(1.0028764,0,0,0.898201,-2.9367161,108.10102)"> + sodipodi:nodetypes="ssssssssccssssssssss" /> + inkscape:original-d="M 243.05355,839.36638 C 127.87166,907.34515 109.6073,690.1742 149.72328,620.10991 m 66.27429,-73.28639 c 77.76115,-57.81985 176.48804,-92.20342 266.36815,-131.38019 202.9477,-88.46046 402.87541,-234.54329 615.40468,-233.74815 174.3245,0.65221 368.8061,70.35757 504.0409,195.50333 m 61.9412,64.83815 c 64.7584,100.51538 -26.073,220.19736 -79.0615,294.04237 -42.702,59.50959 -109.6754,65.79402 -169.3976,87.90389 m -241.1777,69.49617 C 935.41011,944.58448 691.85526,971.88867 455.69303,1034.9843 m -235.86592,79.5368 c -22.49596,9.2224 -44.76202,19.0174 -66.65517,29.5956 m -41.57605,86.3371 c 46.03831,174.0731 221.36501,276.9435 355.88961,355.013 178.18585,103.4078 379.29663,169.2181 570.543,134.44 167.175,-30.4007 341.0171,-125.7787 460.8413,-292.0167 12.6581,-17.5611 22.8411,-43.5018 22.5127,-67.9245 M 1495.213,1248.9664 C 1319.8594,927.05723 1261.5168,693.46224 1087.476,492.63753 1040.9533,438.10834 1006.4787,422.15631 961.36379,475.1135 899.86488,548.38952 876.81349,701.44976 834.77601,799.86295 m -63.49119,268.74945 c -24.0279,68.0336 -64.34751,132.3491 -123.35805,175.223 m -149.67539,18.5669 C 364.09652,1173.6852 266.44615,1039.6509 195.01406,897.56148" + id="path1067" + d="M 243.05355,839.36638 C 127.87166,907.34515 109.6073,690.1742 149.72328,620.10991 m 66.27429,-73.28639 c 77.76115,-57.81985 176.48804,-92.20342 266.36815,-131.38019 202.9477,-88.46046 402.87541,-234.54329 615.40468,-233.74815 174.3245,0.65221 368.8061,70.35757 504.0409,195.50333 m 61.9412,64.83815 c 64.7584,100.51538 -26.073,220.19736 -79.0615,294.04237 -42.702,59.50959 -109.6754,65.79402 -169.3976,87.90389 m -241.1777,69.49617 C 935.41011,944.58448 691.85526,971.88867 455.69303,1034.9843 m -235.86592,79.5368 c -22.49596,9.2224 -44.76202,19.0174 -66.65517,29.5956 m -41.57605,86.3371 c 46.03831,174.0731 221.36501,276.9435 355.88961,355.013 178.18585,103.4078 379.29663,169.2181 570.543,134.44 167.175,-30.4007 341.0171,-125.7787 460.8413,-292.0167 12.6581,-17.5611 22.8411,-43.5018 22.5127,-67.9245 M 1495.213,1248.9664 C 1319.8594,927.05723 1261.5168,693.46224 1087.476,492.63753 1040.9533,438.10834 1006.4787,422.15631 961.36379,475.1135 899.86488,548.38952 876.81349,701.44976 834.77601,799.86295 m -63.49119,268.74945 c -24.0279,68.0336 -64.34751,132.3491 -123.35805,175.223 m -149.67539,18.5669 C 364.09652,1173.6852 266.44615,1039.6509 195.01406,897.56148" + inkscape:connector-curvature="0" + sodipodi:nodetypes="cccaaccaccccccaaaccccccccc" /> + inkscape:original-d="M 240.83546,794.19261 C 243.67205,779.75986 227.20018,738.2816 209.57273,717.21156 165.10554,659.92341 168.28219,559.99294 210.67275,508.45848 312.87395,433.4008 438.64607,373.98517 545.03327,317.62643 736.7331,235.16594 939.49344,139.76842 1131.5316,136.11845 c 99.3897,-4.10579 185.4488,30.55851 268.5919,64.00153 84.4689,39.34 165.1072,85.08532 216.7549,166.98853 14.3385,22.86151 24.7543,46.25314 31.2587,70.32041 12.5983,46.61621 10.5222,95.76714 -6.147,148.51015 -15.2855,47.65439 -47.8982,86.45313 -91.2434,118.30193 -41.8296,30.73516 -93.6541,54.99784 -149.5468,74.50067 m -238.1311,57.88818 c -251.33084,49.29933 -497.87374,82.08124 -724.63591,138.8042 m -246.59552,93.37745 c -20.17998,13.0588 -37.15297,27.1286 -50.19629,42.3452 -42.427521,43.8998 -12.15216,114.3055 12.30773,152.9321 81.93099,127.1221 280.08473,225.5459 377.03326,283.6736 118.40968,70.0694 238.89249,120.7678 345.79981,126.0179 90.96824,-0.2059 179.94462,-25.8047 252.32022,-55.3022 138.4299,-89.4676 323.4285,-175.4209 397.0394,-311.8447 16.9103,-32.5245 12.2123,-69.7308 -3.3989,-108.8907 -14.6344,-36.7096 -38.8591,-75.1358 -63.8635,-113.0311 -47.7453,-66.1795 -78.7847,-140.69305 -111.3469,-208.60523 -40.9146,-85.3341 -80.681,-168.5162 -115.06,-248.67155 -24.4185,-55.0877 -57.2705,-109.11525 -93.2073,-143.93004 m -123.2948,-7.52069 c -60.97537,90.97483 -99.70981,220.76607 -140.23013,336.13634 m -70.0692,261.82117 C 779.2337,1167.4334 725.35386,1261.0008 670.09384,1268.4318 562.84518,1278.1942 477.5457,1215.2763 409.00585,1130.393 330.74759,1048.9233 302.07672,948.57081 268.86154,861.59219 243.83447,803.02052 158.92573,734.00372 196.59766,849.71523" /> + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + $\Sigma$ $\Sigma$ + + + + + $\lambda$ + $\mu$ + + + + + + + + + + + + + + + $\mu$ + + + diff --git a/images/torus_alpha_beta.pdf b/images/torus_alpha_beta.pdf new file mode 100644 index 0000000..a744757 Binary files /dev/null and b/images/torus_alpha_beta.pdf differ diff --git a/images/torus_alpha_beta.pdf_tex b/images/torus_alpha_beta.pdf_tex new file mode 100644 index 0000000..3a51b47 --- /dev/null +++ b/images/torus_alpha_beta.pdf_tex @@ -0,0 +1,59 @@ +%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org +%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 +%% Accompanies image file 'torus_alpha_beta.pdf' (pdf, eps, ps) +%% +%% To include the image in your LaTeX document, write +%% \input{.pdf_tex} +%% instead of +%% \includegraphics{.pdf} +%% To scale the image, write +%% \def\svgwidth{} +%% \input{.pdf_tex} +%% instead of +%% \includegraphics[width=]{.pdf} +%% +%% Images with a different path to the parent latex file can +%% be accessed with the `import' package (which may need to be +%% installed) using +%% \usepackage{import} +%% in the preamble, and then including the image with +%% \import{}{.pdf_tex} +%% Alternatively, one can specify +%% \graphicspath{{/}} +%% +%% For more information, please see info/svg-inkscape on CTAN: +%% http://tug.ctan.org/tex-archive/info/svg-inkscape +%% +\begingroup% + \makeatletter% + \providecommand\color[2][]{% + \errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}% + \renewcommand\color[2][]{}% + }% + \providecommand\transparent[1]{% + \errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}% + \renewcommand\transparent[1]{}% + }% + \providecommand\rotatebox[2]{#2}% + \ifx\svgwidth\undefined% + \setlength{\unitlength}{427.6280729bp}% + \ifx\svgscale\undefined% + \relax% + \else% + \setlength{\unitlength}{\unitlength * \real{\svgscale}}% + \fi% + \else% + \setlength{\unitlength}{\svgwidth}% + \fi% + \global\let\svgwidth\undefined% + \global\let\svgscale\undefined% + \makeatother% + \begin{picture}(1,0.41568239)% + \put(0.40129099,4.95648293){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.37778386\unitlength}\raggedright \end{minipage}}}% + \put(0.63089219,0.39833514){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38670889\unitlength}\raggedright ${\alpha \cdot \beta = - \beta \cdot \alpha}$\\  \end{minipage}}}% + \put(0,0){\includegraphics[width=\unitlength,page=1]{torus_alpha_beta.pdf}}% + \put(0.94608607,0.30060216){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38670889\unitlength}\raggedright $\beta$\\  \end{minipage}}}% + \put(0.44999409,0.1665571){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38670889\unitlength}\raggedright $\alpha$\\  \end{minipage}}}% + \put(0,0){\includegraphics[width=\unitlength,page=2]{torus_alpha_beta.pdf}}% + \end{picture}% +\endgroup% diff --git a/images/torus_alpha_beta.svg b/images/torus_alpha_beta.svg index 2bed741..1268d87 100644 --- a/images/torus_alpha_beta.svg +++ b/images/torus_alpha_beta.svg @@ -11,15 +11,176 @@ xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" - width="210mm" - height="297mm" - viewBox="0 0 210 297" + width="150.85768mm" + height="62.708881mm" + viewBox="0 0 150.85768 62.708881" version="1.1" id="svg4590" inkscape:version="0.92.2 5c3e80d, 2017-08-06" sodipodi:docname="torus_alpha_beta.svg"> + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + inkscape:window-maximized="1" + fit-margin-top="0" + fit-margin-left="0" + fit-margin-right="0" + fit-margin-bottom="0" /> @@ -970,7 +1145,8 @@ + id="layer1" + transform="translate(-18.706472,-63.135373)"> $\Sigma$ genus $3$  ${\alpha \cdot \beta = - \beta \cdot \alpha}$  + + + $\beta$  $\alpha$  + + + + + + + + diff --git a/lec_2.tex b/lec_2.tex index d63119f..94dbb4a 100644 --- a/lec_2.tex +++ b/lec_2.tex @@ -211,7 +211,7 @@ S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \ti \] So the complement of solid torus in $S^3$ is another solid torus.\\ Analytically it can be describes as follow. \\ -Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\mid z_1 \vert, \vert z_2\vert) = 1.} +Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\vert z_1 \vert, \vert z_2\vert) = 1.} $ Define following sets: \begin{align*} @@ -219,7 +219,7 @@ S_1 = \{ (z_1, z_2) \in S^3: \vert z_1 \vert = 0\} \cong S^1 \times D^2 ,\\ S_2 = \{(z_1, z_2) \in S ^3: \vert z_2 \vert = 1 \} \cong D^2 \times S^1. \end{align*} The intersection -$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$ +$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$. \begin{figure}[h] \centering{ \def\svgwidth{\linewidth} @@ -256,7 +256,9 @@ Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathb \end{corollary} \begin{proof} Let $N$ be a tubular neighbourhood of a knot $K$ and $M = S^3 \setminus N$ its complement. Then $\partial M = S^1 \times S^1$. Let $f : \pi_1(\partial M ) \longrightarrow \pi_1(M)$. -If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)}$. There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$. By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that +If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)}$. +There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$.\\ + By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that $h\big|_{\partial D^2} = f \big|_{\partial D^2}$ and $h(\partial D^2) = \lambda$. Let $\Sigma$ be a union of the annulus and the image of $\partial D^2$. \\???? $g_3$?\\ diff --git a/lec_3.tex b/lec_3.tex index 520baf2..2aef0ee 100644 --- a/lec_3.tex +++ b/lec_3.tex @@ -92,7 +92,7 @@ TO WRITE REFERENCE!!!!!!!!!!! \end{proof} \noindent Consequences: -\begin{enumerate} +\begin{enumerate}[label={(\arabic*)}] \item the Alexander polynomial is the characteristic polynomial of $h$: \[ @@ -139,10 +139,16 @@ $g_3(K_1 \# K_2) = g_3(K_1) + g_3(K_2)$. A knot (link) is called alternating if it admits an alternating diagram. \end{definition} -\begin{example} -Figure eight knot is an alternating knot. \hfill\\ -\includegraphics[width=0.5\textwidth]{figure8.png} -\end{example} +\begin{figure}[h] +\fontsize{12}{10}\selectfont +\centering{ +\def\svgwidth{\linewidth} +\includegraphics[width=0.3\textwidth]{figure8.png} +} +\caption{Example: figure eight knot is an alternating knot.