before deviding main file in many
This commit is contained in:
parent
20764e1b0e
commit
5d0894a257
@ -58,13 +58,13 @@
|
|||||||
\put(0.80142758,0.16860343){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08408535\unitlength}\raggedright $N_1$\end{minipage}}}%
|
\put(0.80142758,0.16860343){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08408535\unitlength}\raggedright $N_1$\end{minipage}}}%
|
||||||
\put(0.21025104,0.17098059){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08408535\unitlength}\raggedright $N_{-1}$\end{minipage}}}%
|
\put(0.21025104,0.17098059){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08408535\unitlength}\raggedright $N_{-1}$\end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{covering.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{covering.pdf}}%
|
||||||
\put(0.06101596,0.07198974){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.18711552\unitlength}\raggedright \shortstack{$ t^{-1}\alpha_1, t^{-1}\alpha_2, \cdots, t^{-1}\alpha_n$}\end{minipage}}}%
|
\put(0.06101596,0.07198974){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.18711552\unitlength}\raggedright \shortstack{$ t^{-1}\alpha_1, t^{-1}\alpha_2, \dots, t^{-1}\alpha_n$}\end{minipage}}}%
|
||||||
\put(0.56677018,0.35673072){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30643553\unitlength}\raggedright \shortstack{$ta_1, ta_2, \cdots, ta_n$}\end{minipage}}}%
|
\put(0.56677018,0.35673072){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30643553\unitlength}\raggedright \shortstack{$ta_1, ta_2, \dots, ta_n$}\end{minipage}}}%
|
||||||
\put(0.28338509,0.3553748){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21016596\unitlength}\raggedright $a_1, a_2, \cdots, a_n$\end{minipage}}}%
|
\put(0.28338509,0.3553748){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21016596\unitlength}\raggedright $a_1, a_2, \dots, a_n$\end{minipage}}}%
|
||||||
\put(0.27524963,0.02317699){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21016596\unitlength}\raggedright $a_j$\end{minipage}}}%
|
\put(0.27524963,0.02317699){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21016596\unitlength}\raggedright $a_j$\end{minipage}}}%
|
||||||
\put(0.41626421,0.02317699){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21016596\unitlength}\raggedright $a_i^+$\end{minipage}}}%
|
\put(0.41626421,0.02317699){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21016596\unitlength}\raggedright $a_i^+$\end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=3]{covering.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{covering.pdf}}%
|
||||||
\put(0.48541563,0.07605746){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.37829873\unitlength}\raggedright \shortstack{$\alpha_1, \alpha_2, \cdots, \alpha_n$}\end{minipage}}}%
|
\put(0.48541563,0.07605746){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.37829873\unitlength}\raggedright \shortstack{$\alpha_1, \alpha_2, \dots, \alpha_n$}\end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=4]{covering.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=4]{covering.pdf}}%
|
||||||
\end{picture}%
|
\end{picture}%
|
||||||
\endgroup%
|
\endgroup%
|
||||||
|
@ -106,12 +106,12 @@
|
|||||||
inkscape:pageopacity="0.0"
|
inkscape:pageopacity="0.0"
|
||||||
inkscape:pageshadow="2"
|
inkscape:pageshadow="2"
|
||||||
inkscape:zoom="0.24748737"
|
inkscape:zoom="0.24748737"
|
||||||
inkscape:cx="358.42434"
|
inkscape:cx="1328.1708"
|
||||||
inkscape:cy="556.20482"
|
inkscape:cy="556.20482"
|
||||||
inkscape:document-units="mm"
|
inkscape:document-units="mm"
|
||||||
inkscape:current-layer="layer1"
|
inkscape:current-layer="layer1"
|
||||||
showgrid="false"
|
showgrid="false"
|
||||||
inkscape:window-width="1395"
|
inkscape:window-width="1399"
|
||||||
inkscape:window-height="855"
|
inkscape:window-height="855"
|
||||||
inkscape:window-x="0"
|
inkscape:window-x="0"
|
||||||
inkscape:window-y="1"
|
inkscape:window-y="1"
|
||||||
@ -299,7 +299,7 @@
|
|||||||
height="157.58377"
|
height="157.58377"
|
||||||
width="557.60419"
|
width="557.60419"
|
||||||
id="rect3965" /></flowRegion><flowPara
|
id="rect3965" /></flowRegion><flowPara
|
||||||
