First part of the firtst lecture
This commit is contained in:
parent
0ea13b7907
commit
4a279bea58
BIN
images/RibbonUnknot.jpg
Normal file
BIN
images/RibbonUnknot.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
images/TwistedUnknot.jpg
Normal file
BIN
images/TwistedUnknot.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 9.9 KiB |
BIN
images/Twminus.jpg
Normal file
BIN
images/Twminus.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
BIN
images/Twplus.jpg
Normal file
BIN
images/Twplus.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
BIN
images/moves.png
Normal file
BIN
images/moves.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 119 KiB |
119
lectures_on_knot_theory.tex
Normal file
119
lectures_on_knot_theory.tex
Normal file
@ -0,0 +1,119 @@
|
||||
\documentclass[12pt, twoside]{article}
|
||||
|
||||
\usepackage{comment}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{csquotes}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{float}
|
||||
\usepackage{titlesec}
|
||||
\usepackage{comment}
|
||||
\usepackage{pict2e}
|
||||
|
||||
\usepackage{advdate}
|
||||
|
||||
%... Set the first lecture date
|
||||
\ThisYear{2019}
|
||||
\ThisMonth{3}
|
||||
\ThisDay{5}
|
||||
|
||||
|
||||
\graphicspath{ {images/} }
|
||||
|
||||
\newtheorem{lemama}{Lemma}
|
||||
\newtheorem{fact}{Fact}
|
||||
\newtheorem{example}{Example}
|
||||
%\theoremstyle{definition}
|
||||
\newtheorem{definition}{Definition}
|
||||
%\theoremstyle{plain}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{proposition}{Proposition}
|
||||
|
||||
\input{knots_macros}
|
||||
|
||||
|
||||
\titleformat{\section}{\normalfont \Large \bfseries}
|
||||
{Lecture\ \thesection}{2.3ex plus .2ex}{}
|
||||
\titlespacing{\subsection}{2em}{*1}{*1}
|
||||
|
||||
|
||||
\begin{document}
|
||||
%\input{myNotes}
|
||||
|
||||
\section{}
|
||||
\begin{definition}
|
||||
A \textbf{knot} $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
||||
\begin{align*}
|
||||
\varphi: S^1 \hookrightarrow S^3
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
||||
\begin{definition}
|
||||
\hfill\\
|
||||
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
|
||||
\begin{align*}
|
||||
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
|
||||
&\Phi(x, t) = \Phi_t(x)
|
||||
\end{align*}
|
||||
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
|
||||
$\Phi_1 = \varphi_1$
|
||||
\\
|
||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Phi$ such that:
|
||||
\begin{align*}
|
||||
&\Psi: S^3 \hookrightarrow S^3\\
|
||||
& \psi_0 = id\\
|
||||
& \psi_1(K_0) = K_1
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
A link with k - components is a (smooth) embedding of\\ $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
||||
\end{definition}
|
||||
\begin{example}
|
||||
A trivial link with $3$ components\\
|
||||
A hopf link\\
|
||||
Whitehead link\\
|
||||
Borromean link
|
||||
\end{example}
|
||||
\begin{definition}
|
||||
A link diagram is a picture over projection of a link is $S^3$/$R^3$ such that:
|
||||
\begin{enumerate}
|
||||
\item is non degenerate
|
||||
\item The double points are not degenerated
|
||||
\item There are no triple point
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
|
||||
Every link admits a link diagram.
|
||||
|
||||
\subsection{Reidemeister moves}
|
||||
A Reidemeister move is one of the three types of operation on a link diagram as shown in Figure~\ref{fig: reidemeister}.
|
||||
%
|
||||
The first Reidemeister move inserts or removes a coil.
|
||||
%
|
||||
The second Reidemeister move slides a strand and inserts or removes two crossings of opposite sign.
|
||||
%
|
||||
The third Reidemeister move slides a strand over or under a crossing.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{moves.png}
|
||||
\caption{\label{fig: reidemeister}Reidemeister moves (adapted from Adams).}
|
||||
\end{figure}
|
||||
\begin{theorem} [Reidemeister’s Theorem]
|
||||
Two diagrams of the same link can be
|
||||
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
|
||||
\end{theorem}
|
||||
\section{Z nagrania Kamili}
|
||||
\begin{example}
|
||||
\begin{align*}
|
||||
&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{a polynomial} \\
|
||||
&F(0) = 0
|
||||
\end{align*}
|
||||
Fact (Milnor Singular Points of Complex Hypersurfaces):
|
||||
\end{example}
|
||||
\section{} 25.03.19
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user