a bit more text
This commit is contained in:
parent
5d0894a257
commit
6575000384
@ -1554,13 +1554,13 @@
|
|||||||
borderopacity="1.0"
|
borderopacity="1.0"
|
||||||
inkscape:pageopacity="0.0"
|
inkscape:pageopacity="0.0"
|
||||||
inkscape:pageshadow="2"
|
inkscape:pageshadow="2"
|
||||||
inkscape:zoom="0.65508914"
|
inkscape:zoom="1.3101783"
|
||||||
inkscape:cx="230.71894"
|
inkscape:cx="230.71894"
|
||||||
inkscape:cy="89.023504"
|
inkscape:cy="89.023504"
|
||||||
inkscape:document-units="px"
|
inkscape:document-units="px"
|
||||||
inkscape:current-layer="layer1"
|
inkscape:current-layer="layer1"
|
||||||
showgrid="false"
|
showgrid="false"
|
||||||
inkscape:window-width="1395"
|
inkscape:window-width="1399"
|
||||||
inkscape:window-height="855"
|
inkscape:window-height="855"
|
||||||
inkscape:window-x="0"
|
inkscape:window-x="0"
|
||||||
inkscape:window-y="1"
|
inkscape:window-y="1"
|
||||||
|
Before Width: | Height: | Size: 71 KiB After Width: | Height: | Size: 71 KiB |
BIN
images/ball_4_pushed_seifert.pdf
Normal file
BIN
images/ball_4_pushed_seifert.pdf
Normal file
Binary file not shown.
64
images/ball_4_pushed_seifert.pdf_tex
Normal file
64
images/ball_4_pushed_seifert.pdf_tex
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'ball_4_pushed_seifert.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{223.52694534bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.96340964)%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{ball_4_pushed_seifert.pdf}}%
|
||||||
|
\put(0.1505123,0.68779344){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{2.12585306\unitlength}\raggedright $B^4$ \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{ball_4_pushed_seifert.pdf}}%
|
||||||
|
\put(1.24884474,1.80672123){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.43004462\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.78383734,0.70000247){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.19056149\unitlength}\raggedright $\Sigma$\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{ball_4_pushed_seifert.pdf}}%
|
||||||
|
\put(1.34153286,1.59528042){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.43004462\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=4]{ball_4_pushed_seifert.pdf}}%
|
||||||
|
\put(0.47141503,0.31803536){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.74438909\unitlength}\raggedright $g(F) = g_4(K)$ \end{minipage}}}%
|
||||||
|
\put(0.49282511,0.21162196){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.29482674\unitlength}\raggedright $F \subset B^4$ \end{minipage}}}%
|
||||||
|
\put(0.82148101,0.91571792){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{2.12585306\unitlength}\raggedright $S^3$ \end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
1726
images/ball_4_pushed_seifert.svg
Normal file
1726
images/ball_4_pushed_seifert.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 69 KiB |
BIN
images/covering_pairing.pdf
Normal file
BIN
images/covering_pairing.pdf
Normal file
Binary file not shown.