id="flowPara743">\shortstack{$ t^{-1}\alpha_1, t^{-1}\alpha_2, \cdots, t^{-1}\alpha_n$}</flowPara></flowRoot> <flowRoot
|
id="flowPara96">\shortstack{$ t^{-1}\alpha_1, t^{-1}\alpha_2, \dots, t^{-1}\alpha_n$}</flowPara></flowRoot> <flowRoot
|
||||||
transform="matrix(0.26458333,0,0,0.26458333,-417.96916,479.28163)"
|
transform="matrix(0.26458333,0,0,0.26458333,-417.96916,479.28163)"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
||||||
id="flowRoot4052"
|
id="flowRoot4052"
|
||||||
@ -312,7 +312,7 @@
|
|||||||
height="92.934021"
|
height="92.934021"
|
||||||
width="913.17786"
|
width="913.17786"
|
||||||
id="rect4046" /></flowRegion><flowPara
|
id="rect4046" /></flowRegion><flowPara
|
||||||
id="flowPara3179">\shortstack{$ta_1, ta_2, \cdots, ta_n$}</flowPara></flowRoot> <flowRoot
|
id="flowPara92">\shortstack{$ta_1, ta_2, \dots, ta_n$}</flowPara></flowRoot> <flowRoot
|
||||||
xml:space="preserve"
|
xml:space="preserve"
|
||||||
id="flowRoot4060"
|
id="flowRoot4060"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
||||||
@ -325,7 +325,7 @@
|
|||||||
x="880.85303"
|
x="880.85303"
|
||||||
y="-305.92926"
|
y="-305.92926"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;" /></flowRegion><flowPara
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;" /></flowRegion><flowPara
|
||||||
id="flowPara3177">$a_1, a_2, \cdots, a_n$</flowPara></flowRoot> <flowRoot
|
id="flowPara90">$a_1, a_2, \dots, a_n$</flowPara></flowRoot> <flowRoot
|
||||||
transform="matrix(0.26458333,0,0,0.26458333,-647.82096,742.27484)"
|
transform="matrix(0.26458333,0,0,0.26458333,-647.82096,742.27484)"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
||||||
id="flowRoot14558"
|
id="flowRoot14558"
|
||||||
@ -369,7 +369,7 @@
|
|||||||
x="880.85303"
|
x="880.85303"
|
||||||
y="-305.92926"
|
y="-305.92926"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;" /></flowRegion><flowPara
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;" /></flowRegion><flowPara
|
||||||
id="flowPara745">\shortstack{$\alpha_1, \alpha_2, \cdots, \alpha_n$}</flowPara></flowRoot> <path
|
id="flowPara94">\shortstack{$\alpha_1, \alpha_2, \dots, \alpha_n$}</flowPara></flowRoot> <path
|
||||||
inkscape:connector-curvature="0"
|
inkscape:connector-curvature="0"
|
||||||
id="path747"
|
id="path747"
|
||||||
d="m -238.25768,609.94962 c 1.73012,-55.95834 1.73012,-55.95834 1.73012,-55.95834"
|
d="m -238.25768,609.94962 c 1.73012,-55.95834 1.73012,-55.95834 1.73012,-55.95834"
|
||||||
|
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 30 KiB |
@ -54,13 +54,13 @@
|
|||||||
\put(1.95087091,1.07582686){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.36774537\unitlength}\raggedright \end{minipage}}}%
|
\put(1.95087091,1.07582686){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.36774537\unitlength}\raggedright \end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{knot_complement.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{knot_complement.pdf}}%
|
||||||
\put(0.64135944,0.10337544){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.48923401\unitlength}\raggedright \shortstack{$\Lk(\alpha_j, a_i) = \delta_ij$}\end{minipage}}}%
|
\put(0.64135944,0.10337544){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.48923401\unitlength}\raggedright \shortstack{$\Lk(\alpha_j, a_i) = \delta_ij$}\end{minipage}}}%
|
||||||
\put(0.71869386,0.2853112){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30566784\unitlength}\raggedright \shortstack{$a_1, \cdots, a_n$ - generators of $H_1(S)$}\end{minipage}}}%
|
\put(0.71869386,0.2853112){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30566784\unitlength}\raggedright \shortstack{$a_1, \dots, a_n$ - generators of $H_1(S)$}\end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=3]{knot_complement.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{knot_complement.pdf}}%
|
||||||
\put(0.22299352,0.32899579){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.085914\unitlength}\raggedright $K$\end{minipage}}}%
|
\put(0.22299352,0.32899579){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.085914\unitlength}\raggedright $K$\end{minipage}}}%
|
||||||
\put(0.3165171,0.48250877){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10894069\unitlength}\raggedright $N$\end{minipage}}}%
