some inkspace pictures
This commit is contained in:
parent
8574646027
commit
16f96e3333
@ -50,6 +50,7 @@
|
||||
\theoremstyle{break}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{fact}{Fact}
|
||||
\newtheorem{corollary}{Corollary}
|
||||
\newtheorem{example}{Example}
|
||||
\newtheorem{definition}{Definition}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
@ -190,6 +191,12 @@ deformed into each other by a finite sequence of Reidemeister moves (and isotopy
|
||||
%The number of Reidemeister Moves Needed for Unknotting
|
||||
%Joel Hass, Jeffrey C. Lagarias
|
||||
%(Submitted on 2 Jul 1998)
|
||||
% Piotr Sumata, praca magisterska
|
||||
% proof - transversality theorem (Thom)
|
||||
|
||||
%Singularities of Differentiable Maps
|
||||
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
||||
|
||||
\subsection*{Seifert surface}
|
||||
\noindent
|
||||
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
||||
@ -198,24 +205,173 @@ Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing
|
||||
\PICorientminuscross \mapsto \PICorientLRsplit
|
||||
\end{align*}
|
||||
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
|
||||
Note: in general the obtained surface doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
||||
|
||||
\begin{figure}[H]
|
||||
\fontsize{15}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.7\textwidth}{!}{\input{images/seifert_surface.pdf_tex}}
|
||||
\resizebox{0.8\textwidth}{!}{\input{images/seifert_alg.pdf_tex}}
|
||||
\caption{Constructing a Seifert surface.}
|
||||
\label{fig:surfaceSeifert}
|
||||
\label{fig:SeifertAlg}
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\includegraphics[width=0.3\textwidth]{seifert3d.png},
|
||||
\noindent
|
||||
Note: in general the obtained surface doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
||||
|
||||
% transversality theorem
|
||||
%Thom ?
|
||||
%Singularities of Differentiable Maps
|
||||
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
||||
\begin{figure}[H]
|
||||
\begin{center}
|
||||
\includegraphics[width=0.6\textwidth]{seifert_connect.png}
|
||||
\end{center}
|
||||
\caption{Connecting two surfaces.}
|
||||
\label{fig:SeifertConnect}
|
||||
\end{figure}
|
||||
|
||||
\begin{theorem}[Seifert]
|
||||
Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface.
|
||||
\end{theorem}
|
||||
%
|
||||
\begin{figure}[H]
|
||||
\fontsize{15}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.8\textwidth}{!}{\input{images/torus_1_2_3.pdf_tex}}
|
||||
\caption{Genus of an orientable surface.}
|
||||
\label{fig:genera}
|
||||
}
|
||||
\end{figure}
|
||||
%
|
||||
%
|
||||
\begin{definition}
|
||||
The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$.
|
||||
\end{definition}
|
||||
|
||||
\begin{corollary}
|
||||
A knot $K$ is trivial if and only $g_3(K) = 0$.
|
||||
\end{corollary}
|
||||
|
||||
\noindent
|
||||
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
|
||||
|
||||
\begin{definition}
|
||||
Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$.
|
||||
On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$.
|
||||
\end{definition}
|
||||
\hfill
|
||||
\\
|
||||
Let $\nu(\beta)$ be a tubular neighbourhood of a closed simple curve $\beta$. The linking number can be interpreted via first homology group, where $lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group in complement of $\beta$ in $S^3$:
|
||||
\[
|
||||
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
||||
\begin{example}
|
||||
\begin{itemize}\hfill
|
||||
\item
|
||||
Hopf link\hfill
|
||||
\begin{figure}[H]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}}
|
||||
}
|
||||
\end{figure}
|
||||
\item
|
||||
$T(6, 2)$ link\hfill
|
||||
\begin{figure}[H]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}
|
||||
}
|
||||
\end{figure}
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
|
||||
Let $L$ be a link and $\Sigma$ be a Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
||||
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface. Let $lk(\alpha_i, \alpha_i^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$.