62
images/covering_pairing.pdf_tex
Normal file
62
images/covering_pairing.pdf_tex
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'covering_pairing.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{1596.42853023bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.20935368)%
|
||||||
|
\put(0.3851587,1.14947311){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.3910443\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(2.50650104,1.61922211){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.47796274\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{covering_pairing.pdf}}%
|
||||||
|
\put(0.4196375,0.19505479){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11771949\unitlength}\raggedright $S_0$\end{minipage}}}%
|
||||||
|
\put(0.62654929,0.19885132){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11771949\unitlength}\raggedright $N_0$\end{minipage}}}%
|
||||||
|
\put(0.26242141,0.0435544){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.09201636\unitlength}\raggedright $c$\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{covering_pairing.pdf}}%
|
||||||
|
\put(0.21994868,0.19316056){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07402417\unitlength}\raggedright $N_{-1}$\end{minipage}}}%
|
||||||
|
\put(0.54698518,0.15093696){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.09201636\unitlength}\raggedright $d$\end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
208
images/covering_pairing.svg
Normal file
208
images/covering_pairing.svg
Normal file
@ -0,0 +1,208 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="563.18451mm"
|
||||||
|
height="117.90475mm"
|
||||||
|
viewBox="0 0 563.18453 117.90474"
|
||||||
|
version="1.1"
|
||||||
|
id="svg3201"
|
||||||
|
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||||
|
sodipodi:docname="covering_pairing.svg">
|
||||||
|
<defs
|
||||||
|
id="defs3195">
|
||||||
|
<marker
|
||||||
|
inkscape:isstock="true"
|
||||||
|
style="overflow:visible"
|
||||||
|
id="marker3455"
|
||||||
|
refX="0"
|
||||||
|
refY="0"
|
||||||
|
orient="auto"
|
||||||
|
inkscape:stockid="Arrow2Mend">
|
||||||
|
<path
|
||||||
|
transform="scale(-0.6)"
|
||||||
|
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||||
|
id="path3453"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
</marker>
|
||||||
|
</defs>
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="0.35"
|
||||||
|
inkscape:cx="1150.3839"
|
||||||
|
inkscape:cy="-82.965634"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
inkscape:window-width="1399"
|
||||||
|
inkscape:window-height="855"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="1"
|
||||||
|
inkscape:window-maximized="1"
|
||||||
|
showguides="false"
|
||||||
|
fit-margin-top="0"
|
||||||
|
fit-margin-left="0"
|
||||||
|
fit-margin-right="0"
|
||||||
|
fit-margin-bottom="0" />
|
||||||
|
<metadata
|
||||||
|
id="metadata3198">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(631.78479,-455.76191)">
|
||||||
|
<flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot4022"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,-621.20145,15.797619)"><flowRegion
|
||||||
|
id="flowRegion4024"><rect
|
||||||
|
id="rect4026"
|
||||||
|
width="832.36572"
|
||||||
|
height="113.13708"
|
||||||
|
x="779.83777"
|
||||||
|
y="-338.25415" /></flowRegion><flowPara
|
||||||
|
id="flowPara4028" /></flowRoot> <flowRoot
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot4036"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
id="flowRegion4032"><rect
|
||||||
|
y="-338.25415"
|
||||||
|
x="779.83777"
|
||||||
|
height="113.13708"
|
||||||
|
width="832.36572"
|
||||||
|
id="rect4030" /></flowRegion><flowPara
|
||||||
|
id="flowPara4034" /></flowRoot> <path
|
||||||
|
sodipodi:nodetypes="cccccccc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path3776"
|
||||||
|
d="m -406.51098,457.26191 h -112.6369 c 0.0187,16.62453 -2.50171,34.02418 -1.44006,50.62548 6.4177,2.37532 15.66471,-0.49121 22.31862,0.12056 84.89735,-68.68308 38.93013,91.05728 6.03166,15.56405 -7.91276,-2.62837 -29.25395,-2.94134 -26.91022,8.56876 v 40.0259 h 112.6369"
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:3;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot1388"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,-45.862911,498.22904)"><flowRegion
|
||||||
|
id="flowRegion1390"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||||
|
id="rect1392"
|
||||||
|
width="250.57436"
|
||||||
|
height="195.44632"
|
||||||
|
x="-1321.2795"
|
||||||
|
y="-130.06949"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||||
|
id="flowPara1396">$S_0$</flowPara></flowRoot> <flowRoot
|
||||||
|
transform="matrix(0.26458333,0,0,0.26458333,70.666604,496.09089)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot1404"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion1400"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="-130.06949"
|
||||||
|
x="-1321.2795"
|
||||||
|
height="195.44632"
|
||||||
|
width="250.57436"
|
||||||
|
id="rect1398" /></flowRegion><flowPara
|
||||||
|
id="flowPara1432">$N_0$</flowPara></flowRoot> <flowRoot
|
||||||
|
xml:space="preserve"
|
||||||
|
