diff --git a/lectures_on_knot_theory.tex b/lectures_on_knot_theory.tex index 02cf441..916769e 100644 --- a/lectures_on_knot_theory.tex +++ b/lectures_on_knot_theory.tex @@ -1047,6 +1047,37 @@ A square hermitian matrix $A$ of size $n$. field of fractions +\section{\hfill\DTMdate{2019-06-03}} +\begin{theorem} +Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4(K)$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then: +\[ +u(K) \geq g_4(K) +\] +\begin{proof} +Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points. +\\ +\noindent +Remove from $\Delta$ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$ . +\end{proof} +???????????????????\\ +\begin{example} +The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$. +\end{example} +\subsection{Surgery} +Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \{pt\}]}$ and ${\beta=[\{pt\} \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism. +Consider an induced map on homology group: +\begin{align*} +H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\ +\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\ +\phi_* &= + \begin{pmatrix} + p & q\\ + r & s + \end{pmatrix} +\end{align*} + +\end{theorem} + \section{balagan} @@ -1064,7 +1095,7 @@ Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V} $. \end{proof} \noindent -Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on 4\\ +Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $4$ - manifolds???\\ ?????\\ has a subspace of dimension $g_{\Sigma}$ on which it is zero: