3 lec almost done
This commit is contained in:
parent
58e57a644a
commit
145832c5a4
BIN
images/figure8.png
Normal file
BIN
images/figure8.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
75
images/figure8.svg
Normal file
75
images/figure8.svg
Normal file
@ -0,0 +1,75 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg5789"
|
||||
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||
sodipodi:docname="figure8.svg">
|
||||
<defs
|
||||
id="defs5783">
|
||||
<inkscape:path-effect
|
||||
effect="knot"
|
||||
id="path-effect6337"
|
||||
is_visible="true"
|
||||
interruption_width="3"
|
||||
prop_to_stroke_width="true"
|
||||
add_stroke_width="true"
|
||||
add_other_stroke_width="true"
|
||||
switcher_size="15"
|
||||
crossing_points_vector="113.26038 | 63.22207 | 0 | 0 | 0 | 5 | 0.633423 | 6.3020551 | 1 | 82.906761 | 61.439667 | 0 | 0 | 1 | 4 | 1.0610123 | 4.7409223 | 1 | 102.82565 | 143.18748 | 0 | 0 | 2 | 7 | 2.6991376 | 7.6360993 | -1 | 98.153959 | 79.896655 | 0 | 0 | 3 | 6 | 4.2334577 | 6.6088723 | -1" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.98994949"
|
||||
inkscape:cx="374.55079"
|
||||
inkscape:cy="771.00987"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="770"
|
||||
inkscape:window-height="566"
|
||||
inkscape:window-x="386"
|
||||
inkscape:window-y="344"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata5786">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<path
|
||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:1;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
inkscape:path-effect="#path-effect6337"
|
||||
inkscape:original-d="M 148.88683,83.500863 C 131.76268,61.04025 111.94435,63.165808 90.091584,61.513101 49.291024,58.427388 34.534598,100.34022 38.022692,116.77704 c 4.864027,22.92057 80.406158,41.59453 81.439688,10.77434 0.50446,-15.04306 -3.4975,-26.61671 -10.83867,-36.107945 C 94.491283,73.171941 73.788477,63.287938 87.255856,54.112302 c 7.807662,-5.31954 14.596114,-3.833717 22.831714,-0.04476 20.92401,9.626516 -27.375933,14.936512 -24.45218,73.596359 0.801116,16.07296 18.67437,20.25699 35.42747,16.56169 36.11798,-7.96669 45.98508,-36.904 27.82397,-60.724727 z"
|
||||
id="path6334"
|
||||
d="m 96.897334,82.177379 c -6.658672,9.98906 -12.321045,24.237561 -11.261944,45.486521 0.801116,16.07296 18.67437,20.25699 35.42747,16.56169 36.11798,-7.96669 45.98508,-36.904 27.82397,-60.724726 v -1e-6 C 138.88768,70.385645 127.96992,65.653412 116.26489,63.65693 m -5.79707,-0.783845 c -6.5683,-0.68851 -13.367638,-0.829929 -20.376236,-1.359984 -40.80056,-3.085713 -55.556986,38.827119 -52.068892,55.263939 2.869929,13.52386 30.345523,25.56931 52.603724,26.84198 m 12.951244,-0.68918 c 9.14702,-1.75908 15.58793,-6.52808 15.88472,-15.37846 0.50446,-15.04306 -3.4975,-26.61671 -10.83867,-36.107945 C 99.240422,79.311995 86.960678,70.878059 83.709025,63.893988 M 83.14149,58.917996 c 0.508718,-1.648163 1.81235,-3.237277 4.114366,-4.805694 7.807662,-5.31954 14.596114,-3.833717 22.831714,-0.04476 12.23939,5.630982 0.79308,9.78502 -10.231935,24.003757"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="ssssssssss" />
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 3.9 KiB |
BIN
images/genus_2_bordism.pdf
Normal file
BIN
images/genus_2_bordism.pdf
Normal file
Binary file not shown.
