matrix slice knot
This commit is contained in:
parent
d2146a556c
commit
401a9233b9
@ -1067,48 +1067,11 @@ $.
|
||||
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on 4\\
|
||||
?????\\
|
||||
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
||||
\[
|
||||
V =
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
0 & * \\
|
||||
\hline
|
||||
* & *
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
\]
|
||||
\begin{align*}
|
||||
\newcommand*{\AddLeft}[1]{%
|
||||
\vadjust{%
|
||||
\vbox to 0pt{%
|
||||
\vss
|
||||
\llap{$%
|
||||
{#1}\left\{
|
||||
\vphantom{
|
||||
\begin{matrix}1\\\vdots\\0\end{matrix}
|
||||
}
|
||||
\right.\kern-\nulldelimiterspace
|
||||
\kern0.5em
|
||||
$}%
|
||||
\kern0pt
|
||||
}%
|
||||
}%
|
||||
}
|
||||
V = \qquad
|
||||
\begin{pmatrix}
|
||||
0 & \cdots & 0 & * & \cdots & * \\
|
||||
\vdots & & \vdots & \vdots & &\vdots \\
|
||||
0 & \cdots & 0 & * & \cdots & *
|
||||
\AddLeft{g_{\Sigma}}\\
|
||||
* & \cdots & * & * & \cdots & * \\
|
||||
\vdots & & \vdots & \vdots & &\vdots \\
|
||||
* & \cdots & * & * & \cdots & *
|
||||
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
\newcommand\coolover[2]{\mathrlap{\smash{\overbrace{\phantom{%
|
||||
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
|
||||
\newcommand\coolover[2]%
|
||||
{\mathrlap{\smash{\overbrace{\phantom{%
|
||||
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
|
||||
\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{%
|
||||
\begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2}
|
||||
\newcommand\coolleftbrace[2]{%
|
||||
@ -1120,25 +1083,18 @@ V = \qquad
|
||||
\overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\
|
||||
\underbrace{pqr}_{\mbox{$S$}}
|
||||
\end{matrix}}%
|
||||
V =
|
||||
\begin{matrix}% matrix for left braces
|
||||
\vphantom{a}\\
|
||||
\coolleftbrace{A}{e \\ y\\ y}\\
|
||||
\coolleftbrace{B}{y \\i \\ m}
|
||||
\coolleftbrace{g_{\Sigma}}{ \\ \\ \\}
|
||||
\\ \\ \\ \\
|
||||
\end{matrix}%
|
||||
\begin{bmatrix}
|
||||
a & \coolover{R}{b & c & d} & x & \coolover{Z}{x & x}\\
|
||||
e & f & g & h & x & x & x \\
|
||||
y & y & y & y & y & y & y \\
|
||||
y & y & y & y & y & y & y \\
|
||||
y & y & y & y & y & y & y \\
|
||||
i & j & k & l & x & x & x \\
|
||||
m & \coolunder{S}{n & o} & \coolunder{W}{p & x & x} & x
|
||||
\end{bmatrix}%
|
||||
\begin{matrix}% matrix for right braces
|
||||
\coolrightbrace{x \\ x \\ y\\ y}{T}\\
|
||||
\coolrightbrace{y \\ y \\ x }{U}
|
||||
\end{matrix}
|
||||
\begin{pmatrix}
|
||||
\coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\
|
||||
\sdots & & \sdots & \sdots & & \sdots \\
|
||||
0 & \dots & 0 & * & \dots & *\\
|
||||
* & \dots & * & * & \dots & *\\
|
||||
\sdots & & \sdots & \sdots & & \sdots \\
|
||||
* & \dots & * & * & \dots & *
|
||||
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user