id="flowRoot1428"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.00013351px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
transform="matrix(0.20681362,0,0,0.41223041,-210.73451,602.75609)"><flowRegion
|
||||||
|
id="flowRegion1424"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.00013351px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start;fill:#ff0000"><rect
|
||||||
|
id="rect1422"
|
||||||
|
width="250.57436"
|
||||||
|
height="195.44632"
|
||||||
|
x="-1321.2795"
|
||||||
|
y="-130.06949"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.00013351px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start;fill:#ff0000" /></flowRegion><flowPara
|
||||||
|
id="flowPara2228">$c$</flowPara></flowRoot> <path
|
||||||
|
sodipodi:nodetypes="cccccccc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path1382"
|
||||||
|
d="m -68.60029,457.26191 h -112.6369 c 0.0187,16.62453 -2.50171,34.02418 -1.44006,50.62548 6.4177,2.37532 15.66471,-0.49121 22.31862,0.12056 84.89735,-68.68308 38.93013,91.05728 6.03166,15.56405 -7.91276,-2.62837 -29.25395,-2.94134 -26.91022,8.56876 v 40.0259 h 112.6369"
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:3;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:3, 3;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:3;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:3, 3;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
d="m -519.14789,457.26191 h -112.6369 m 0,114.90475 h 112.6369"
|
||||||
|
id="path1386"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="cccc" />
|
||||||
|
<path
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:3;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
d="m -181.23719,457.26191 h -112.6369 c 0.0187,16.62453 -2.50171,34.02418 -1.44006,50.62548 6.4177,2.37532 15.66471,-0.49121 22.31862,0.12056 84.89735,-68.68308 38.93013,91.05728 6.03166,15.56405 -7.91276,-2.62837 -29.25395,-2.94134 -26.91022,8.56876 v 40.0259 h 112.6369"
|
||||||
|
id="path3772"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="cccccccc" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="cccccccc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path3774"
|
||||||
|
d="m -293.87409,457.26191 h -112.6369 c 0.0187,16.62453 -2.50171,34.02418 -1.44006,50.62548 6.4177,2.37532 15.66471,-0.49121 22.31862,0.12056 84.89735,-68.68308 38.93013,91.05728 6.03166,15.56405 -7.91276,-2.62837 -29.25395,-2.94134 -26.91022,8.56876 v 40.0259 h 112.6369"
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:3;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#0f4ef8;stroke-width:3.52777767;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.97073173"
|
||||||
|
id="path2216"
|
||||||
|
cx="-313.73404"
|
||||||
|
cy="506.68176"
|
||||||
|
rx="118.13313"
|
||||||
|
ry="23.252449" />
|
||||||
|
<ellipse
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#f80f61;stroke-width:3.52777767;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.97073173"
|
||||||
|
id="path2218"
|
||||||
|
cx="-413.96011"
|
||||||
|
cy="554.2558"
|
||||||
|
rx="49.979401"
|
||||||
|
ry="10.423512" />
|
||||||
|
<flowRoot
|
||||||
|
transform="matrix(0.16637483,0,0,0.37196302,-288.08544,513.26266)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="flowRoot2226"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
id="flowRegion2222"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"
|
||||||
|
y="-130.06949"
|
||||||
|
x="-1321.2795"
|
||||||
|
height="195.44632"
|
||||||
|
width="250.57436"
|
||||||
|
id="rect2220" /></flowRegion><flowPara
|
||||||
|
id="flowPara2224">$N_{-1}$</flowPara></flowRoot> <flowRoot
|
||||||
|
transform="matrix(0.20681362,0,0,0.41223041,-50.472603,542.2799)"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.00013409px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr;text-anchor:start;fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;"
|
||||||
|
id="flowRoot2322"
|
||||||
|
xml:space="preserve"><flowRegion
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.00013409px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;fill:#0000ff;"
|
||||||
|
id="flowRegion2318"><rect
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.00013409px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr;text-anchor:start;fill:#0000ff;"
|
||||||
|
y="-130.06949"
|
||||||
|
x="-1321.2795"
|
||||||
|
height="195.44632"
|
||||||
|
width="250.57436"
|
||||||
|
id="rect2316" /></flowRegion><flowPara
|
||||||
|
id="flowPara2362">$d$</flowPara></flowRoot> </g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 15 KiB |
279
lec_1.tex
Normal file
279
lec_1.tex
Normal file
@ -0,0 +1,279 @@
|
|||||||
|
\begin{definition}
|
||||||
|
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
||||||
|
\begin{align*}
|
||||||
|
\varphi: S^1 \hookrightarrow S^3
|
||||||
|
\end{align*}
|
||||||
|
\end{definition}
|
||||||
|
\noindent
|
||||||
|
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
||||||
|
|
||||||
|
\begin{example}
|
||||||
|
\begin{itemize}
|
||||||
|
\item
|
||||||
|
Knots:
|
||||||
|
\includegraphics[width=0.08\textwidth]{unknot.png} (unknot),
|
||||||
|
\includegraphics[width=0.08\textwidth]{trefoil.png} (trefoil).