63
images/genus_2_bordism.pdf_tex
Normal file
63
images/genus_2_bordism.pdf_tex
Normal file
@ -0,0 +1,63 @@
|
||||
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'genus_2_bordism.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{1614.67950295bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.36462538)%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{genus_2_bordism.pdf}}%
|
||||
\put(0.54532513,1.24438493){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10005142\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{genus_2_bordism.pdf}}%
|
||||
\put(0.84332671,0.25659357){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.18534417\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.88383097,0.20943514){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.078089\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.01235789,0.27502989){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.1077628\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=3]{genus_2_bordism.pdf}}%
|
||||
\put(-0.00123889,0.28805039){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04641881\unitlength}\raggedright $K$\end{minipage}}}%
|
||||
\put(0.88763796,0.33276829){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.13754975\unitlength}\raggedright $K\prime$\end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=4]{genus_2_bordism.pdf}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
1197
images/genus_2_bordism.svg
Normal file
1197
images/genus_2_bordism.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 52 KiB |
BIN
images/polynomial_and_surface.pdf
Normal file
BIN
images/polynomial_and_surface.pdf
Normal file
Binary file not shown.
67
images/polynomial_and_surface.pdf_tex
Normal file
67
images/polynomial_and_surface.pdf_tex
Normal file
@ -0,0 +1,67 @@
|
||||
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'polynomial_and_surface.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{1105.59918261bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.52520142)%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{polynomial_and_surface.pdf}}%
|
||||
\put(0.82922973,0.41966706){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.22482957\unitlength}\raggedright $F^{-1}(0)$\\ \end{minipage}}}%
|
||||
\put(1.67978829,0.06708039){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.54940718\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.50472618,0.03452544){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.64564478\unitlength}\raggedright $L = F^{-1}(0) \cap S^3$\\ \end{minipage}}}%
|
||||
\put(1.77501885,-0.11605532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{2.00716731\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(2.2438462,-0.38709612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.63357075\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(2.23652083,-0.37244532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.66287204\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{polynomial_and_surface.pdf}}%
|
||||
\put(0.32142492,0.41966706){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.22482957\unitlength}\raggedright $F^{-1}(0)$\\ \end{minipage}}}%
|
||||
\put(1.17198349,0.06708039){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.54940718\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(-0.00307862,0.03452544){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.64564478\unitlength}\raggedright $L = F^{-1}(0) \cap S^3$\\ \end{minipage}}}%
|
||||
\put(1.26721404,-0.11605532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{2.00716731\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(1.73604139,-0.38709612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.63357075\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(1.72871603,-0.37244532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.66287204\unitlength}\raggedright \end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
239
images/polynomial_and_surface.svg
Normal file
239
images/polynomial_and_surface.svg
Normal file
@ -0,0 +1,239 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="390.03082mm"
|
||||
height="204.84474mm"
|
||||
viewBox="0 0 390.03083 204.84474"
|
||||
version="1.1"
|
||||
id="svg1098"
|
||||
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||
sodipodi:docname="polynomial_and_surface.svg">
|
||||
<defs
|
||||
id="defs1092" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.35"
|
||||
inkscape:cx="1029.9233"
|
||||
inkscape:cy="324.25102"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1397"
|
||||
inkscape:window-height="855"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="1"
|
||||
inkscape:window-maximized="1"
|
||||
fit-margin-top="0"
|
||||
fit-margin-left="0"
|
||||
fit-margin-right="0"
|
||||
fit-margin-bottom="0" />
|
||||
<metadata
|
||||
id="metadata1095">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(179.89636,-29.780011)">
|
||||
<g
|
||||
id="layer1-7"
|
||||
inkscape:label="Layer 1"
|
||||
transform="translate(6.7014048,-8.3440418)">
|
||||
<ellipse
|
||||
ry="36.627476"
|
||||
rx="40.082893"
|
||||
cy="133.71429"
|
||||
cx="66.955421"
|
||||
id="path4465"
|
||||
style="opacity:0.89899998;fill:#eae415;fill-opacity:1;fill-rule:evenodd;stroke:#000023;stroke-width:1.82838094;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||
<circle
|
||||
r="4.7726545"
|
||||
cy="133.71429"
|
||||
cx="66.955421"
|
||||
id="path4467"
|
||||
style="opacity:0.89899998;fill:#040404;fill-opacity:1;fill-rule:evenodd;stroke:#000023;stroke-width:0.52611941;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4469"
|