|
\put(0.3165171,0.48250877){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10894069\unitlength}\raggedright $N$\end{minipage}}}%
|
||||||
\put(0.48505125,0.66476096){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.39877356\unitlength}\raggedright \shortstack{$\alpha_1, \cdots, \alpha_n$ - dual generators of $H_1(N)$}\end{minipage}}}%
|
\put(0.48505125,0.66476096){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.39877356\unitlength}\raggedright \shortstack{$\alpha_1, \dots, \alpha_n$ - dual generators of $H_1(N)$}\end{minipage}}}%
|
||||||
\put(0.789951,0.31913458){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10894069\unitlength}\raggedright $S$\end{minipage}}}%
|
\put(0.789951,0.31913458){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10894069\unitlength}\raggedright $S$\end{minipage}}}%
|
||||||
\put(0.30627525,0.40285468){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.1131259\unitlength}\raggedright \shortstack{$\Sigma \times (-1, 1)$}\end{minipage}}}%
|
\put(0.30627525,0.40285468){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.1131259\unitlength}\raggedright \shortstack{$\Sigma \times (-1, 1)$}\end{minipage}}}%
|
||||||
\put(0.31005963,0.22222407){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.0219589\unitlength}\raggedright \end{minipage}}}%
|
\put(0.79012528,-1.43343974){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08299426\unitlength}\raggedright \end{minipage}}}%
|
||||||
\end{picture}%
|
\end{picture}%
|
||||||
\endgroup%
|
\endgroup%
|
||||||
|
@ -146,12 +146,12 @@
|
|||||||
inkscape:pageopacity="0.0"
|
inkscape:pageopacity="0.0"
|
||||||
inkscape:pageshadow="2"
|
inkscape:pageshadow="2"
|
||||||
inkscape:zoom="0.35"
|
inkscape:zoom="0.35"
|
||||||
inkscape:cx="1114.2781"
|
inkscape:cx="1277.1352"
|
||||||
inkscape:cy="629.41682"
|
inkscape:cy="629.41682"
|
||||||
inkscape:document-units="mm"
|
inkscape:document-units="mm"
|
||||||
inkscape:current-layer="layer1"
|
inkscape:current-layer="layer1"
|
||||||
showgrid="false"
|
showgrid="false"
|
||||||
inkscape:window-width="1395"
|
inkscape:window-width="1399"
|
||||||
inkscape:window-height="855"
|
inkscape:window-height="855"
|
||||||
inkscape:window-x="0"
|
inkscape:window-x="0"
|
||||||
inkscape:window-y="1"
|
inkscape:window-y="1"
|
||||||
@ -246,7 +246,7 @@
|
|||||||
x="880.85303"
|
x="880.85303"
|
||||||
y="-305.92926"
|
y="-305.92926"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;" /></flowRegion><flowPara
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.0000005px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;" /></flowRegion><flowPara
|
||||||
id="flowPara5068">\shortstack{$a_1, \cdots, a_n$ - generators of $H_1(S)$}</flowPara></flowRoot> <g
|
id="flowPara276">\shortstack{$a_1, \dots, a_n$ - generators of $H_1(S)$}</flowPara></flowRoot> <g
|
||||||
id="g2094"
|
id="g2094"
|
||||||
transform="matrix(2.8054332,0,0,2.5536359,112.77234,-352.002)">
|
transform="matrix(2.8054332,0,0,2.5536359,112.77234,-352.002)">
|
||||||
<path
|
<path
|
||||||
@ -309,7 +309,7 @@
|
|||||||
height="202.03049"
|
height="202.03049"
|
||||||
width="917.21844"
|
width="917.21844"
|
||||||
id="rect2869" /></flowRegion><flowPara
|
id="rect2869" /></flowRegion><flowPara
|
||||||
id="flowPara5070">\shortstack{$\alpha_1, \cdots, \alpha_n$ - dual generators of $H_1(N)$}</flowPara></flowRoot> <flowRoot
|
id="flowPara274">\shortstack{$\alpha_1, \dots, \alpha_n$ - dual generators of $H_1(N)$}</flowPara></flowRoot> <flowRoot
|
||||||
transform="matrix(0.26458333,0,0,0.26458333,1062.6502,-19.267086)"
|
transform="matrix(0.26458333,0,0,0.26458333,1062.6502,-19.267086)"
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
id="flowRoot3855"
|
id="flowRoot3855"
|
||||||
@ -345,5 +345,5 @@
|
|||||||
height="54.548237"
|
height="54.548237"
|
||||||
x="713.16772"
|
x="713.16772"
|
||||||
y="1012.8789" /></flowRegion><flowPara
|
y="1012.8789" /></flowRegion><flowPara
|
||||||
id="flowPara5107"></flowPara></flowRoot> </g>
|
id="flowPara5107" /></flowRoot> </g>
|
||||||
</svg>
|
</svg>
|
||||||
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Binary file not shown.
@ -69,7 +69,8 @@
|
|||||||
|
|
||||||
\newcommand{\sdots}{\smash{\vdots}}
|
\newcommand{\sdots}{\smash{\vdots}}
|
||||||
|
|
||||||
|
\DeclareRobustCommand\longtwoheadrightarrow
|
||||||
|
{\relbar\joinrel\twoheadrightarrow}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -79,8 +80,11 @@
|
|||||||
|
|
||||||
\DeclareMathOperator{\Hom}{Hom}
|
\DeclareMathOperator{\Hom}{Hom}
|
||||||
\DeclareMathOperator{\rank}{rank}
|
\DeclareMathOperator{\rank}{rank}
|
||||||
\DeclareMathOperator{\Gl}{Gl}
|
\DeclareMathOperator{\ord}{ord}
|
||||||
|
\DeclareMathOperator{\Gl}{GL}
|
||||||
|
\DeclareMathOperator{\Sl}{SL}
|
||||||
\DeclareMathOperator{\Lk}{lk}
|
\DeclareMathOperator{\Lk}{lk}
|
||||||
|
\DeclareMathOperator{\pt}{\{pt\}}
|
||||||
|
|
||||||
|
|
||||||
\titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{%
|
\titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{%
|
||||||
@ -562,7 +566,7 @@ If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n
|
|||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
|
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
|
||||||
\text{ where } deg (a_n t^n + \cdots + a_1 t^l )= k - l.
|
\text{ where } deg (a_n t^n + \dots + a_1 t^l )= k - l.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
@ -622,12 +626,10 @@ Figure 8 knot is negative amphichiral.
|
|||||||
%
|
%
|
||||||
\section{Concordance group \hfill\DTMdate{2019-03-18}}
|
\section{Concordance group \hfill\DTMdate{2019-03-18}}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
|
||||||
A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
|
||||||
\end{definition}
|
|
||||||
\begin{definition}
|
|
||||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
|
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
|
||||||
${\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}}$.
|
\[
|
||||||
|
\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}.
|
||||||
|
\]
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
@ -637,6 +639,10 @@ ${\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}}$.
|
|||||||
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
|
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
|
||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
\begin{definition}
|
||||||
|
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||||
|
A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -681,9 +687,9 @@ Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
|||||||
\\
|
\\
|
||||||
\\
|
\\
|
||||||
\noindent
|
\noindent
|
||||||
Let $\Omega$ be an oriented \\
|
Let $\Omega$ be an oriented four-manifold. \\
|
||||||
???????\\
|
???????\\
|
||||||
Suppose $\Sigma$ is a Seifert matrix with an intersection form ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z}$ (i.e. there are cycles). \\
|
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$ (i.e. there are cycles). \\
|
||||||
??????????????\\
|
??????????????\\
|
||||||
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
||||||
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
||||||
@ -692,6 +698,7 @@ Then
|
|||||||
$\Lk(\alpha, \beta^+) = A \cdot B^+$
|
$\Lk(\alpha, \beta^+) = A \cdot B^+$
|
||||||
%
|
%
|
||||||
%
|
%
|
||||||
|
%ball_4_alpha_beta.pdf
|
||||||
\\
|
\\
|
||||||
\section{\hfill\DTMdate{2019-04-08}}
|
\section{\hfill\DTMdate{2019-04-08}}
|
||||||
%
|
%
|
||||||
@ -727,7 +734,7 @@ of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection
|
|||||||
\begin{align*}
|
\begin{align*}
|
||||||
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
|
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
|
||||||
\end{align*}
|
\end{align*}
|
||||||
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z}$.\\
|
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z})$.\\
|
||||||
That means - what is happening on boundary is a measure of degeneracy.
|
That means - what is happening on boundary is a measure of degeneracy.