|
||||
|
||||
\begin{theorem}
|
||||
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
|
||||
\begin{enumerate}[label={(\arabic*)}]
|
||||
\item
|
||||
$V \rightarrow AVA^T$ for $A \in $
|
||||
\item
|
||||
$V \rightarrow
|
||||
\begin{pmatrix}
|
||||
\alpha & * \\
|
||||
\gamma^{*} & \delta
|
||||
\end{pmatrix}
|
||||
$\\
|
||||
\[
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
\epsilon' [T|_A]\epsilon & \ast \\
|
||||
\hline
|
||||
0 & _{\overline{B}'} [\overline{T}]
|
||||
_{\overline{B}\vphantom{\overline{B}'}}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
\]\\
|
||||
\[\left|
|
||||
\begin{array}{cr}
|
||||
Q & \begin{matrix} 0 \\ 0 \end{matrix} \\
|
||||
\begin{matrix} 2 & 3 \end{matrix} & -1
|
||||
\end{array}
|
||||
\right|\]
|
||||
\\
|
||||
\[
|
||||
\left[
|
||||
\begin{array}{c@{}c@{}c}
|
||||
\left[\begin{array}{cc}
|
||||
a_{11} & a_{12} \\
|
||||
a_{21} & a_{22} \\
|
||||
\end{array}\right] & \mathbf{0} & \mathbf{0} \\
|
||||
\mathbf{0} & \left[\begin{array}{ccc}
|
||||
b_{11} & b_{12} & b_{13}\\
|
||||
b_{21} & b_{22} & b_{23}\\
|
||||
b_{31} & b_{32} & b_{33}\\
|
||||
\end{array}\right] & \mathbf{0}\\
|
||||
\mathbf{0} & \mathbf{0} & \left[ \begin{array}{cc}
|
||||
c_{11} & c_{12} \\
|
||||
c_{21} & c_{22} \\
|
||||
\end{array}\right] \\
|
||||
\end{array}\right]
|
||||
\] \\
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
\begin{bmatrix}
|
||||
a_{11} & a_{12}\\
|
||||
a_{21} & a_{22}\\
|
||||
\end{bmatrix} & \mathbf{0} & \mathbf{0} \\
|
||||
\mathbf{0} & \begin{bmatrix}
|
||||
b_{11} & b_{12} & b_{13}\\
|
||||
b_{21} & b_{22} & b_{23}\\
|
||||
b_{31} & b_{32} & b_{33}\\
|
||||
\end{bmatrix} & \mathbf{0} \\
|
||||
\mathbf{0} & \mathbf{0} & \begin{bmatrix}
|
||||
c_{11} & c_{12}\\
|
||||
c_{21} & c_{22}\\
|
||||
\end{bmatrix} \\
|
||||
\end{bmatrix}
|
||||
\]\\
|
||||
\setlength{\arraycolsep}{2em}
|
||||
\newcommand{\lbrce}{\smash{\left.\rule{0pt}{25pt}\right\}}}
|
||||
\newcommand{\rbrce}{\smash{\left\{\rule{0pt}{25pt}\right.}}
|
||||
\newcommand{\sdots}{\smash{\vdots}}
|
||||
\[
|
||||
\begin{pmatrix}
|
||||
0 & 0 & 0 \\
|
||||
\sdots & \sdots\makebox[0pt][l]{$\lbrce\left\lceil\frac i2\right\rceil$} & \sdots \\
|
||||
0 & 0 & \\
|
||||
& & 0 \\
|
||||
& & \makebox[0pt][r]{$\left\lfloor\frac i2\right\rfloor\rbrce$}\sdots \\
|
||||
0 & & 0
|
||||
\end{pmatrix}
|
||||
\]
|
||||
|
||||
\item
|
||||
inverse of (2)
|
||||
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
|
||||
\section{}
|
||||
\begin{example}
|
||||
|
Loading…
Reference in New Issue
Block a user