||||
d="m 157.23809,38.464278 v 0 l -88.446424,95.250002 75.595234,80.8869"
|
||||
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
||||
<flowRoot
|
||||
transform="scale(0.26458333)"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4471"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4473"><rect
|
||||
y="299.66251"
|
||||
x="517.14288"
|
||||
height="54.285721"
|
||||
width="331.42856"
|
||||
id="rect4475" /></flowRegion><flowPara
|
||||
id="flowPara4477">$F^{-1}(0)$</flowPara><flowPara
|
||||
id="flowPara4479" /></flowRoot> <flowRoot
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4481"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4483"><rect
|
||||
y="216.80537"
|
||||
x="468.57144"
|
||||
height="257.14285"
|
||||
width="214.28572"
|
||||
id="rect4485" /></flowRegion><flowPara
|
||||
id="flowPara4487" /></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4497"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="matrix(0.36167291,0,0,0.30807183,-176.77557,137.18523)"><flowRegion
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||
id="flowRegion4491"><rect
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||
id="rect4489"
|
||||
width="696.26825"
|
||||
height="64.368828"
|
||||
x="517.14288"
|
||||
y="299.66251" /></flowRegion><flowPara
|
||||
id="flowPara4499">$L = F^{-1}(0) \cap S^3$</flowPara><flowPara
|
||||
id="flowPara4501" /></flowRoot> <flowRoot
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4503"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4505"><rect
|
||||
y="288.23395"
|
||||
x="505.71429"
|
||||
height="128.57143"
|
||||
width="782.85712"
|
||||
id="rect4507" /></flowRegion><flowPara
|
||||
id="flowPara4509" /></flowRoot> <flowRoot
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4511"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4513"><rect
|
||||
y="393.94821"
|
||||
x="688.57141"
|
||||
height="48.57143"
|
||||
width="637.14288"
|
||||
id="rect4515" /></flowRegion><flowPara
|
||||
id="flowPara4517" /></flowRoot> <flowRoot
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4519"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4521"><rect
|
||||
y="388.23395"
|
||||
x="685.71429"
|
||||
height="80"
|
||||
width="648.57141"
|
||||
id="rect4523" /></flowRegion><flowPara
|
||||
id="flowPara4525" /></flowRoot> </g>
|
||||
<g
|
||||
transform="translate(-191.35812,-8.3440418)"
|
||||
inkscape:label="Layer 1"
|
||||
id="g4645">
|
||||
<ellipse
|
||||
style="opacity:0.89899998;fill:#eae415;fill-opacity:1;fill-rule:evenodd;stroke:#000023;stroke-width:1.82838094;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="ellipse4587"
|
||||
cx="66.955421"
|
||||
cy="133.71429"
|
||||
rx="40.082893"
|
||||
ry="36.627476" />
|
||||
<circle
|
||||
style="opacity:0.89899998;fill:#040404;fill-opacity:1;fill-rule:evenodd;stroke:#000023;stroke-width:0.52611941;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="circle4589"
|
||||
cx="66.955421"
|
||||
cy="133.71429"
|
||||
r="4.7726545" />
|
||||
<path
|
||||
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 157.23809,38.464278 v 0 l -88.446424,95.250002 75.595234,80.8869"
|
||||
id="path4591"
|
||||
inkscape:connector-curvature="0" />
|
||||
<flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4601"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="scale(0.26458333)"><flowRegion
|
||||
id="flowRegion4595"><rect
|
||||
id="rect4593"
|
||||
width="331.42856"
|
||||
height="54.285721"
|
||||
x="517.14288"
|
||||
y="299.66251" /></flowRegion><flowPara
|
||||
id="flowPara4597">$F^{-1}(0)$</flowPara><flowPara
|
||||
id="flowPara4599" /></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4609"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"><flowRegion
|
||||
id="flowRegion4605"><rect
|
||||
id="rect4603"
|
||||
width="214.28572"
|
||||
height="257.14285"
|
||||
x="468.57144"
|
||||
y="216.80537" /></flowRegion><flowPara
|
||||
id="flowPara4607" /></flowRoot> <flowRoot
|
||||
transform="matrix(0.36167291,0,0,0.30807183,-176.77557,137.18523)"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4619"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4613"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||
y="299.66251"
|
||||
x="517.14288"
|
||||
height="64.368828"
|
||||
width="696.26825"
|
||||
id="rect4611"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||
id="flowPara4615">$L = F^{-1}(0) \cap S^3$</flowPara><flowPara
|
||||
id="flowPara4617" /></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4627"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"><flowRegion
|
||||
id="flowRegion4623"><rect
|
||||
id="rect4621"
|
||||
width="782.85712"
|
||||
height="128.57143"
|
||||
x="505.71429"
|
||||
y="288.23395" /></flowRegion><flowPara
|
||||
id="flowPara4625" /></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4635"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"><flowRegion
|
||||
id="flowRegion4631"><rect
|
||||
id="rect4629"
|
||||
width="637.14288"
|
||||
height="48.57143"
|
||||
x="688.57141"
|
||||
y="393.94821" /></flowRegion><flowPara
|
||||
id="flowPara4633" /></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4643"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"><flowRegion
|
||||
id="flowRegion4639"><rect
|
||||
id="rect4637"
|
||||
width="648.57141"
|
||||
height="80"
|
||||
x="685.71429"
|
||||
y="388.23395" /></flowRegion><flowPara
|
||||
id="flowPara4641" /></flowRoot> </g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 13 KiB |
BIN
images/satellite.pdf
Normal file
BIN
images/satellite.pdf
Normal file
Binary file not shown.
