delete old files
This commit is contained in:
parent
3682a71808
commit
4f78b04d97
280
lec_1.tex
280
lec_1.tex
@ -1,280 +0,0 @@
|
|||||||
\begin{definition}
|
|
||||||
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
|
||||||
\begin{align*}
|
|
||||||
\varphi: S^1 \hookrightarrow S^3
|
|
||||||
\end{align*}
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
|
||||||
|
|
||||||
\begin{example}
|
|
||||||
\begin{itemize}
|
|
||||||
\item
|
|
||||||
Knots:
|
|
||||||
\includegraphics[width=0.08\textwidth]{unknot.png} (unknot),
|
|
||||||
\includegraphics[width=0.08\textwidth]{trefoil.png} (trefoil).
|
|
||||||
\item
|
|
||||||
Not knots:
|
|
||||||
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
|
|
||||||
(it is not an injection),
|
|
||||||
\includegraphics[width=0.08\textwidth]{not_smooth_knot.png}
|
|
||||||
(it is not smooth).
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
\begin{definition}
|
|
||||||
%\hfill\\
|
|
||||||
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
|
|
||||||
\begin{align*}
|
|
||||||
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
|
|
||||||
&\Phi(x, t) = \Phi_t(x)
|
|
||||||
\end{align*}
|
|
||||||
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
|
|
||||||
$\Phi_1 = \varphi_1$.
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that:
|
|
||||||
\begin{align*}
|
|
||||||
&\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$}\\
|
|
||||||
&\psi_t: S^3 \hookrightarrow S^3,\\
|
|
||||||
& \psi_0 = id ,\\
|
|
||||||
& \psi_1(K_0) = K_1.
|
|
||||||
\end{align*}
|
|
||||||
\end{theorem}
|
|
||||||
\begin{definition}
|
|
||||||
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
|
||||||
\end{definition}
|
|
||||||
\begin{definition}
|
|
||||||
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
|
||||||
\end{definition}
|
|
||||||
\begin{example}
|
|
||||||
Links:
|
|
||||||
\begin{itemize}
|
|
||||||
\item
|
|
||||||
a trivial link with $3$ components:
|
|
||||||
\includegraphics[width=0.2\textwidth]{3unknots.png},
|
|
||||||
\item
|
|
||||||
a hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png},
|
|
||||||
\item
|
|
||||||
a Whitehead link:
|
|
||||||
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
|
||||||
\item
|
|
||||||
Borromean link:
|
|
||||||
\includegraphics[width=0.1\textwidth]{BorromeanRings.png}.
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{definition}
|
|
||||||
A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that:
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
\item
|
|
||||||
$D_{\pi |_L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
|
||||||
\item the double points are not degenerate: \includegraphics[width=0.03\textwidth]{LinkDiagram2.png},
|
|
||||||
\item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
|
|
||||||
Every link admits a link diagram.
|
|
||||||
\\
|
|
||||||
Let $D$ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).\\
|
|
||||||
We can distinguish two types of crossings: right-handed
|
|
||||||
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
|
||||||
|
|
||||||
\subsection{Reidemeister moves}
|
|
||||||
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
|
||||||
\begin{enumerate}[label=\Roman*]
|
|
||||||
\item\hfill\\
|
|
||||||
\includegraphics[width=0.6\textwidth]{rm1.png},
|
|
||||||
\item\hfill\\\includegraphics[width=0.6\textwidth]{rm2.png},
|
|
||||||
\item\hfill\\\includegraphics[width=0.4\textwidth]{rm3.png}.
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
\begin{theorem} [Reidemeister, 1927 ]
|
|
||||||
Two diagrams of the same link can be
|
|
||||||
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
|
|
||||||
\end{theorem}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%The number of Reidemeister Moves Needed for Unknotting
|
|
||||||
%Joel Hass, Jeffrey C. Lagarias
|
|
||||||
%(Submitted on 2 Jul 1998)
|
|
||||||
% Piotr Sumata, praca magisterska
|
|
||||||
% proof - transversality theorem (Thom)
|
|
||||||
|
|
||||||
%Singularities of Differentiable Maps
|
|
||||||
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
|
||||||
|
|
||||||
\subsection{Seifert surface}
|
|
||||||
\noindent
|
|
||||||
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
|
||||||
\begin{align*}
|
|
||||||
\PICorientpluscross \mapsto \PICorientLRsplit\\
|
|
||||||
\PICorientminuscross \mapsto \PICorientLRsplit
|
|
||||||
\end{align*}
|
|
||||||
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{15}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/seifert_alg.pdf_tex}}
|
|
||||||
\caption{Constructing a Seifert surface.}
|
|
||||||
\label{fig:SeifertAlg}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\noindent
|
|
||||||
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=0.6\textwidth]{seifert_connect.png}
|
|
||||||
\end{center}
|
|
||||||
\caption{Connecting two surfaces.}
|
|
||||||
\label{fig:SeifertConnect}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{theorem}[Seifert]
|
|
||||||
\label{theo:Seifert}
|
|
||||||
Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface.
|
|
||||||
\end{theorem}
|
|
||||||
%
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{12}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{1\textwidth}{!}{\input{images/torus_1_2_3.pdf_tex}}
|
|
||||||
\caption{Genus of an orientable surface.}
|
|
||||||
\label{fig:genera}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{definition}
|
|
||||||
The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$.
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{corollary}
|
|
||||||
A knot $K$ is trivial if and only $g_3(K) = 0$.
|
|
||||||
\end{corollary}
|
|
||||||
|
|
||||||
\noindent
|
|
||||||
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$.
|
|
||||||
On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$.
|
|
||||||
\end{definition}
|
|
||||||
\begin{definition}
|
|
||||||
\label{def:lk_via_homo}
|
|
||||||
Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$.
|
|
||||||
Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$:
|
|
||||||
\[
|
|
||||||
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{example}
|
|
||||||
\begin{itemize}
|
|
||||||
\item
|
|
||||||
Hopf link:
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}},
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
\item
|
|
||||||
$T(6, 2)$ link:
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}.
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
\begin{fact}
|
|
||||||
\[
|
|
||||||
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
|
|
||||||
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
|
|
||||||
\]
|
|
||||||
where $b_1$ is first Betti number of $\Sigma$.