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -750,16 +757,17 @@ H_1(Y, \mathbb{Z}) &
|
|||||||
\end{tikzcd}
|
\end{tikzcd}
|
||||||
$(a, b) \mapsto aA^{-1}b^T$
|
$(a, b) \mapsto aA^{-1}b^T$
|
||||||
\end{center}
|
\end{center}
|
||||||
|
?????????????????????????????????\\
|
||||||
|
\noindent
|
||||||
The intersection form on a four-manifold determines the linking on the boundary. \\
|
The intersection form on a four-manifold determines the linking on the boundary. \\
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then
|
Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then
|
||||||
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
|
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
|
||||||
$A = V \times V^T$, where $n = \rank V$.
|
$A = V \times V^T$, $n = \rank V$.
|
||||||
%\input{ink_diag}
|
%\input{ink_diag}
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\fontsize{40}{10}\selectfont
|
\fontsize{20}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}}
|
\resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}}
|
||||||
@ -777,20 +785,33 @@ Let $X$ be the four-manifold obtained via the double branched cover of $B^4$ bra
|
|||||||
\item The intersection form on $X$ is $V + V^T$.
|
\item The intersection form on $X$ is $V + V^T$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_cycle.pdf_tex}}
|
||||||
|
\caption{Cycle pushed in 4-ball.}
|
||||||
|
\label{fig:pushCycle}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
\noindent
|
\noindent
|
||||||
Let $Y = \Sigma(K)$. Then:
|
Let $Y = \Sigma(K)$. Then:
|
||||||
\begin{flalign*}
|
\begin{align*}
|
||||||
H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}&
|
H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}
|
||||||
\\
|
\\
|
||||||
(a,b) \mapsto a A^{-1} b^{T},\qquad
|
(a,b) &\mapsto a A^{-1} b^{T},\qquad
|
||||||
A = V + V^T&
|
A = V + V^T.
|
||||||
\\
|
\end{align*}
|
||||||
H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}&\\
|
????????????????????????????
|
||||||
A \longrightarrow BAC^T \quad \text{Smith normal form}&
|
\begin{align*}
|
||||||
\end{flalign*}
|
H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}\\
|
||||||
|
A \longrightarrow BAC^T \quad \text{Smith normal form}
|
||||||
|
\end{align*}
|
||||||
???????????????????????\\
|
???????????????????????\\
|
||||||
In general
|
In general
|
||||||
|
|
||||||
|
%no lecture at 29.04
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-05-20}}
|
\section{\hfill\DTMdate{2019-05-20}}
|
||||||
|
|
||||||
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
|
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
|
||||||
@ -1040,6 +1061,7 @@ $2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function
|
|||||||
\end{theorem}
|
\end{theorem}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\section{\hfill\DTMdate{2019-05-27}}
|
\section{\hfill\DTMdate{2019-05-27}}
|
||||||
|
|
||||||
....
|
....
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A square hermitian matrix $A$ of size $n$.
|
A square hermitian matrix $A$ of size $n$.
|
||||||
@ -1063,8 +1085,12 @@ Remove from $\Delta$ the two self intersecting and glue the Seifert surface for
|
|||||||
\begin{example}
|
\begin{example}
|
||||||
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
|
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
|
||||||
\end{example}
|
\end{example}
|
||||||
\subsection{Surgery}
|
%ref Structure in the classical knot concordance group
|
||||||
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \{pt\}]}$ and ${\beta=[\{pt\} \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
|
%Tim D. Cochran, Kent E. Orr, Peter Teichner
|
||||||
|
%Journal-ref: Comment. Math. Helv. 79 (2004) 105-123
|
||||||
|
\subsection*{Surgery}
|
||||||
|
%Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group
|
||||||
|
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
|
||||||
Consider an induced map on homology group:
|
Consider an induced map on homology group:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
|
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
|
||||||
@ -1075,9 +1101,30 @@ H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad
|
|||||||
r & s
|
r & s
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\vspace{10cm}
|
||||||
|
\begin{theorem}
|
||||||
|
Every such a matrix can be realized as a torus.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
\begin{enumerate}[label={(\Roman*)}]
|
||||||
|
\item
|
||||||
|
Geometric reason
|
||||||
|
\begin{align*}
|
||||||
|
\phi_t:
|
||||||
|
S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\
|
||||||
|
S^1 \times \pt &\longrightarrow \pt \times S^1 \\
|
||||||
|
\pt \times S^1 &\longrightarrow S^1 \times \pt \\
|
||||||
|
(x, y) & \mapsto (-y, x)
|
||||||
|
\end{align*}
|
||||||
|
\item
|
||||||
|
\end{enumerate}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\section{balagan}
|
\section{balagan}
|
||||||
|
|
||||||
@ -1128,4 +1175,87 @@ has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
|||||||
* & \dots & * & * & \dots & *
|
* & \dots & * & * & \dots & *
|
||||||
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\section{\hfill\DTMdate{2019-05-06}}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Let $X$ be a knot complement.