61
images/satellite.pdf_tex
Normal file
61
images/satellite.pdf_tex
Normal file
@ -0,0 +1,61 @@
|
||||
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'satellite.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{8424.05411848bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.49088964)%
|
||||
\put(0.36109826,0.62183275){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.01757932\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.42889331,0.62471825){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.01757932\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{satellite.pdf}}%
|
||||
\put(0.23032975,0.3332003){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02367358\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{satellite.pdf}}%
|
||||
\put(0.21066574,0.13578336){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04131521\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=3]{satellite.pdf}}%
|
||||
\put(0.4650512,0.44886999){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02273321\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
1209
images/satellite.svg
Normal file
1209
images/satellite.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 58 KiB |
1066
images/satellite.svg.2019_06_19_11_40_05.0.svg
Normal file
1066
images/satellite.svg.2019_06_19_11_40_05.0.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 43 KiB |
18
lec_2.tex
18
lec_2.tex
@ -206,10 +206,20 @@ $\Delta_{11n34} \equiv 1$.
|
||||
|
||||
\subsection{Decomposition of $3$-sphere}
|
||||
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
||||
$S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2)$. So the complement of solid torus in $S^3$ is another solid torus.\\
|
||||
Analytically it can be describes as follow.
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that $\max(\mid z_1 \mid, \mid z_2\mid) = 1
|
||||
$. Define following sets: $S_1 = \{ (z_1, z_2) \in S^3: \mid z_1 \mid = 0\} \cong S^1 \times D^2 $ and $S_2 = \{(z_1, z_2) \in S ^3: \mid z_2 \mid = 1 \} \cong D^2 \times S^1$. The intersection $S_1 \cap S_2 = \{(z_1, z_2): \mid z_1 \mid = \mid z_2 \mid = 1 \} \cong S^1 \times S^1$
|
||||
\[
|
||||
S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2).
|
||||
\]
|
||||
So the complement of solid torus in $S^3$ is another solid torus.\\
|
||||
Analytically it can be describes as follow. \\
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\mid z_1 \vert, \vert z_2\vert) = 1.}
|
||||
$
|
||||
Define following sets:
|
||||
\begin{align*}
|
||||
S_1 = \{ (z_1, z_2) \in S^3: \vert z_1 \vert = 0\} \cong S^1 \times D^2 ,\\
|
||||
S_2 = \{(z_1, z_2) \in S ^3: \vert z_2 \vert = 1 \} \cong D^2 \times S^1.
|
||||
\end{align*}
|
||||
The intersection
|
||||
$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$
|
||||
\begin{figure}[h]
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
|
170
lec_3.tex
170
lec_3.tex
@ -0,0 +1,170 @@
|
||||
\subsection{Algebraic knot}
|
||||
\noindent
|
||||
Suppose $F: \mathbb{C}^2 \rightarrow \mathbb{C}$ is a polynomial and $F(0) = 0$. Let take small small sphere $S^3$ around zero. This sphere intersect set of roots of $F$ (zero set of $F$) transversally and by the implicit function theorem the intersection is a manifold.
|
||||
The dimension of sphere is $3$ and $F^{-1}(0)$ has codimension $2$.
|
||||
So there is a subspace $L$ - compact one dimensional manifold without boundary.
|
||||
That means that $L$ is a link in $S^3$.
|
||||
\begin{figure}[h]
|
||||
\fontsize{40}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.2\textwidth}{!}{\input{images/milnor_singular.pdf_tex}}
|
||||
}
|
||||
\caption{The intersection of a sphere $S^3$ and zero set of polynomial $F$ is a link $L$.}
|
||||
\label{fig:milnor_singular}
|
||||
\end{figure}
|
||||
%ref: Milnor Singular Points of Complex Hypersurfaces
|
||||
\begin{theorem}
|
||||
|
||||
$L$ is an unknot if and only if
|
||||
zero is a smooth point, i.e.