|
|
||||||
\end{fact}
|
|
||||||
|
|
||||||
\subsection{Seifert matrix}
|
|
||||||
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
|
||||||
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
|
|
||||||
Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/seifert_matrix.pdf_tex}}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
|
|
||||||
\item
|
|
||||||
$V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients,
|
|
||||||
|
|
||||||
\item
|
|
||||||
|
|
||||||
$V \rightarrow
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
V &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & 0\\
|
|
||||||
1 & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix} \quad$
|
|
||||||
or
|
|
||||||
$\quad
|
|
||||||
V \rightarrow
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
V &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & 1\\
|
|
||||||
0 & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix}$
|
|
||||||
\item
|
|
||||||
inverse of (2)
|
|
||||||
|
|
||||||
\end{enumerate}
|
|
||||||
\end{theorem}
|
|
281
lec_2.tex
281
lec_2.tex
@ -1,281 +0,0 @@
|
|||||||
\subsection{Existence of Seifert surface - second proof}
|
|
||||||
%\begin{theorem}
|
|
||||||
%For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
|
|
||||||
%\end{theorem}
|
|
||||||
\begin{proof}(Theorem \ref{theo:Seifert})\\
|
|
||||||
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
|
|
||||||
\begin{align*}
|
|
||||||
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
|
|
||||||
\end{align*}
|
|
||||||
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\begin{tikzcd}
|
|
||||||
[
|
|
||||||
column sep=0cm, fill=none,
|
|
||||||
row sep=small,
|
|
||||||
ar symbol/.style =%
|
|
||||||
{draw=none,"\textstyle#1" description,sloped},
|
|
||||||
isomorphic/.style = {ar symbol={\cong}},
|
|
||||||
]
|
|
||||||
&\mathbb{Z}
|
|
||||||
\\
|
|
||||||
|
|
||||||
& H^0(S^3) \ar[u,isomorphic] \to
|
|
||||||
&H^0(S^3 \setminus N) \to
|
|
||||||
\\
|
|
||||||
\to H^1(S^3, S^3 \setminus N) \to
|
|
||||||
& H^1(S^3) \to
|
|
||||||
& H^1(S^3\setminus N) \to
|
|
||||||
\\
|
|
||||||
& 0 \ar[u,isomorphic]&
|
|
||||||
\\
|
|
||||||
\to H^2(S^3, S^3 \setminus N) \to
|
|
||||||
& H^2(S^3) \ar[u,isomorphic] \to
|
|
||||||
& H^2(S^3\setminus N) \to
|
|
||||||
\\
|
|
||||||
\to H^3(S^3, S^3\setminus N)\to
|
|
||||||
& H^3(S) \to
|
|
||||||
& 0
|
|
||||||
\\
|
|
||||||
& \mathbb{Z} \ar[u,isomorphic] &\\
|
|
||||||
\end{tikzcd}
|
|
||||||
\end{center}
|
|
||||||
\begin{align*}
|
|
||||||
N \cong & D^2 \times S^1\\
|
|
||||||
\partial N \cong & S^1 \times S^1\\
|
|
||||||
H^1(N, \partial N) \cong & \mathbb{Z} \oplus \mathbb{Z}
|
|
||||||
\end{align*}
|
|
||||||
\begin{align*}
|
|
||||||
H^* (S^3, S^3 \setminus N) &\cong H^* (N, \partial N)\\
|
|
||||||
\\
|
|
||||||
H^ 1 (S^3\setminus N) &\cong H^1(S^3\setminus K) \cong \mathbb{Z}
|
|
||||||
\end{align*}
|
|
||||||
\begin{equation*}
|
|
||||||
\begin{tikzcd}[row sep=huge]
|
|
||||||
H^1(S^3 \setminus K) \arrow[r,] \arrow[d,"\widetilde{\Theta}"] &
|
|
||||||
H^1(N \setminus K) \arrow[d,"\Theta"] \\
|
|
||||||
{[S^3 \setminus K, S^1]} \arrow[r,]&
|
|
||||||
{[N \setminus K, S^1]}
|
|
||||||
\end{tikzcd}
|
|
||||||
\end{equation*}
|
|
||||||
\noindent
|
|
||||||
$\Sigma = \widetilde{\Theta}^{-1}(X)$ is a surface, such that $\partial \Sigma = K$, so it is a Seifert surface.
|
|
||||||
%
|
|
||||||
%
|
|
||||||
% Thom isomorphism,
|
|
||||||
\end{proof}
|
|
||||||
\subsection{Alexander polynomial}
|
|
||||||
\begin{definition}
|
|
||||||
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
|
|
||||||
\[
|
|
||||||
\Delta_K(t) := \det (tS - S^T) \in
|
|
||||||
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
|
|
||||||
\]
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
|
|
||||||
\begin{align*}
|
|
||||||
&\det(tS\prime - S\prime^T) =
|
|
||||||
\det(tCSC^T - (CSC^T)^T) =\\
|
|
||||||
&\det(tCSC^T - CS^TC^T) =
|
|
||||||
\det C(tS - S^T)C^T =
|
|
||||||
\det(tS - S^T)
|
|
||||||
\end{align*}
|
|
||||||
\item
|
|
||||||
Let \\
|
|
||||||
$ A := t
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
S &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & 0\\
|
|
||||||
1 & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix}
|
|
||||||
-
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
S^T &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & 1\\
|
|
||||||
0 & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix}
|
|
||||||
=
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
tS - S^T &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & -1\\
|
|
||||||
t & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix}
|
|
||||||
$
|
|
||||||
\\
|
|
||||||
\\
|
|
||||||
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{proof}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{example}
|
|
||||||
If $K$ is a trefoil then we can take
|
|
||||||
$S = \begin{pmatrix}
|
|
||||||
-1 & -1 \\
|
|
||||||
0 & -1
|
|
||||||
\end{pmatrix}$. Then
|
|
||||||
\[
|
|
||||||
\Delta_K(t) = \det
|
|
||||||
\begin{pmatrix}
|
|
||||||
-t + 1 & -t\\
|
|
||||||
1 & -t +1
|
|
||||||
\end{pmatrix}
|
|
||||||
= (t -1)^2 + t = t^2 - t +1 \ne 1
|
|
||||||
\Rightarrow \text{trefoil is not trivial.}
|
|
||||||
\]
|
|
||||||
\end{example}
|
|
||||||
\begin{fact}
|
|
||||||
$\Delta_K(t)$ is symmetric.
|
|
||||||
\end{fact}
|
|
||||||
\begin{proof}
|
|
||||||
Let $S$ be an $n \times n$ matrix.
|
|
||||||
\begin{align*}
|
|
||||||
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
|
|
||||||
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
|
|
||||||
\end{align*}
|
|
||||||
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
|
|
||||||
\end{proof}
|
|
||||||
\begin{lemma}
|
|
||||||
\begin{align*}
|
|
||||||
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
|
|
||||||
\text{ where } deg (a_n t^n + \dots + a_1 t^l )= k - l.
|
|
||||||
\end{align*}
|
|
||||||
\end{lemma}
|
|
||||||
\begin{proof}
|
|
||||||
If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so $S$ is an $2g \times 2g$ matrix. Therefore $\det (tS - S^T)$ is a polynomial of degree at most $2g$.
|
|
||||||
\end{proof}
|
|
||||||
\begin{example}
|
|
||||||
There are not trivial knots with Alexander polynomial equal $1$, for example:
|
|
||||||
\includegraphics[width=0.3\textwidth]{11n34.png}
|
|
||||||
$\Delta_{11n34} \equiv 1$.
|
|
||||||
\end{example}
|
|
||||||
|
|
||||||
\subsection{Decomposition of $3$-sphere}
|
|
||||||
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
|
||||||
\[
|
|
||||||
S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2).
|
|
||||||
\]
|
|
||||||
So the complement of solid torus in $S^3$ is another solid torus.\\
|
|
||||||
Analytically it can be describes as follow. \\
|
|
||||||
Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\vert z_1 \vert, \vert z_2\vert) = 1.}
|
|
||||||
$
|
|
||||||
Define following sets:
|
|
||||||
\begin{align*}
|
|
||||||
S_1 = \{ (z_1, z_2) \in S^3: \vert z_1 \vert = 0\} \cong S^1 \times D^2 ,\\
|
|
||||||
S_2 = \{(z_1, z_2) \in S ^3: \vert z_2 \vert = 1 \} \cong D^2 \times S^1.
