1, 2, 4 lec
This commit is contained in:
parent
a27119a907
commit
58e57a644a
1039
images/torus_alpha_beta.svg
Normal file
1039
images/torus_alpha_beta.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 40 KiB |
@ -208,7 +208,7 @@ $\Delta_{11n34} \equiv 1$.
|
||||
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
||||
$S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2)$. So the complement of solid torus in $S^3$ is another solid torus.\\
|
||||
Analytically it can be describes as follow.
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that $max(\mid z_1 \mid, \mid z_2\mid) = 1
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that $\max(\mid z_1 \mid, \mid z_2\mid) = 1
|
||||
$. Define following sets: $S_1 = \{ (z_1, z_2) \in S^3: \mid z_1 \mid = 0\} \cong S^1 \times D^2 $ and $S_2 = \{(z_1, z_2) \in S ^3: \mid z_2 \mid = 1 \} \cong D^2 \times S^1$. The intersection $S_1 \cap S_2 = \{(z_1, z_2): \mid z_1 \mid = \mid z_2 \mid = 1 \} \cong S^1 \times S^1$
|
||||
\begin{figure}[h]
|
||||
\centering{
|
||||
|
@ -89,6 +89,8 @@
|
||||
\DeclareMathOperator{\Sl}{SL}
|
||||
\DeclareMathOperator{\Lk}{lk}
|
||||
\DeclareMathOperator{\pt}{\{pt\}}
|
||||
\DeclareMathOperator{\sign}{sign}
|
||||
|
||||
|
||||
\titleformat{\subsection}{%
|
||||
\normalfont \fontsize{12}{15}\bfseries}{%
|
||||
@ -141,9 +143,26 @@
|
||||
\end{figure}
|
||||
????????????
|
||||
\\
|
||||
$L$ is a link in $S^3$ \\
|
||||
\\?????????????????\\
|
||||
$L$ is an unknot if and only if $F(0) \neq 0$ (provided $S^3$ has a sufficiently small radius.
|
||||
\\
|
||||
\noindent
|
||||
Remark: if $S^3$ is large it can happen that $L$ is unlink, but $F^{-1} \cap B^4$ is "complicated". \\
|
||||
????????????\\
|
||||
\noindent
|
||||
\begin{example}
|
||||
Let $p$ and $q$ be coprime numbers such that $p<q$ and $p,q>1$.
|
||||
\\
|
||||
$F^{-1}(0) \cap S^3$ is a solid torus $T(p, q)$. \\
|
||||
$F(z, w) = z^p - w^q$\\
|
||||
Consider $S^3 = \{ (z, w) \in \mathbb{C} : \max( \mid z \mid, \mid w \mid ) = \varepsilon$.\\
|
||||
$F^{-1}(0) = \{t = t^q, w = t^p\}.$ For unknot $t = \max (\mid t\mid ^p, \mid t \mid^q) = \varepsilon$.
|
||||
\end{example}
|
||||
as a corollary we see that $K_T^{n, }$ ???? \\
|
||||
is not slice unless $m=0$.
|
||||
is not slice unless $m=0$. \\
|
||||
$t = re^{i \Theta}, \Theta \in [0, 2\pi], r = \varepsilon^{\frac{i}{p}}$ ?????????????????????????\\
|
||||
Suppose $L$ is a diagonal link. $L = F^{-1}(0) \cap S^3$.
|
||||
\begin{theorem}
|
||||
The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$
|
||||
\end{theorem}
|
||||
@ -178,6 +197,23 @@ A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarro
|
||||
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-25}}
|
||||
\begin{theorem}
|
||||
If $K$ is slice,
|
||||
then $\sigma_K(t)
|
||||
= \sign ( (1 - t)S +(1 - \bar{t})S^T)$
|
||||
is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\begin{lemma}
|
||||
If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$ and
|
||||
$
|
||||
V = \begin{pmatrix}
|
||||
0 & A \\
|
||||
\bar{A}^T & B
|
||||
\end{pmatrix}
|
||||
$
|
||||
\end{lemma}
|
||||
\end{proof}
|
||||
\begin{definition}
|
||||
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
||||
\end{definition}
|
||||
@ -198,7 +234,15 @@ H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
|
||||
\\
|
||||
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
||||
\begin{proposition}
|
||||
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes.
|
||||
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes $[A], [B] \in H_2(X, \mathbb{Z})$. \\
|
||||
\noindent
|
||||
If $M$ is an $m$ - dimensional close, connected and orientable manifold, then $H_m(M, \mathbb{Z})$ and the orientation if $M$ determined a cycle $[M] \in H_m(M, \mathbb{Z})$, called the fundamental cycle.
|
||||
\begin{example}
|
||||
If $\omega$ is an $m$ - form then:
|
||||
\[
|
||||
= [\omega]
|
||||
\]
|
||||
\end{example}
|
||||
%$A \cdot B$ gives the pairing as ??
|
||||
\end{proposition}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user