|
||||
$\bigtriangledown F(0) \neq 0$ (provided $S^3$ has a sufficiently small radius).
|
||||
\end{theorem}
|
||||
\noindent
|
||||
Remark: if $S^3$ is large it can happen that $L$ is unlink, but $F^{-1}(0) \cap B^4$ is "complicated". \\
|
||||
%Kyle M. Ormsby
|
||||
\noindent
|
||||
In other words: if we take sufficiently small sphere, the link is non-trivial if and only if the point $0$ is singular and the isotopy type of the link doesn't depend on the radius of the sphere.
|
||||
A link obtained is such a way is called an
|
||||
algebraic link (in older books on knot theory there is another notion of algebraic link with another meaning).
|
||||
%ref: Eisenbud, D., Neumann, W.
|
||||
\begin{example}
|
||||
Let $p$ and $q$ be coprime numbers such that $p<q$ and $p,q>1$. \\
|
||||
Zero is an isolated singular point ($\bigtriangledown F(0) = 0$). $F$ is quasi - homogeneous polynomial, so the isotopy class of the link doesn't depend on the choice of a sphere.
|
||||
Consider $S^3 = \{ (z, w) \in \mathbb{C} : \max( \vert z \vert, \vert w \vert ) = \varepsilon$.
|
||||
The intersection
|
||||
$F^{-1}(0) \cap S^3$ is a torus $T(p, q)$.
|
||||
\\???????????????????
|
||||
$F(z, w) = z^p - w^q$\\
|
||||
.\\
|
||||
$F^{-1}(0) = \{t = t^q, w = t^p\}.$ For unknot $t = \max (\vert t\vert ^p, \vert t \vert^q) = \varepsilon$.
|
||||
\end{example}
|
||||
as a corollary we see that $K_T^{n, }$ ???? \\
|
||||
is not slice unless $m=0$. \\
|
||||
$t = re^{i \Theta}, \Theta \in [0, 2\pi], r = \varepsilon^{\frac{i}{p}}$
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{40}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.2\textwidth}{!}{\input{images/polynomial_and_surface.pdf_tex}}
|
||||
}
|
||||
\caption{Sa.}
|
||||
\label{fig:polynomial_and_surface}
|
||||
\end{figure}
|
||||
\begin{theorem}
|
||||
Suppose $L$ is an algebraic link. $L = F^{-1}(0) \cap S^3$. Let
|
||||
\begin{align*}
|
||||
&\varphi : S^3 \setminus L \longrightarrow S^1 \\
|
||||
&\varphi(z, w) =\frac{F(z, w)}{\vert F(z, w) \vert}\in S^1, \quad (z, w) \notin F^{-1}(0).
|
||||
\end{align*}
|
||||
The map $\varphi$ is a locally trivial fibration.
|
||||
\end{theorem}
|
||||
???????\\
|
||||
$ rh D \varphi \equiv 1$
|
||||
\begin{definition}
|
||||
A map $\Pi : E \longrightarrow B$ is locally trivial fibration with fiber $F$ if for any $b \in B$, there is a neighbourhood $U \subset B$ such that $\Pi^{-1}(U) \cong U \times $ \\
|
||||
????????????\\ $\Gamma$ ?????????????\\
|
||||
FIGURES\\
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!\\
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$
|
||||
\end{theorem}
|
||||
...
|
||||
\\
|
||||
In general $h$ is defined only up to homotopy, but this means that
|
||||
\[
|
||||
h_* : H_1 (F, \mathbb{Z}) \longrightarrow H_1 (F, \mathbb{Z})
|
||||
\]
|
||||
is well defined \\
|
||||
???????????\\ map.
|
||||
\begin{theorem}
|
||||
\label{thm:F_as_S}
|
||||
Suppose $S$ is a Seifert matrix associated with $F$ then $h = S^{-1}S^T$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
TO WRITE REFERENCE!!!!!!!!!!!
|
||||
%see Arnold Varchenko vol II
|
||||
%Picard - Lefschetz formula
|
||||
%Nemeth (Real Seifert forms
|
||||
\end{proof}
|
||||
\noindent
|
||||
Consequences:
|
||||
\begin{enumerate}
|
||||
\item
|
||||
the Alexander polynomial is the characteristic polynomial of $h$:
|
||||
\[
|
||||
\Delta_L (t) = \det (h - t I d)
|
||||
\]
|
||||
In particular $\Delta_L $ is monic (i.e. the top coefficient is $\pm 1$),
|
||||
????????????????