|
|
||||||
\end{align*}
|
|
||||||
The intersection
|
|
||||||
$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$.
|
|
||||||
\begin{figure}[h]
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.3\textwidth}{!}{\includegraphics[width=0.3\textwidth]{sphere_as_torus.png}}
|
|
||||||
\caption{The complement of solid torus in $S^3$ is another solid torus.}
|
|
||||||
\label{fig:sphere_as_tori}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\subsection{Dehn lemma and sphere theorem}
|
|
||||||
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{lemma}[Dehn]
|
|
||||||
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f\big|_{\partial D^2}$ is an embedding. Then there exists an embedding
|
|
||||||
${D^2 \overset{g}\longhookrightarrow M}$ such that:
|
|
||||||
\[
|
|
||||||
g\big|_{\partial D^2} = f\big|_{\partial D^2.}
|
|
||||||
\]
|
|
||||||
\end{lemma}
|
|
||||||
\noindent
|
|
||||||
Remark: Dehn lemma doesn't hold for dimension four.\\
|
|
||||||
Let $M$ be connected, compact three manifold with boundary.
|
|
||||||
Suppose $\pi_1(\partial M) \longrightarrow \pi_1(M)$ has non-trivial kernel. Then there exists a map $f: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $f\big|_{\partial D^2}$ is non-trivial loop in $\partial M$.
|
|
||||||
\begin{theorem}[Sphere theorem]
|
|
||||||
Suppose $\pi_1(M) \ne 0$. Then there exists an embedding $f: S^2 \hookrightarrow M$ that is homotopy non-trivial.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{problem}
|
|
||||||
Prove that $S^3 \ K$ is Eilenberg–MacLane space of type $K(\pi, 1)$.
|
|
||||||
\end{problem}
|
|
||||||
\begin{corollary}
|
|
||||||
Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathbb{Z})$. Then $K$ is trivial.
|
|
||||||
\end{corollary}
|
|
||||||
\begin{proof}
|
|
||||||
Let $N$ be a tubular neighbourhood of a knot $K$ and $M = S^3 \setminus N$ its complement. Then $\partial M = S^1 \times S^1$. Let $f : \pi_1(\partial M ) \longrightarrow \pi_1(M)$.
|
|
||||||
If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)}$.
|
|
||||||
There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$.\\
|
|
||||||
By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that
|
|
||||||
$h\big|_{\partial D^2} = f \big|_{\partial D^2}$ and $h(\partial D^2) = \lambda$.
|
|
||||||
Let $\Sigma$ be a union of the annulus and the image of $\partial D^2$.
|
|
||||||
\\???? $g_3$?\\
|
|
||||||
If $g(\Sigma) = 0$, then $K$ is trivial. \\
|
|
||||||
Now we should proof that:
|
|
||||||
\[
|
|
||||||
H_1(M) \cong \mathbb{Z} \Longrightarrow \lambda \in \ker ( \pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)).
|
|
||||||
\]
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{40}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/torus_lambda.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{$\mu$ is a meridian and $\lambda$ is a longitude.}
|
|
||||||
\label{fig:meridian_and_longitude}
|
|
||||||
\end{figure}
|
|
||||||
Choose a meridian $\mu$ such that $\Lk (\mu, K) = 1$. Recall the definition of linking number via homology group (Definition \ref{def:lk_via_homo}).
|
|
||||||
$[\mu]$ represents the generator of $H_1(S^3\setminus K, \mathbb{Z})$. From definition of $\lambda$ we know that $\lambda$ is trivial in $H_1(M)$ ($\Lk(\lambda, K) =0$, therefore $[\lambda]$ was trivial in $pi_1(M)$). If $K$ is non-trivial then $\lambda$ is non-trivial in $\pi_1(M)$, but it is trivial in $H_1(M)$.
|
|
||||||
\end{proof}
|
|
176
lec_3.tex
176
lec_3.tex
@ -1,176 +0,0 @@
|
|||||||
\subsection{Algebraic knots}
|
|
||||||
\noindent
|
|
||||||
Suppose $F: \mathbb{C}^2 \rightarrow \mathbb{C}$ is a polynomial and $F(0) = 0$. Let take small small sphere $S^3$ around zero. This sphere intersect set of roots of $F$ (zero set of $F$) transversally and by the implicit function theorem the intersection is a manifold.
|
|
||||||
The dimension of sphere is $3$ and $F^{-1}(0)$ has codimension $2$.
|
|
||||||
So there is a subspace $L$ - compact one dimensional manifold without boundary.
|
|
||||||
That means that $L$ is a link in $S^3$.
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{40}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.2\textwidth}{!}{\input{images/milnor_singular.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{The intersection of a sphere $S^3$ and zero set of polynomial $F$ is a link $L$.}
|
|
||||||
\label{fig:milnor_singular}
|
|
||||||
\end{figure}
|
|
||||||
%ref: Milnor Singular Points of Complex Hypersurfaces
|
|
||||||
\begin{theorem}
|
|
||||||
|
|
||||||
$L$ is an unknot if and only if
|
|
||||||
zero is a smooth point, i.e.
|
|
||||||
$\bigtriangledown F(0) \neq 0$ (provided $S^3$ has a sufficiently small radius).
|
|
||||||
\end{theorem}
|
|
||||||
\noindent
|
|
||||||
Remark: if $S^3$ is large it can happen that $L$ is unlink, but $F^{-1}(0) \cap B^4$ is "complicated". \\
|
|
||||||
%Kyle M. Ormsby
|
|
||||||
\noindent
|
|
||||||
In other words: if we take sufficiently small sphere, the link is non-trivial if and only if the point $0$ is singular and the isotopy type of the link doesn't depend on the radius of the sphere.
|
|
||||||
A link obtained is such a way is called an
|
|
||||||
algebraic link (in older books on knot theory there is another notion of algebraic link with another meaning).
|
|
||||||
%ref: Eisenbud, D., Neumann, W.
|
|
||||||
\begin{example}
|
|
||||||
Let $p$ and $q$ be coprime numbers such that $p<q$ and $p,q>1$. \\
|
|
||||||
Zero is an isolated singular point ($\bigtriangledown F(0) = 0$). $F$ is quasi - homogeneous polynomial, so the isotopy class of the link doesn't depend on the choice of a sphere.
|
|
||||||
Consider $S^3 = \{ (z, w) \in \mathbb{C} : \max( \vert z \vert, \vert w \vert )\} = \varepsilon$.
|
|
||||||
The intersection
|
|
||||||
$F^{-1}(0) \cap S^3$ is a torus $T(p, q)$.
|
|
||||||
\\???????????????????
|
|
||||||
$F(z, w) = z^p - w^q$\\
|
|
||||||
.\\
|
|
||||||
$F^{-1}(0) = \{t = t^q, w = t^p\}.$ For unknot $t = \max (\vert t\vert ^p, \vert t \vert^q) = \varepsilon$.