|
||||||
|
Then $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism
|
||||||
|
$\pi_1(X) \overset{\phi}\twoheadrightarrow \mathbb{Z}$.\\
|
||||||
|
The infinite cyclic cover of a knot complement $X$ is the cover associated with the epimorphism $\phi$.
|
||||||
|
\[
|
||||||
|
\widetilde{X} \longtwoheadrightarrow X
|
||||||
|
\]
|
||||||
|
\end{definition}
|
||||||
|
%Rolfsen, bachalor thesis of Kamila
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{10}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{1\textwidth}{!}{\input{images/covering.pdf_tex}}
|
||||||
|
\caption{Infinite cyclic cover of a knot complement.}
|
||||||
|
\label{fig:covering}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{10}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
|
||||||
|
\caption{A knot complement.}
|
||||||
|
\label{fig:complement}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
\noindent
|
||||||
|
Formal sums $\sum \phi_i(t) a_i + \sum \phi_j(t)\alpha_j$ \\
|
||||||
|
finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module.
|
||||||
|
\\
|
||||||
|
Let $v_{ij} = \Lk(a_i, a_j^+)$. Then
|
||||||
|
$V = \{ v_ij\}_{i, j = 1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+ = \sum_{j} v_{jk} \alpha_j$. Then
|
||||||
|
$\Lk(a_i, a_k^+)= \Lk(a_k^+, a_i) = \sum_j v_{jk} \Lk(\alpha_j, a_i) = v_{ik}$.
|
||||||
|
We also notice that $\Lk(a_i, a_j^-) = \Lk(a_i^+, a_j)= v_{ij}$ and
|
||||||
|
$a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$.
|
||||||
|
\\
|
||||||
|
\noindent
|
||||||
|
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot $K$.
|
||||||
|
\end{definition}
|
||||||
|
\noindent
|
||||||
|
Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider
|
||||||
|
\[
|
||||||
|
R^k \overset{A} \longrightarrow R^n \longtwoheadrightarrow M,
|
||||||
|
\]
|
||||||
|
where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M = \det A$.
|
||||||
|
\begin{theorem}
|
||||||
|
Order of $M$ doesn't depend on $A$.
|
||||||
|
\end{theorem}
|
||||||
|
\noindent
|
||||||
|
For knots the order of the Alexander module is the Alexander polynomial.
|
||||||
|
\begin{theorem}
|
||||||
|
\[
|
||||||
|
\forall x \in M: (\ord M) x = 0.
|
||||||
|
\]
|
||||||
|
\end{theorem}
|
||||||
|
\noindent
|
||||||
|
$M$ is well defined up to a unit in $R$.
|
||||||
|
\subsection*{Blanchfield pairing}
|
||||||
|
\section{balagan}
|
||||||
|
\begin{theorem}
|
||||||
|
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
|
||||||
|
\[
|
||||||
|
H_p = H_{p, 1} \oplus \dots \oplus H_{p, r_p}.
|
||||||
|
\]
|
||||||
|
$H_{p, i}$ is a cyclic module:
|
||||||
|
\[
|
||||||
|
H_{p, i} = \quot{\mathbb{Z}[t, t^{-1}]}{p^{k_i} \mathbb{Z} [t, t^{-1}]}
|
||||||
|
\]
|
||||||
|
\end{theorem}
|
||||||
|
\noindent
|
||||||
|
The proof is the same as over $\mathbb{Z}$.
|
||||||
|
\noindent
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user