|
||||
\item
|
||||
S is invertible,
|
||||
\item
|
||||
$F$ minimize the genus (i.e. $F$ is minimal genus Seifert surface).
|
||||
\\??????????????????\\
|
||||
\end{enumerate}
|
||||
%
|
||||
\begin{definition}
|
||||
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longrightarrow S^1}$ which is locally trivial fibration.
|
||||
\end{definition}
|
||||
\noindent
|
||||
If $L$ is fibered then Theorem \ref{thm:F_as_S} holds and all its consequences.
|
||||
\begin{problem}
|
||||
If $K_1$ and $K_2$ are fibered knots, then also $K_1 \# K_2$ is fibered.
|
||||
\end{problem}
|
||||
\noindent
|
||||
?????????????????????\\
|
||||
\begin{problem}
|
||||
Prove that connected sum is well defined:\\
|
||||
$\Delta_{K_1 \# K_2} =
|
||||
\Delta_{K_1} + \Delta_{K_2}$ and
|
||||
$g_3(K_1 \# K_2) = g_3(K_1) + g_3(K_2)$.
|
||||
|
||||
\end{problem}
|
||||
\begin{figure}[h]
|
||||
\fontsize{12}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{1\textwidth}{!}{\input{images/satellite.pdf_tex}}
|
||||
}
|
||||
\caption{Whitehead double satellite knot. Its pattern knot embedded non-trivially in an unknotted solid torus $T$ (e.i. $K \not\subset S^3\subset T$) and pattern in a companion knot.}
|
||||
\label{fig:sattelite}
|
||||
\end{figure}
|
||||
\noindent
|
||||
\subsection{Alternating knot}
|
||||
\begin{definition}
|
||||
A knot (link) is called alternating if it admits an alternating diagram.
|
||||
\end{definition}
|
||||
|
||||
\begin{example}
|
||||
Figure eight knot is an alternating knot. \hfill\\
|
||||
\includegraphics[width=0.5\textwidth]{figure8.png}
|
||||
\end{example}
|
||||
\begin{definition}
|
||||
A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced.
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Any reduced alternating diagram has minimal number of crossings.
|
||||
\end{fact}
|
||||
\begin{definition}
|
||||
The writhe of the diagram is the difference between the number of positive and negative crossings.
|
||||
\end{definition}
|
||||
\begin{fact}[Tait]
|
||||
Any two diagrams of the same alternating knot have the same writhe.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
An alternating knot has Alexander polynomial of the form:
|
||||
$
|
||||
a_1t^{n_1} + a_2t^{n_2} + \dots + a_s t^{n_s}
|
||||
$, where $n_1 < n_2 < \dots < n_s$ and $a_ia_{i+1} < 0$.
|
||||
\end{fact}
|
||||
\begin{problem}[open]
|
||||
What is the minimal $\alpha \in \mathbb{R}$ such that if $z$ is a root of the Alexander polynomial of an alternating knot, then $\Re(z) > \alpha$.\\
|
||||
Remark: alternating knots have very simple knot homologies.
|
||||
\end{problem}
|
||||
\begin{proposition}
|
||||
If $T_{p, q}$ is a torus knot, $p < q$, then it is alternating if and only if $p=2$.
|
||||
\end{proposition}
|
@ -156,6 +156,7 @@ Let $V =
|
||||
\det (tV - V^T) = \det (tA - B^T) - \det(tB - A^T)
|
||||
\end{align*}
|
||||
\begin{corollary}
|
||||
\label{cor:slice_alex}
|
||||
If $K$ is a slice knot then there exists $f \in \mathbb{Z}[t^{\pm 1}]$ such that $\Delta_K(t) = f(t) \cdot f(t^{-1})$.
|
||||
\end{corollary}
|
||||
\begin{example}
|
||||
|
77
lec_5.tex
Normal file
77
lec_5.tex
Normal file
@ -0,0 +1,77 @@
|
||||
\begin{theorem}
|
||||
If $K$ is slice,
|
||||
then $\sigma_K(t)
|
||||
= \sign ( (1 - t)S +(1 - \bar{t})S^T)$
|
||||
is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\begin{lemma}
|
||||
\label{lem:metabolic}
|
||||
If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$ and
|
||||
$
|
||||
V = \begin{pmatrix}
|
||||
0 & A \\
|
||||
\bar{A}^T & B
|
||||
\end{pmatrix}
|
||||
$ and $\det V \neq 0$ then $\sigma(V) = 0$.