|
|
||||||
\end{example}
|
|
||||||
as a corollary we see that $K_T^{n, }$ ???? \\
|
|
||||||
is not slice unless $m=0$. \\
|
|
||||||
$t = re^{i \Theta}, \Theta \in [0, 2\pi], r = \varepsilon^{\frac{i}{p}}$
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{40}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.2\textwidth}{!}{\input{images/polynomial_and_surface.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{Sa.}
|
|
||||||
\label{fig:polynomial_and_surface}
|
|
||||||
\end{figure}
|
|
||||||
\begin{theorem}
|
|
||||||
Suppose $L$ is an algebraic link. $L = F^{-1}(0) \cap S^3$. Let
|
|
||||||
\begin{align*}
|
|
||||||
&\varphi : S^3 \setminus L \longrightarrow S^1 \\
|
|
||||||
&\varphi(z, w) =\frac{F(z, w)}{\vert F(z, w) \vert}\in S^1, \quad (z, w) \notin F^{-1}(0).
|
|
||||||
\end{align*}
|
|
||||||
The map $\varphi$ is a locally trivial fibration.
|
|
||||||
\end{theorem}
|
|
||||||
???????\\
|
|
||||||
$ rh D \varphi \equiv 1$
|
|
||||||
\begin{definition}
|
|
||||||
A map $\Pi : E \longrightarrow B$ is locally trivial fibration with fiber $F$ if for any $b \in B$, there is a neighbourhood $U \subset B$ such that $\Pi^{-1}(U) \cong U \times $ \\
|
|
||||||
????????????\\ $\Gamma$ ?????????????\\
|
|
||||||
FIGURES\\
|
|
||||||
!!!!!!!!!!!!!!!!!!!!!!!!!!\\
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$
|
|
||||||
\end{theorem}
|
|
||||||
...
|
|
||||||
\\
|
|
||||||
In general $h$ is defined only up to homotopy, but this means that
|
|
||||||
\[
|
|
||||||
h_* : H_1 (F, \mathbb{Z}) \longrightarrow H_1 (F, \mathbb{Z})
|
|
||||||
\]
|
|
||||||
is well defined \\
|
|
||||||
???????????\\ map.
|
|
||||||
\begin{theorem}
|
|
||||||
\label{thm:F_as_S}
|
|
||||||
Suppose $S$ is a Seifert matrix associated with $F$ then $h = S^{-1}S^T$.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
TO WRITE REFERENCE!!!!!!!!!!!
|
|
||||||
%see Arnold Varchenko vol II
|
|
||||||
%Picard - Lefschetz formula
|
|
||||||
%Nemeth (Real Seifert forms
|
|
||||||
\end{proof}
|
|
||||||
\noindent
|
|
||||||
Consequences:
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
\item
|
|
||||||
the Alexander polynomial is the characteristic polynomial of $h$:
|
|
||||||
\[
|
|
||||||
\Delta_L (t) = \det (h - t I d)
|
|
||||||
\]
|
|
||||||
In particular $\Delta_L $ is monic (i.e. the top coefficient is $\pm 1$),
|
|
||||||
????????????????
|
|
||||||
\item
|
|
||||||
S is invertible,
|
|
||||||
\item
|
|
||||||
$F$ minimize the genus (i.e. $F$ is minimal genus Seifert surface).
|
|
||||||
\\??????????????????\\
|
|
||||||
\end{enumerate}
|
|
||||||
%
|
|
||||||
\begin{definition}
|
|
||||||
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longrightarrow S^1}$ which is locally trivial fibration.
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
If $L$ is fibered then Theorem \ref{thm:F_as_S} holds and all its consequences.
|
|
||||||
\begin{problem}
|
|
||||||
If $K_1$ and $K_2$ are fibered knots, then also $K_1 \# K_2$ is fibered.
|
|
||||||
\end{problem}
|
|
||||||
\noindent
|
|
||||||
?????????????????????\\
|
|
||||||
\begin{problem}
|
|
||||||
Prove that connected sum is well defined:\\
|
|
||||||
$\Delta_{K_1 \# K_2} =
|
|
||||||
\Delta_{K_1} + \Delta_{K_2}$ and
|
|
||||||
$g_3(K_1 \# K_2) = g_3(K_1) + g_3(K_2)$.
|
|
||||||
|
|
||||||
\end{problem}
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{12}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{1\textwidth}{!}{\input{images/satellite.pdf_tex}}}
|
|
||||||
\caption{Whitehead double satellite knot.\\
|
|
||||||
The pattern knot embedded non-trivially in an unknotted solid torus $T$ (e.i. $K \not\subset S^3\subset T$) on the left and the pattern in a companion knot - trefoil - on the right.}
|
|
||||||
\label{fig:sattelite}
|
|
||||||
\end{figure}
|
|
||||||
\noindent
|
|
||||||
\subsection{Alternating knot}
|
|
||||||
\begin{definition}
|
|
||||||
A knot (link) is called alternating if it admits an alternating diagram.
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{12}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\includegraphics[width=0.3\textwidth]{figure8.png}
|
|
||||||
}
|
|
||||||
\caption{Example: figure eight knot is an alternating knot.}
|
|
||||||
\label{fig:fig8}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced.
|
|
||||||
\end{definition}
|
|
||||||
\begin{fact}
|
|
||||||
Any reduced alternating diagram has minimal number of crossings.
|
|
||||||
\end{fact}
|
|
||||||
\begin{definition}
|
|
||||||
The writhe of the diagram is the difference between the number of positive and negative crossings.
|
|
||||||
\end{definition}
|
|
||||||
\begin{fact}[Tait]
|
|
||||||
Any two diagrams of the same alternating knot have the same writhe.
|
|
||||||
\end{fact}
|
|
||||||
\begin{fact}
|
|
||||||
An alternating knot has Alexander polynomial of the form:
|
|
||||||
$
|
|
||||||
a_1t^{n_1} + a_2t^{n_2} + \dots + a_s t^{n_s}
|
|
||||||
$, where $n_1 < n_2 < \dots < n_s$ and $a_ia_{i+1} < 0$.
|
|
||||||
\end{fact}
|
|
||||||
\begin{problem}[open]
|
|
||||||
What is the minimal $\alpha \in \mathbb{R}$ such that if $z$ is a root of the Alexander polynomial of an alternating knot, then $\Re(z) > \alpha$.\\
|
|
||||||
Remark: alternating knots have very simple knot homologies.
|
|
||||||
\end{problem}
|
|
||||||
\begin{proposition}
|
|
||||||
If $T_{p, q}$ is a torus knot, $p < q$, then it is alternating if and only if $p=2$.
|
|
||||||
\end{proposition}
|
|
170
lec_4.tex
170
lec_4.tex
@ -1,170 +0,0 @@
|
|||||||
\begin{definition}
|
|
||||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
|
|
||||||
\[
|
|
||||||
\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}.
|
|
||||||
\]
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
\begin{definition}
|
|
||||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
|
||||||
Put differently: a knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\noindent
|
|
||||||
Let $m(K)$ denote a mirror image of a knot $K$.
|
|
||||||
\begin{fact}
|
|
||||||
For any $K$, $K \# m(K)$ is slice.
|
|
||||||
\end{fact}
|
|
||||||
\begin{fact}
|
|
||||||
Concordance is an equivalence relation.
|
|
||||||
\end{fact}
|
|
||||||
\begin{fact}\label{fact:concordance_connected}
|
|
||||||
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
|
||||||
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{10}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{1\textwidth}{!}{\input{images/concordance_sum.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{Sketch for Fact \ref{fact:concordance_connected}.}
|
|
||||||
\label{fig:concordance_sum}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\end{fact}
|
|
||||||
\begin{fact}
|
|
||||||
$K \# m(K) \sim $ the unknot.
|
|
||||||
\end{fact}
|
|
||||||
\noindent
|
|
||||||
\begin{theorem}
|
|
||||||
Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $[0]$ denote class of all knots concordant to a trivial knot.
|
|
||||||
$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $[0]$ and the inverse element of an element $[K]\in \mathscr{C}$ is $-[K] = [mK]$.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{fact}
|
|
||||||
The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).
|
|
||||||
\end{fact}
|
|
||||||
\begin{problem}[open]
|
|
||||||
Are there in concordance group torsion elements that are not $2$ torsion elements?
|
|
||||||
\end{problem}
|
|
||||||
\noindent
|
|
||||||
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
|
||||||
\\
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_seifert.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{$Y = F \cup \Sigma$ is a smooth closed surface.}
|
|
||||||
\label{fig:closed_surface}
|
|
||||||
\end{figure}
|
|
||||||
\noindent
|
|
||||||
\\
|
|
||||||
Pontryagin-Thom construction tells us that there exists a compact oriented three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$.
|
|
||||||
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$, i.e. there are cycles and
|
|
||||||
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
|
||||||
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
|
||||||
$\partial B^+ = \beta^+$.
|
|
||||||
Then
|
|
||||||
$\Lk(\alpha, \beta^+) = A \cdot B^+$. But $A$ and $B$ are disjoint, so $\Lk(\alpha, \beta^+) = 0$. Then the Seifert form is zero.
|
|
||||||
\\
|
|
||||||
\noindent
|
|
||||||
Let us consider following maps:
|
|
||||||
\[
|
|
||||||
\Sigma \overset{\phi} \longhookrightarrow Y \overset{\psi} \longhookrightarrow \Omega.
|
|
||||||
\]
|
|
||||||
Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $\gamma \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$.
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{proposition}
|
|
||||||
\[
|
|
||||||
\dim \ker (H_1(Y, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z})) = \frac{1}{2} b_1(Y),
|
|
||||||
\]
|
|
||||||
where $b_1$ is first Betti number.
|
|
||||||
\end{proposition}
|
|
||||||
\begin{proof}
|
|
||||||
Consider the following long exact sequence for a pair $(\Omega, Y)$:
|
|
||||||
\begin{align*}
|
|
||||||
& 0 \to H_3(\Omega) \to H_3(\Omega, Y) \to
|
|
||||||
\\
|
|
||||||
\to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega, Y) \to \\
|
|
||||||
\to & H_1(Y) \to H_1(\Omega) \to H_1(\Omega, Y) \to \\
|
|
||||||
\to & H_0(Y) \to H_0(\Omega) \to 0
|
|
||||||
\end{align*}
|
|
||||||
By Poincar\'e duality we know that:
|
|
||||||
\begin{align*}
|
|
||||||
H_3(\Omega, Y) &\cong H^0(\Omega),\\
|
|
||||||
H_2(Y) &\cong H^0(Y),\\
|
|
||||||
H_2(\Omega) &\cong H^1(\Omega, Y),\\
|
|
||||||
H_1(\Omega, Y) &\cong H^1(\Omega).
|
|
||||||
\end{align*}
|
|
||||||
Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
|
|
||||||
= \dim_{\mathbb{Q}} V
|
|
||||||
$.\\
|
|
||||||
\noindent
|
|
||||||
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $K$
|
|
||||||
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
\newcommand\coolover[2]%
|
|
||||||
{\mathrlap{\smash{\overbrace{\phantom{%
|
|
||||||
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
|
|
||||||
\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{%
|
|
||||||
\begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2}
|
|
||||||
\newcommand\coolleftbrace[2]{%
|
|
||||||
#1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.}
|
|
||||||
\newcommand\coolrightbrace[2]{%
|
|
||||||
\left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2}
|
|
||||||
\vphantom{% phantom stuff for correct box dimensions
|
|
||||||
\begin{matrix}
|
|
||||||
\overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\
|
|
||||||
\underbrace{pqr}_{\mbox{$S$}}
|
|
||||||
\end{matrix}}%
|
|
||||||
V =
|
|
||||||
\begin{matrix}% matrix for left braces
|
|
||||||
\coolleftbrace{g_{\Sigma}}{ \\ \\ \\}
|
|
||||||
\\ \\ \\ \\
|
|
||||||
\end{matrix}%
|
|
||||||
\begin{pmatrix}
|
|
||||||
\coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\
|
|
||||||
\sdots & & \sdots & \sdots & & \sdots \\
|
|
||||||
0 & \dots & 0 & * & \dots & *\\
|
|
||||||
* & \dots & * & * & \dots & *\\
|
|
||||||
\sdots & & \sdots & \sdots & & \sdots \\
|
|
||||||
* & \dots & * & * & \dots & *
|
|
||||||
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
|
||||||
\end{align*}
|
|
||||||
\end{proof}
|
|
||||||
\noindent
|
|
||||||
Let $V =
|
|
||||||
\begin{pmatrix}
|
|
||||||
0 & A\\
|
|
||||||
B & C
|
|
||||||
\end{pmatrix}$
|
|
||||||
\begin{align*}
|
|
||||||
\det (tV - V^T) = \det (tA - B^T) - \det(tB - A^T)
|
|
||||||
\end{align*}
|
|
||||||
\begin{corollary}
|
|
||||||
\label{cor:slice_alex}
|
|
||||||
If $K$ is a slice knot then there exists $f \in \mathbb{Z}[t^{\pm 1}]$ such that $\Delta_K(t) = f(t) \cdot f(t^{-1})$.
|
|
||||||
\end{corollary}
|
|
||||||
\begin{example}
|
|
||||||
Figure eight knot is not slice.
|
|
||||||
\end{example}
|
|
||||||
\begin{fact}
|
|
||||||
If $K$ is slice, then the signature $\sigma(K) \equiv 0$.
|
|
||||||
\end{fact}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
234
lec_5.tex
234
lec_5.tex
@ -1,234 +0,0 @@
|
|||||||
\subsection{Slice knots and metabolic form}
|
|
||||||
\begin{theorem}
|
|
||||||
\label{the:sign_slice}
|
|
||||||
If $K$ is slice,
|
|
||||||
then $\sigma_K(t)
|
|
||||||
= \sign ( (1 - t)S +(1 - \bar{t})S^T)$
|
|
||||||
is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{lemma}
|
|
||||||
\label{lem:metabolic}
|
|
||||||
If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$,
|
|
||||||
$
|
|
||||||
V = \begin{pmatrix}
|
|
||||||
0 & A \\
|
|
||||||
\bar{A}^T & B
|
|
||||||
\end{pmatrix}
|
|
||||||
$ and $\det V \neq 0$ then $\sigma(V) = 0$.
|
|
||||||
\end{lemma}
|
|
||||||
\begin{definition}
|
|
||||||
A Hermitian form $V$ is metabolic if $V$ has structure
|
|
||||||
$\begin{pmatrix}
|
|
||||||
0 & A\\
|
|
||||||
\bar{A}^T & B
|
|
||||||
\end{pmatrix}$ with half-dimensional null-space.
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
Theorem \ref{the:sign_slice} can be also express as follow:
|
|
||||||
non-degenerate metabolic hermitian form has vanishing signature.
|
|
||||||
\begin{proof}
|
|
||||||
\noindent
|
|
||||||
We note that $\det(S + S^T) \neq 0$. Hence $\det ( (1 - t) S + (1 - \bar{t})S^T)$ is not identically zero on $S^1$, so it is non-zero except possibly at finitely many points. We apply the Lemma \ref{lem:metabolic}.
|
|
||||||
\\
|
|
||||||
Let $t \in S^1 \setminus \{1\}$.
|
|
||||||
Then:
|
|
||||||
\begin{align*}
|
|
||||||
\det((1 - t) S + (1 - \bar{t}) S^T) =&
|
|
||||||
\det((1 - t) S + (t\bar{t} - \bar{t}) S^T) =\\
|
|
||||||
&\det((1 - t) (S - \bar{t} - S^T)) =
|
|
||||||
\det((1 -t)(S - \bar{t} S^T)).
|
|
||||||
\end{align*}
|
|
||||||
As $\det (S + S^T) \neq 0$, so $S - \bar{t}S^T \neq 0$.
|
|
||||||
\end{proof}
|
|
||||||
\begin{corollary}
|
|
||||||
If $K \sim K^\prime$ then for all but finitely many $t \in S^1 \setminus \{1\}: \sigma_K(t) = -\sigma_{K^\prime}(t)$.
|
|
||||||
\end{corollary}
|
|
||||||
\begin{proof}
|
|
||||||
If $ K \sim K^\prime$ then $K \# K^\prime$ is slice.
|
|
||||||
\[
|
|
||||||
\sigma_{-K^\prime}(t) = -\sigma_{K^\prime}(t)
|
|
||||||
\]
|
|
||||||
The signature gives a homomorphism from the concordance group to $\mathbb{Z}$.
|
|
||||||
Remark: if $t \in S^1$ is not algebraic over $\mathbb{Z}$, then $\sigma_K(t) \neq 0$
|
|
||||||
(we can use the argument that $\mathscr{C} \longrightarrow \mathbb{Z}$ as well).
|
|
||||||
\end{proof}
|
|
||||||
\subsection{Four genus}
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.7\textwidth}{!}{\input{images/genus_2_bordism.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{$K$ and $K^\prime$ are connected by a genus $g$ surface.}\label{fig:genus_2_bordism}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{proposition}[Kawauchi inequality]
|
|
||||||
If there exists a genus $g$ surface as in Figure \ref{fig:genus_2_bordism}
|
|
||||||
then for almost all
|
|
||||||
$t \in S^1 \setminus \{1\}$ we have
|
|
||||||
$\vert
|
|
||||||
\sigma_K(t) - \sigma_{K^\prime}(t)
|
|
||||||
\vert \leq 2 g$.
|
|
||||||
\end{proposition}
|
|
||||||
% Kawauchi Chapter 12 ???
|
|
||||||
% Borodzik 2010 Morse theory for plane algebraic curves
|
|
||||||
\begin{lemma}
|
|
||||||
If $K$ bounds a genus $g$ surface $X \in B^4$ and $S$ is a Seifert form then ${S \in M_{2n \times 2n}}$ has a block structure $\begin{pmatrix}
|
|
||||||
0 & A\\
|
|
||||||
B & C
|
|
||||||
\end{pmatrix}$, where $0$ is $(n - g) \times (n - g)$ submatrix.
|
|
||||||
\end{lemma}
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.5\textwidth}{!}{\input{images/genus_bordism_zeros.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{There exists a $3$ - manifold $\Omega$ such that $\partial \Omega = X \cup \Sigma$.}\label{fig:omega_in_B_4}
|
|
||||||
\end{figure}
|
|
||||||
\noindent
|
|
||||||
Let $K$ be a knot and $\Sigma$ its Seifert surface as in Figure \ref{fig:omega_in_B_4}.
|
|
||||||
There exists a $3$ - submanifold
|
|
||||||
$\Omega$ such that
|
|
||||||
$\partial \Omega = Y = X \cup \Sigma$
|
|
||||||
(by Thom-Pontryagin construction).
|
|
||||||
If $\alpha, \beta \in \ker (H_1(\Sigma) \longrightarrow H_1(\Omega))$,
|
|
||||||
then ${\Lk(\alpha, \beta^+) = 0}$. Now we have to determine the size of the kernel. We know that
|
|
||||||
${\dim H_1(\Sigma) = 2 n}$. When we glue $\Sigma$ (genus $n$) and $X$ (genus $g$) along a circle we get a surface of genus $n + g$. Therefore $\dim H_1 (Y) = 2 n + 2 g$. Then:
|
|
||||||
\[
|
|
||||||
\dim (\ker (H_1(Y) \longrightarrow H_1(\Omega)) = n + g.
|
|
||||||
\]
|
|
||||||
So we have $H_1(W)$ of dimension
|
|
||||||
$2 n + 2 g$
|
|
||||||
- the image of $H_1(Y)$
|
|
||||||
with a subspace
|
|
||||||
corresponding to the image of $H_1(\Sigma)$ with dimension $2 n$ and a subspace corresponding to the kernel
|
|
||||||
of $H_1(Y) \longrightarrow H_1(\Omega)$ of size $n + g$.
|
|
||||||
We consider minimal possible intersection of this subspaces that corresponds to the kernel of the composition $H_1(\Sigma) \longrightarrow H_1(Y) \longrightarrow H_1(\Omega)$. As the first map is injective, elements of the kernel of the composition have to be in the kernel of the second map.
|
|
||||||
So we can calculate:
|
|
||||||
\[
|
|
||||||
\dim \ker (H_1(\Sigma) \longrightarrow H_1(\Omega)) = 2 n + n + g -2 n - 2 g = n - g.
|
|
||||||
\]
|
|
||||||
\end{proof}
|
|
||||||
\begin{corollary}
|
|
||||||
If $t$ is not a root of
|
|
||||||
$\det (tS - S^T) $, then
|
|
||||||
$\vert \sigma_K(t) \vert \leq 2g$.
|
|
||||||
\end{corollary}
|
|
||||||
\begin{fact}
|
|
||||||
If there exists cobordism of genus $g$ between $K$ and $K^\prime$ like shown in Figure \ref{fig:proof_for_bound_disk}, then $K \# -K^\prime$ bounds a surface of genus $g$ in $B^4$.
|
|
||||||
\end{fact}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.7\textwidth}{!}{\input{images/genus_bordism_proof.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{If $K$ and $K^\prime$ are connected by a genus $g$ surface, then $K \# -K^\prime$ bounds a genus $g$ surface.}\label{fig:proof_for_bound_disk}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
Remarks:
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
\item
|
|
||||||
$3$ - genus is additive under taking connected sum, but $4$ - genus is not,
|
|
||||||
\item
|
|
||||||
for any knot $K$ we have $g_4(K) \leq g_3(K)$.
