dehn lemma
This commit is contained in:
parent
94e0077612
commit
129b2608be
@ -558,6 +558,16 @@ There are not trivial knots with Alexander polynomial equal $1$, for example:
|
||||
$\Delta_{11n34} \equiv 1$.
|
||||
\end{example}
|
||||
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{lemma}[Dehn]
|
||||
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f_{\big|\partial D^2}$ is an embedding. Then there exists an embedding
|
||||
${D^2 \overset{g}\hookrightarrow M}$ such that:
|
||||
\[
|
||||
g_{\big| \partial D^2} = f_{\big| \partial D^2.}
|
||||
\]
|
||||
\end{lemma}
|
||||
\section{}
|
||||
\begin{example}
|
||||
\begin{align*}
|
||||
@ -580,8 +590,8 @@ A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot
|
||||
A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in $S^3 \times [0, 1]$ such that
|
||||
$\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\} $.
|
||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
|
||||
${\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}}$.
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
|
Loading…
Reference in New Issue
Block a user