} +\label{fig:fig8} +\end{figure} + \begin{definition} A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced. \end{definition} diff --git a/lec_5.tex b/lec_5.tex index 43aa11b..56128a2 100644 --- a/lec_5.tex +++ b/lec_5.tex @@ -5,6 +5,8 @@ then $\sigma_K(t) is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$. \end{theorem} \begin{proof} +\noindent +We will use the following lemma. \begin{lemma} \label{lem:metabolic} If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$ and @@ -34,7 +36,6 @@ Let $t \in S^1 \setminus \{1\}$. Then: \end{align*} As $\det (S + S^T) \neq 0$, so $S - \bar{t}S^T \neq 0$. \end{proof} -?????????????????s\\ \begin{corollary} If $K \sim K^\prime$ then for all but finitely many $t \in S^1 \setminus \{1\}: \sigma_K(t) = \sigma_{K^\prime}(t)$. \end{corollary} @@ -69,9 +70,76 @@ If $K$ bounds a genus $g$ surface $X \in B^4$ and $S$ is a Seifert form then ${S B & C \end{pmatrix}$, where $0$ is $(n - g) \times (n - g)$ submatrix. \end{lemma} - +??????????????????????\\ +\begin{align*} +\dim H_1(Z) = 2 n\\ +\dim H_1 (Y) = 2 n + 2 g\\ +\dim (\ker (H_1, Y) \longrightarrow H_1(\Omega)) = n + g\\ +Y = X \sum \Sigma +\end{align*} +\noindent +If $\alpha, \beta \in \ker(H_1(\Sigma \longrightarrow H_1(\Omega))$, then ${\Lk(\alpha, \beta^+) = 0}$. +\begin{corollary} +If $t$ is nota ???? of $\det $ ???? +then $\vert \sigma_K(t) \vert \leq 2g$.\\ +\end{corollary} +\noindent +If there exists cobordism of genus $g$ between $K$ and $K^\prime$ like shown in Figure \ref{fig:genus_2_bordism}, then $K \# -K^\prime$ bounds a surface of genus $g$ in $B^4$. \begin{definition} The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$. \end{definition} \noindent Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not. +\begin{example} +\begin{itemize} +\item Let $K = T(2, 3)$. $\sigma(K) = -2$, therefore $T(2, 3)$ isn't a slice knot. +\item Let $K$ be a trefoil and $K^\prime$ a mirror of a trefoil. $g_4(K^\prime) = 1$, but $g_(K \# K^\prime) = 0$. +\\?????????????????????\\ +\item +?????????????\\ +The equality: +\[ +g_4(T(p, q) ) = \frac{1}{2} (p - 1) (g -1) +\] +was conjecture in the '70 and proved by P. Kronheimer and T. Mrówka. +\end{itemize} +\end{example} +\begin{proposition} +$g_4 (T(p, q) \# -T(r, s))$ is in general hopelessly unknown. +\\???????????????\\ +essentially $\sup \vert \sigma_K(t) \vert \leq 2 g_n(K)$ +\end{proposition} +\begin{definition} +A knot $K$ is called topologically slice if $K$ bounds a topological locally flat disc in $B^4$ (it has tubular neighbourhood). +\end{definition} +\begin{theorem}[Freedman, '82] +If $\Delta_K(t) \geq 1$, then $K$ is topologically slice, but not necessarily smoothly slice. +\end{theorem} +\begin{theorem}[Powell, 2015] +If $K$ is genus g +\\(top. loc.?????????)\\ +cobordant to $K^\prime$, +then $\vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g$. \\ +If $g_4^{\mytop}(K) \geq $ ?????ess $\sup \vert \sigma_K(t) \vert$ and ?????????\\ +$\dim \ker (H_1 (Y) \longrightarrow H_1(\Omega)) = \frac{1}{2} \dim H_1(Y)$. +\end{theorem} +??????????????? +\[ +H^1 (B^4 \setminus Y, \mathbb{Z}) = [B^4 \setminus Y, S^1] +\] +\noindent +Remark: unless $p=2$ or $p = 3 \wedge q = 4$: +\[ +g_4^\top (T(p, q)) < q_4(T(p, q)) +\] +%?????????????????????? +\begin{definition} +The Witt group $W$ of $\mathbb{Z}[t, t^{-1}]$ elements are classes of non-degenerate +forms over $\mathbb{Z}[t, t^{-1}]$ under the equivalence relation $V \sim W$ if $V \oplus - W$ is metabolic. +\end{definition} +\noindent +If $S$ differs from $S^\prime$ by a row extension, then +$(1 - t) S + (1 - \bar{t}^{-1}) S^T$ is Witt equivalence to $(1 - t) S^\prime + (1 - t^{-1})S^T$. +%??????????????????????????? +\noindent +A form is meant as hermitian with respect to this involution: $A^T = A: (a, b) = \bar{(a, b)}$. \ No newline at end of file diff --git a/lectures_on_knot_theory.tex b/lectures_on_knot_theory.tex index 89d255e..97e49d5 100644 --- a/lectures_on_knot_theory.tex +++ b/lectures_on_knot_theory.tex @@ -85,6 +85,8 @@ \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\ord}{ord} +\DeclareMathOperator{\mytop}{top} + \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\Sl}{SL} \DeclareMathOperator{\Lk}{lk} @@ -148,28 +150,84 @@ H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular. \\ Let $A$ and $B$ be closed, oriented surfaces in $X$. \begin{proposition} -$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes $[A], [B] \in H_2(X, \mathbb{Z})$. \\ +$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes: +\[ +[A], [B] \in H_2(X, \mathbb{Z}). +\] +\end{proposition} \noindent +\\ + If $M$ is an $m$ - dimensional close, connected and orientable manifold, then $H_m(M, \mathbb{Z})$ and the orientation if $M$ determined a cycle $[M] \in H_m(M, \mathbb{Z})$, called the fundamental cycle. \begin{example} If $\omega$ is an $m$ - form then: \[ - = [\omega] +\int_M \omega = [\omega]([M]), \quad [\omega] \in H^m_\Omega(M), \ [M] \in H_m(M). \] -\end{example} + +\end{example} +???????????????????????????????????????????????? +\begin{figure}[h] +\fontsize{20}{10}\selectfont +\centering{ +\def\svgwidth{\linewidth} +\resizebox{0.8\textwidth}{!}{\input{images/torus_alpha_beta.pdf_tex}} +} +\caption{$\beta$ cross $3$ times the disk bounded by $\alpha$. +$T_X \alpha + T_X \beta = T_Z \Sigma$ +}\label{fig:torus_alpha_beta} +\end{figure} + +\begin{theorem} +Any non-degenerate form +\[ +A : \mathbb{Z}^n \times \mathbb{Z}^n \longrightarrow \mathbb{Z} +\] +can be realized as an intersection form of a simple connected $4$-dimensional manifold. +\end{theorem} +?????????????????????????? +\begin{theorem}[Donaldson, 1982] +If $A$ is an even defined intersection form of a smooth $4$-manifold then it is diagonalizable over $\mathbb{Z}$. +\end{theorem} +?????????????????????????? +?????????????????????????? +?????????????????????????? +?????????????????????????? +\begin{definition} +even define +\end{definition} +Suppose $X$ us $4$ -manifold with a boundary such that $H_1(X) = 0$. + %$A \cdot B$ gives the pairing as ?? - \end{proposition} \section{\hfill\DTMdate{2019-04-15}} -In other words:\\ +\begin{theorem} +Suppose that $K \subset S^3$ is a slice knot (i.e. $K$ bound a disk in $B^4$). +Then if $F$ is a Seifert surface of $K$ and $V$ denotes the associated Seifet matrix, then there exists $P \in \Gl_g(\mathbb{Z})$ such that: +\\??????????????? T ???????? +\begin{align} +PVP^{-1} = +\begin{pmatrix} +0 & A\\ +B & C +\end{pmatrix}, \quad A, C, C \in M_{g \times g} (\mathbb{Z}) +\end{align} +\end{theorem} +In other words you can find rank $g$ direct summand $\mathcal{Z}$ of $H_1(F)$ \\ +????????????\\ +such that for any +$\alpha, \beta \in \mathcal{L}$ the linking number $\Lk (\alpha, \beta^+) = 0$. +\begin{definition} +An abstract Seifert matrix (i. e. +\end{definition} Choose a basis $(b_1, ..., b_i)$ \\ ???\\ of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form: \begin{align*} \quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}). \end{align*} -In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z})$.\\ +In particular $\vert \det A\vert = \# H_1(Y, \mathbb{Z})$.\\ That means - what is happening on boundary is a measure of degeneracy. \begin{center} @@ -426,7 +484,7 @@ Therefore: &P^{\prime} = g^{\prime}\overbar{g} \end{align*} We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and -$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid P$ (at least - otherwise it would change sign). Therefore: +$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \vert P$ (at least - otherwise it would change sign). Therefore: \begin{align*} &P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\ &g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}