|
||||
\end{lemma}
|
||||
\begin{definition}
|
||||
A Hermitian form $V$ is metabolic if $V$ has structure
|
||||
$\begin{pmatrix}
|
||||
0 & A\\
|
||||
\bar{A}^T & B
|
||||
\end{pmatrix}$ with half-dimensional null-space.
|
||||
\end{definition}
|
||||
\noindent
|
||||
In other words: non-degenerate metabolic hermitian form has vanishing signature.\\
|
||||
We note that $\det(S + S^T) \neq 0$. Hence $\det ( (1 - t) S + (1 - \bar{t})S^T)$ is not identically zero on $S^1$, so it is non-zero except possibly at finitely many points. We apply the Lemma \ref{lem:metabolic}. \\
|
||||
Let $t \in S^1 \setminus \{1\}$. Then:
|
||||
\begin{align*}
|
||||
&\det((1 - t) S + (1 - \bar{t}) S^T) =
|
||||
\det((1 - t) S + (t\bar{t} - \bar{t}) S^T) =\\
|
||||
&\det((1 - t) (S - \bar{t} - S^T)) =
|
||||
\det((1 -t)(S - \bar{t} S^T)).
|
||||
\end{align*}
|
||||
As $\det (S + S^T) \neq 0$, so $S - \bar{t}S^T \neq 0$.
|
||||
\end{proof}
|
||||
?????????????????s\\
|
||||
\begin{corollary}
|
||||
If $K \sim K^\prime$ then for all but finitely many $t \in S^1 \setminus \{1\}: \sigma_K(t) = \sigma_{K^\prime}(t)$.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
If $ K \sim K^\prime$ then $K \# K^\prime$ is slice.
|
||||
\[
|
||||
\sigma_{-K^\prime}(t) = -\sigma_{K^\prime}(t)
|
||||
\]
|
||||
\\??????????????\\
|
||||
The signature give a homomorphism from the concordance group to $\mathbb{Z}$.\\
|
||||
??????????????????\\
|
||||
Remark: if $t \in S^1$ is not algebraic over $\mathbb{Z}$, then $\sigma_K(t) \neq 0$
|
||||
(we can is the argument that $\mathscr{C} \longrightarrow \mathbb{Z}$ as well).
|
||||
\end{proof}
|
||||
\begin{figure}[h]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.5\textwidth}{!}{\input{images/genus_2_bordism.pdf_tex}}
|
||||
}
|
||||
\caption{$K$ and $K^\prime$ are connected by a genus $g$ surface of genus.}\label{fig:genus_2_bordism}
|
||||
\end{figure}
|
||||
???????????????????????\\
|
||||
\begin{proposition}[Kawauchi inequality]
|
||||
If there exists a genus $g$ surface as in Figure \ref{fig:genus_2_bordism}
|
||||
then for almost all $t \in S^1 \setminus \{1\}$ we have $\vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g$.
|
||||
\end{proposition}
|
||||
% Kawauchi Chapter 12 ???
|
||||
\begin{lemma}
|
||||
If $K$ bounds a genus $g$ surface $X \in B^4$ and $S$ is a Seifert form then ${S \in M_{2n \times 2n}}$ has a block structure $\begin{pmatrix}
|
||||
0 & A\\
|
||||
B & C
|
||||
\end{pmatrix}$, where $0$ is $(n - g) \times (n - g)$ submatrix.
|
||||
\end{lemma}
|
||||
|
||||
\begin{definition}
|
||||
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
||||
\end{definition}
|
||||
\noindent
|
||||
Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not.
|
@ -123,102 +123,16 @@
|
||||
\input{lec_2.tex}
|
||||
%add Hurewicz theorem?
|
||||
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-11}}
|
||||
\input{lec_3.tex}
|
||||
|
||||
\begin{example}
|
||||
\begin{align*}
|
||||
&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{ a polynomial} \\
|
||||
&F(0) = 0
|
||||
\end{align*}
|
||||
\end{example}
|
||||
\begin{figure}[h]
|
||||
\fontsize{40}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.2\textwidth}{!}{\input{images/milnor_singular.pdf_tex}}
|
||||
}
|
||||
%\caption{$\mu$ is a meridian and $\lambda$ is a longitude.}
|
||||
\label{fig:milnor_singular}
|
||||
\end{figure}
|
||||
????????????