|
|
||||||
\end{enumerate}
|
|
||||||
\begin{example}
|
|
||||||
\begin{itemize}
|
|
||||||
\item Let $K = T(2, 3)$. $\sigma(K) = -2$, therefore $T(2, 3)$ isn't a slice knot.
|
|
||||||
\item Let $K$ be a trefoil and $K^\prime$ a mirror of a trefoil. $g_4(K^\prime) = 1$, but $g_4(K \# K^\prime) = 0$, so we see that $4$-genus isn't additive,
|
|
||||||
\item
|
|
||||||
the equality:
|
|
||||||
\[
|
|
||||||
g_4(T(p, q) ) = \frac{1}{2} (p - 1) (g -1)
|
|
||||||
\]
|
|
||||||
was conjecture in the '70 and proved by P. Kronheimer and T. Mrówka (1994).
|
|
||||||
% OZSVATH-SZABO AND RASMUSSEN
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
\begin{proposition}
|
|
||||||
$g_4 (T(p, q) \# -T(r, s))$ is in general hopelessly unknown.
|
|
||||||
\end{proposition}
|
|
||||||
\begin{proposition}
|
|
||||||
Supremum of the signature function of the knot is bounded almost everywhere by two times $4$ - genus:
|
|
||||||
\[
|
|
||||||
\ess \sup \vert \sigma_K(t) \vert \leq 2 g_4(K).
|
|
||||||
\]
|
|
||||||
\end{proposition}
|
|
||||||
\subsection{Topological genus}
|
|
||||||
\begin{definition}
|
|
||||||
A knot $K$ is called topologically slice if $K$ bounds a topological locally flat disc in $B^4$ (i.e. the disk has tubular neighbourhood).
|
|
||||||
\end{definition}
|
|
||||||
\begin{theorem}[Freedman, '82]
|
|
||||||
If $\Delta_K(t) = 1$, then $K$ is topologically slice (but not necessarily smoothly slice).
|
|
||||||
\end{theorem}
|
|
||||||
\begin{theorem}[Powell, 2015]
|
|
||||||
If $K$ is genus $g$
|
|
||||||
(topologically flat)
|
|
||||||
cobordant to $K^\prime$,
|
|
||||||
then
|
|
||||||
\[
|
|
||||||
\vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g
|
|
||||||
\]
|
|
||||||
if $g_4^{\mytop}(K) \geq \ess \sup \vert \sigma_K(t) \vert$.
|
|
||||||
\end{theorem}
|
|
||||||
\noindent
|
|
||||||
The proof for smooth category was based on following equality:
|
|
||||||
\[
|
|
||||||
\dim \ker (H_1 (Y) \longrightarrow H_1(\Omega)) = \frac{1}{2} \dim H_1(Y).
|
|
||||||
\]
|
|
||||||
For this equality we assumed that there exists a $3$ - dimensional manifold $\Omega$ (as shown in Figure \ref{fig:omega_in_B_4}) which was guaranteed by Pontryagin-Thom Construction.\\
|
|
||||||
Pontryagin-Thom Construction relays on taking $\Omega$ as preimage of regular value:
|
|
||||||
\[
|
|
||||||
H^1 (B^4 \setminus Y, \mathbb{Z}) = [B^4 \setminus Y, S^1],
|
|
||||||
\]
|
|
||||||
what relies on Sard's theorem, that the set of regular values has positive measure. But Sard's theorem doesn't work for topologically locally flat category. So there was a gap in the proof for topological locally flat category - the existence of $\Omega$.\\
|
|
||||||
\noindent
|
|
||||||
Remark: unless $p=2$ or $p = 3 \wedge q = 4$:
|
|
||||||
\[
|
|
||||||
g_4^{\mytop} (T(p, q)) < q_4(T(p, q)).
|
|
||||||
\]
|
|
||||||
% Wilczyński '93
|
|
||||||
%Feller 2014
|
|
||||||
%Baoder 2017
|
|
||||||
%Lemark
|
|
||||||
\\
|
|
||||||
\noindent
|
|
||||||
From the category of cobordant knots (or topologically cobordant knots) there exists a map to $\mathbb{Z}$ given by signature function. To any element $K$ we can associate a form
|
|
||||||
\[
|
|
||||||
(1 - t)S + (1 - \bar{t})S^T) \in W(\mathbb{Z}[t, t^{-1}]).
|
|
||||||
\] This association is not well define because id depends on the choice of Seifert form. However, different choices lead ever to congruent forms ($S \mapsto CSC^T$) or induced the change on the form by adding or subtracting a hyperbolic element.
|
|
||||||
\begin{definition}
|
|
||||||
The Witt group $W$ of $\mathbb{Z}[t, t^{-1}]$ elements are classes of non-degenerate
|
|
||||||
forms over $\mathbb{Z}[t, t^{-1}]$ under the equivalence relation $V \sim W$ if $V \oplus - W$ is metabolic.
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
If $S$ differs from $S^\prime$ by a row extension, then
|
|
||||||
$(1 - t) S + (1 - \bar{t}^{-1}) S^T$ is Witt equivalence to $(1 - t) S^\prime + (1 - t^{-1})S^T$.
|
|
||||||
\\
|
|
||||||
\noindent
|
|
||||||
A form is meant as hermitian with respect to this involution: $A^T = A: (a, b) = \bar{(a, b)}$.
|
|
||||||
\\
|
|
||||||
$
|
|
||||||
W(\mathbb{Z}_p) = \mathbb{Z}_2 \oplus
|
|
||||||
\mathbb{Z}_2$ or
|
|
||||||
$\mathbb{Z}_4$
|
|
||||||
\\
|
|
||||||
???????????????????????
|
|
||||||
\\
|
|
||||||
$\sum a_gt^j \longrightarrow \sum a_g t^{-1}$\\
|
|
||||||
\begin{theorem}[Levine '68]
|
|
||||||
\[
|
|
||||||
W(\mathbb{Z}[t^{\pm 1}])
|
|
||||||
\longrightarrow \mathbb{Z}_2^\infty \oplus
|
|
||||||
\mathbb{Z}_4^\infty \oplus
|
|
||||||
\mathbb{Z}
|
|
||||||
\]
|
|
||||||
\end{theorem}
|
|
147
lec_6.tex
147
lec_6.tex
@ -1,147 +0,0 @@
|
|||||||
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
|
|
||||||
$H_2$ is free (exercise).
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z})
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
Intersection form:
|
|
||||||
$H_2(X, \mathbb{Z}) \times
|
|
||||||
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ is symmetric and non singular.
|
|
||||||
\\
|
|
||||||
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
|
||||||
\\
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.5\textwidth}{!}{\input{images/intersection_form_A_B.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{$T_X A + T_X B = T_X X$
|
|
||||||
}\label{fig:torus_alpha_beta}
|
|
||||||
\end{figure}
|
|
||||||
???????????????????????
|
|
||||||
\begin{align*}
|
|
||||||
x \in A \cap B\\
|
|
||||||
T_XA \oplus T_X B = T_X X\\
|
|
||||||
\{\epsilon_1, \dots , \epsilon_n \} = A \cap C\\
|
|
||||||
A \cdot B = \sum^n_{i=1} \epsilon_i
|
|
||||||
\end{align*}
|
|
||||||
\begin{proposition}
|
|
||||||
Intersection form $A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes:
|
|
||||||
\[
|
|
||||||
[A], [B] \in H_2(X, \mathbb{Z}).
|
|
||||||
\]
|
|
||||||
\end{proposition}
|
|
||||||
\noindent
|
|
||||||
\\
|
|
||||||
|
|
||||||
If $M$ is an $m$ - dimensional close, connected and orientable manifold, then $H_m(M, \mathbb{Z})$ and the orientation if $M$ determined a cycle $[M] \in H_m(M, \mathbb{Z})$, called the fundamental cycle.
|
|
||||||
\begin{example}
|
|
||||||
If $\omega$ is an $m$ - form then:
|
|
||||||
\[
|
|
||||||
\int_M \omega = [\omega]([M]), \quad [\omega] \in H^m_\Omega(M), \ [M] \in H_m(M).
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end{example}
|
|
||||||
????????????????????????????????????????????????
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/torus_alpha_beta.pdf_tex}}
|
|
||||||
}
|
|
||||||
\caption{$\beta$ cross $3$ times the disk bounded by $\alpha$.
|
|
||||||
$T_X \alpha + T_X \beta = T_X \Sigma$
|
|
||||||
}\label{fig:torus_alpha_beta}
|
|
||||||
\end{figure}
|
|
||||||
\begin{example}
|
|
||||||
?????????????????????????\\
|
|
||||||
Let $X = S^2 \times S^2$.
|
|
||||||
We know that:
|
|
||||||
\begin{align*}
|
|
||||||
&H_2(S^2, \mathbb{Z}) =\mathbb{Z}\\
|
|
||||||
&H_1(S^2, \mathbb{Z}) = 0\\
|
|
||||||
&H_0(S^2, \mathbb{Z}) =\mathbb{Z}
|
|
||||||
\end{align*}
|
|
||||||
We can construct a long exact sequence for a pair:
|
|
||||||
\begin{align*}
|
|
||||||
&H_2(\partial X) \to H_2(X)
|
|
||||||
\to H_2(X, \partial X) \to \\
|
|
||||||
\to &H_1(\partial X) \to H_1(X) \to H_1(X, \partial X) \to
|
|
||||||
\end{align*}
|
|
||||||
????????????????????\\
|
|
||||||
Simple case $H_1(\partial X)$ \\????????????\\
|
|
||||||
is torsion.
|
|
||||||
$H_2(\partial X)$ is torsion free (by universal coefficient theorem),\\
|
|
||||||
???????????????????????\\
|
|
||||||
therefore it is $0$.
|
|
||||||
\\?????????????????????\\
|
|
||||||
We know that $b_1(X) = b_2(X)$. Therefore by Poincar\'e duality:
|
|
||||||
\begin{align*}
|
|
||||||
b_1(X) =
|
|
||||||
\dim_{\mathbb{Q}} H_1(X, \mathbb{Q})
|
|
||||||
\overset{\mathrm{PD}}{=}
|
|
||||||
\dim_{\mathbb{Q}} H^2(X, \mathbb{Q}) =
|
|
||||||
\dim_{\mathbb{Q}} H_2(X, \mathbb{Q}) = b_2(X)
|
|
||||||
\end{align*}
|
|
||||||
???????????????????????????????\\
|
|
||||||
$H_2(X, \mathbb{Z})$ is torsion free and
|
|
||||||
$H_2(X_1, \mathbb{Q}) = 0$, therefore $H_2(X, \mathbb{Z}) = 0$.
|
|
||||||
The map
|
|
||||||
$H_2(X, \mathbb{Z}) \longrightarrow H_2(X, \partial X, \mathbb{Z})$ is a monomorphism. \\??????????\\ (because it is an isomorphism after tensoring by $\mathbb{Q}$.
|
|
||||||
\\
|
|
||||||
Suppose $\alpha_1, \dots, \alpha_n$ is a basis of $H_2(X, \mathbb{Z})$.
|
|
||||||
Let $A$ be the intersection matrix in this basis. Then:
|
|
||||||
\begin{enumerate}
|
|
||||||
\item
|
|
||||||
A has integer coefficients,
|
|
||||||
\item
|
|
||||||
$\det A \neq 0$,
|
|
||||||
\item
|
|
||||||
$\vert \det A \vert =
|
|
||||||
\vert H_1 (\partial X, \mathbb{Z}) \vert =
|
|
||||||
\vert \coker H_2(X) \longrightarrow H_2(X, \partial X) \vert$.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{example}
|
|
||||||
???????????????????\\
|
|
||||||
If $CVC^T = W$, then for
|
|
||||||
$\binom{a}{b} = C^{-1} \binom{1}{0}$ we have $\binom{a}{b} $ \\
|
|
||||||
????????????????\\
|
|
||||||
$\omega \binom{a}{b} = \binom{1}{0} u \binom{1}{0} = 1$.
|
|
||||||
|
|
||||||
\begin{theorem}[Whitehead]
|
|
||||||
Any non-degenerate form
|
|
||||||
\[
|
|
||||||
A : \mathbb{Z}^4 \times \mathbb{Z}^4 \longrightarrow \mathbb{Z}
|
|
||||||
\]
|
|
||||||
can be realized as an intersection form of a simple connected $4$-dimensional manifold.
|
|
||||||
\end{theorem}
|
|
||||||
??????????????????????????
|
|
||||||
\begin{theorem}[Donaldson, 1982]
|
|
||||||
If $A$ is an even definite intersection form of a smooth $4$-manifold then it is diagonalizable over $\mathbb{Z}$.
|
|
||||||
\end{theorem}
|
|
||||||
??????????????????????????
|
|
||||||
??????????????????????????
|
|
||||||
??????????????????????????
|
|
||||||
??????????????????????????
|
|
||||||
\begin{definition}
|
|
||||||
even define
|
|
||||||
\end{definition}
|
|
||||||
Suppose $X$ us $4$ -manifold with a boundary such that $H_1(X) = 0$.
|
|
||||||
|
|
||||||
%$A \cdot B$ gives the pairing as ??
|
|
||||||
\begin{proof}
|
|
||||||
Obviously:
|
|
||||||
\[H_1(\partial X, \mathbb{Z}) = \coker H_2(X) \longrightarrow H_2(X, \partial X) = \quot{H_2(X, \partial X)}{H_2(X)}.
|
|
||||||
\]
|
|
||||||
Let $A$ be an $n \times n$ matrix. $A$ determines a \\
|
|
||||||
??????????????/\\
|
|
||||||
\begin{align*}
|
|
||||||
\mathbb{Z}^n \longrightarrow \Hom (\mathbb{Z}^n, \mathbb{Z})\\
|
|
||||||
a \mapsto (b \mapsto b^T A a)\\
|
|
||||||
\vert \coker A \vert = \vert \det A \vert
|
|
||||||
\end{align*}
|
|
||||||
all homomorphisms $b = (b_1, \dots, b_n) $???????\\?????????\\
|
|
||||||
|
|
||||||
\end{proof}
|
|
Loading…
Reference in New Issue
Block a user