|
||||
\\
|
||||
$L$ is a link in $S^3$ \\
|
||||
\\?????????????????\\
|
||||
$L$ is an unknot if and only if $F(0) \neq 0$ (provided $S^3$ has a sufficiently small radius.
|
||||
\\
|
||||
\noindent
|
||||
Remark: if $S^3$ is large it can happen that $L$ is unlink, but $F^{-1} \cap B^4$ is "complicated". \\
|
||||
????????????\\
|
||||
\noindent
|
||||
\begin{example}
|
||||
Let $p$ and $q$ be coprime numbers such that $p<q$ and $p,q>1$.
|
||||
\\
|
||||
$F^{-1}(0) \cap S^3$ is a solid torus $T(p, q)$. \\
|
||||
$F(z, w) = z^p - w^q$\\
|
||||
Consider $S^3 = \{ (z, w) \in \mathbb{C} : \max( \mid z \mid, \mid w \mid ) = \varepsilon$.\\
|
||||
$F^{-1}(0) = \{t = t^q, w = t^p\}.$ For unknot $t = \max (\mid t\mid ^p, \mid t \mid^q) = \varepsilon$.
|
||||
\end{example}
|
||||
as a corollary we see that $K_T^{n, }$ ???? \\
|
||||
is not slice unless $m=0$. \\
|
||||
$t = re^{i \Theta}, \Theta \in [0, 2\pi], r = \varepsilon^{\frac{i}{p}}$ ?????????????????????????\\
|
||||
Suppose $L$ is a diagonal link. $L = F^{-1}(0) \cap S^3$.
|
||||
\begin{theorem}
|
||||
The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$
|
||||
\end{theorem}
|
||||
|
||||
|
||||
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
|
||||
\end{fact}
|
||||
%\end{comment}
|
||||
\noindent
|
||||
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
|
||||
\begin{problem}
|
||||
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
|
||||
$\mathscr{C}$.
|
||||
%
|
||||
%\\
|
||||
%Hint: $ -K = m(K)^r = (K^r)^r = K$
|
||||
\end{problem}
|
||||
\begin{example}
|
||||
Figure 8 knot is negative amphichiral.
|
||||
\end{example}
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{definition}
|
||||
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarrow S^1}$ which is locally trivial fibration.
|
||||
\end{definition}
|
||||
|
||||
|
||||
\section{Concordance group \hfill\DTMdate{2019-03-18}}
|
||||
\input{lec_4.tex}
|
||||
|
||||
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-25}}
|
||||
\begin{theorem}
|
||||
If $K$ is slice,
|
||||
then $\sigma_K(t)
|
||||
= \sign ( (1 - t)S +(1 - \bar{t})S^T)$
|
||||
is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\begin{lemma}
|
||||
If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$ and
|
||||
$
|
||||
V = \begin{pmatrix}
|
||||
0 & A \\
|
||||
\bar{A}^T & B
|
||||
\end{pmatrix}
|
||||
$
|
||||
\end{lemma}
|
||||
\end{proof}
|
||||
\begin{definition}
|
||||
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
||||
\end{definition}
|
||||
\noindent
|
||||
Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not.
|
||||
\input{lec_5.tex}
|
||||
|
||||
\section{\hfill\DTMdate{2019-04-08}}
|
||||
%
|
||||
@ -750,6 +664,24 @@ For knots the order of the Alexander module is the Alexander polynomial.
|
||||
$M$ is well defined up to a unit in $R$.
|
||||
\subsection*{Blanchfield pairing}
|
||||
\section{balagan}
|
||||
|
||||
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
|
||||
\end{fact}
|
||||
%\end{comment}
|
||||
\noindent
|
||||
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
|
||||
\begin{problem}
|
||||
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
|
||||
$\mathscr{C}$.
|
||||
%
|
||||
%\\
|
||||
%Hint: $ -K = m(K)^r = (K^r)^r = K$
|
||||
\end{problem}
|
||||
\begin{example}
|
||||
Figure 8 knot is negative amphichiral.
|
||||
\end{example}
|
||||
%
|
||||
%
|
||||
\begin{theorem}
|
||||
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
|
||||
\[
|
||||
|
Loading…
Reference in New Issue
Block a user