|
||||||
|
\item
|
||||||
|
Not knots:
|
||||||
|
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
|
||||||
|
(it is not an injection),
|
||||||
|
\includegraphics[width=0.08\textwidth]{not_smooth_knot.png}
|
||||||
|
(it is not smooth).
|
||||||
|
\end{itemize}
|
||||||
|
\end{example}
|
||||||
|
\begin{definition}
|
||||||
|
%\hfill\\
|
||||||
|
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
|
||||||
|
\begin{align*}
|
||||||
|
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
|
||||||
|
&\Phi(x, t) = \Phi_t(x)
|
||||||
|
\end{align*}
|
||||||
|
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
|
||||||
|
$\Phi_1 = \varphi_1$.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that:
|
||||||
|
\begin{align*}
|
||||||
|
&\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$}\\
|
||||||
|
&\psi_t: S^3 \hookrightarrow S^3,\\
|
||||||
|
& \psi_0 = id ,\\
|
||||||
|
& \psi_1(K_0) = K_1.
|
||||||
|
\end{align*}
|
||||||
|
\end{theorem}
|
||||||
|
\begin{definition}
|
||||||
|
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
||||||
|
\end{definition}
|
||||||
|
\begin{definition}
|
||||||
|
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
||||||
|
\end{definition}
|
||||||
|
\begin{example}
|
||||||
|
Links:
|
||||||
|
\begin{itemize}
|
||||||
|
\item
|
||||||
|
a trivial link with $3$ components:
|
||||||
|
\includegraphics[width=0.2\textwidth]{3unknots.png},
|
||||||
|
\item
|
||||||
|
a hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png},
|
||||||
|
\item
|
||||||
|
a Whitehead link:
|
||||||
|
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
||||||
|
\item
|
||||||
|
Borromean link:
|
||||||
|
\includegraphics[width=0.1\textwidth]{BorromeanRings.png}.
|
||||||
|
\end{itemize}
|
||||||
|
\end{example}
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
\begin{definition}
|
||||||
|
A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that:
|
||||||
|
\begin{enumerate}[label={(\arabic*)}]
|
||||||
|
\item
|
||||||
|
${D_{\pi}}_{\big|L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
||||||
|
\item the double points are not degenerate: \includegraphics[width=0.03\textwidth]{LinkDiagram2.png},
|
||||||
|
\item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{definition}
|
||||||
|
\noindent
|
||||||
|
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
|
||||||
|
Every link admits a link diagram.
|
||||||
|
\\
|
||||||
|
Let $D$ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).\\
|
||||||
|
We can distinguish two types of crossings: right-handed
|
||||||
|
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
||||||
|
|
||||||
|
\subsection{Reidemeister moves}
|
||||||
|
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
||||||
|
\begin{enumerate}[label=\Roman*]
|
||||||
|
\item\hfill\\
|
||||||
|
\includegraphics[width=0.6\textwidth]{rm1.png},
|
||||||
|
\item\hfill\\\includegraphics[width=0.6\textwidth]{rm2.png},
|
||||||
|
\item\hfill\\\includegraphics[width=0.4\textwidth]{rm3.png}.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{theorem} [Reidemeister, 1927 ]
|
||||||
|
Two diagrams of the same link can be
|
||||||
|
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
|
||||||
|
\end{theorem}
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%The number of Reidemeister Moves Needed for Unknotting
|
||||||
|
%Joel Hass, Jeffrey C. Lagarias
|
||||||
|
%(Submitted on 2 Jul 1998)
|
||||||
|
% Piotr Sumata, praca magisterska
|
||||||
|
% proof - transversality theorem (Thom)
|
||||||
|
|
||||||
|
%Singularities of Differentiable Maps
|
||||||
|
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
||||||
|
|
||||||
|
\subsection{Seifert surface}
|
||||||
|
\noindent
|
||||||
|
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
||||||
|
\begin{align*}
|
||||||
|
\PICorientpluscross \mapsto \PICorientLRsplit\\
|
||||||
|
\PICorientminuscross \mapsto \PICorientLRsplit
|
||||||
|
\end{align*}
|
||||||
|
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{15}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.8\textwidth}{!}{\input{images/seifert_alg.pdf_tex}}
|
||||||
|
\caption{Constructing a Seifert surface.}
|
||||||
|
\label{fig:SeifertAlg}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\noindent
|
||||||
|
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.6\textwidth]{seifert_connect.png}
|
||||||
|
\end{center}
|
||||||
|
\caption{Connecting two surfaces.}
|
||||||
|
\label{fig:SeifertConnect}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{theorem}[Seifert]
|
||||||
|
Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface.
|
||||||
|
\end{theorem}
|
||||||
|
%
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{12}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{1\textwidth}{!}{\input{images/torus_1_2_3.pdf_tex}}
|
||||||
|
\caption{Genus of an orientable surface.}
|
||||||
|
\label{fig:genera}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
%
|
||||||
|
%
|
||||||
|
\begin{definition}
|
||||||
|
The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{corollary}
|
||||||
|
A knot $K$ is trivial if and only $g_3(K) = 0$.
|
||||||
|
\end{corollary}
|
||||||
|
|
||||||
|
\noindent
|
||||||
|
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$.
|
||||||
|
On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$.
|
||||||
|
\end{definition}
|
||||||
|
\hfill
|
||||||
|
\\
|
||||||
|
Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$.
|
||||||
|
Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$:
|
||||||
|
\[
|
||||||
|
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
||||||
|
|
||||||
|
|
||||||
|
\begin{example}
|
||||||
|
\begin{itemize}
|
||||||
|
\item
|
||||||
|
Hopf link:
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}},
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
\item
|
||||||
|
$T(6, 2)$ link:
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}.
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
\end{itemize}
|
||||||
|
\end{example}
|
||||||
|
\begin{fact}
|
||||||
|
\[
|
||||||
|
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
|
||||||
|
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
|
||||||
|
\]
|
||||||
|
where $b_1$ is first Betti number of $\Sigma$.
|
||||||
|
\end{fact}
|
||||||
|
|
||||||
|
\subsection{Seifert matrix}
|
||||||
|
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
||||||
|
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
|
||||||
|
Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.8\textwidth}{!}{\input{images/seifert_matrix.pdf_tex}}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
|
||||||
|
\begin{enumerate}[label={(\arabic*)}]
|
||||||
|
|
||||||
|
\item
|
||||||
|
$V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients,
|
||||||
|
|
||||||
|
\item
|
||||||
|
|
||||||
|
$V \rightarrow
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{array}{c|c}
|
||||||
|
V &
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & 0 \\
|
||||||
|
\sdots & \sdots\\
|
||||||
|
\ast & 0
|
||||||
|
\end{matrix} \\
|
||||||
|
\hline
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & \dots & \ast\\
|
||||||
|
0 & \dots & 0
|
||||||
|
\end{matrix}
|
||||||
|
&
|
||||||
|
\begin{matrix}
|
||||||
|
0 & 0\\
|
||||||
|
1 & 0
|
||||||
|
\end{matrix}
|
||||||
|
\end{array}
|
||||||
|
\end{pmatrix} \quad$
|
||||||
|
or
|
||||||
|
$\quad
|
||||||
|
V \rightarrow
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{array}{c|c}
|
||||||
|
V &
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & 0 \\
|
||||||
|
\sdots & \sdots\\
|
||||||
|
\ast & 0
|
||||||
|
\end{matrix} \\
|
||||||
|
\hline
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & \dots & \ast\\
|
||||||
|
0 & \dots & 0
|
||||||
|
\end{matrix}
|
||||||
|
&
|
||||||
|
\begin{matrix}
|
||||||
|
0 & 1\\
|
||||||
|
0 & 0
|
||||||
|
\end{matrix}
|
||||||
|
\end{array}
|
||||||
|
\end{pmatrix}$
|
||||||
|
\item
|
||||||
|
inverse of (2)
|
||||||
|
|
||||||
|
\end{enumerate}
|
||||||
|
\end{theorem}
|
@ -71,7 +71,9 @@
|
|||||||
|
|
||||||
\DeclareRobustCommand\longtwoheadrightarrow
|
\DeclareRobustCommand\longtwoheadrightarrow
|
||||||
{\relbar\joinrel\twoheadrightarrow}
|
{\relbar\joinrel\twoheadrightarrow}
|
||||||
|
|
||||||
|
\newcommand{\longhookrightarrow}{\lhook\joinrel\longrightarrow}
|
||||||
|
\newcommand{\longhookleftarrow}{\longleftarrow\joinrel\rhook}
|
||||||
|
|
||||||
|
|
||||||
\AtBeginDocument{\renewcommand{\setminus}{%
|
\AtBeginDocument{\renewcommand{\setminus}{%
|
||||||
@ -108,285 +110,7 @@
|
|||||||
%\input{myNotes}
|
%\input{myNotes}
|
||||||
|
|
||||||
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
|
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
|
||||||
\begin{definition}
|
\input{lec_1.tex}
|
||||||
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
|
||||||
\begin{align*}
|
|
||||||
\varphi: S^1 \hookrightarrow S^3
|
|
||||||
\end{align*}
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
|
||||||
|
|
||||||
\begin{example}
|
|
||||||
\begin{itemize}
|
|
||||||
\item
|
|
||||||
Knots:
|
|
||||||
\includegraphics[width=0.08\textwidth]{unknot.png} (unknot),
|
|
||||||
\includegraphics[width=0.08\textwidth]{trefoil.png} (trefoil).
|
|
||||||
\item
|
|
||||||
Not knots:
|
|
||||||
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
|
|
||||||
(it is not an injection),
|
|
||||||
\includegraphics[width=0.08\textwidth]{not_smooth_knot.png}
|
|
||||||
(it is not smooth).
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
\begin{definition}
|
|
||||||
%\hfill\\
|
|
||||||
Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function
|
|
||||||
\begin{align*}
|
|
||||||
&\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\
|
|
||||||
&\Phi(x, t) = \Phi_t(x)
|
|
||||||
\end{align*}
|
|
||||||
such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and
|
|
||||||
$\Phi_1 = \varphi_1$.
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that:
|
|
||||||
\begin{align*}
|
|
||||||
&\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$}\\
|
|
||||||
&\psi_t: S^3 \hookrightarrow S^3,\\
|
|
||||||
& \psi_0 = id ,\\
|
|
||||||
& \psi_1(K_0) = K_1.
|
|
||||||
\end{align*}
|
|
||||||
\end{theorem}
|
|
||||||
\begin{definition}
|
|
||||||
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
|
||||||
\end{definition}
|
|
||||||
\begin{definition}
|
|
||||||
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
|
||||||
\end{definition}
|
|
||||||
\begin{example}
|
|
||||||
Links:
|
|
||||||
\begin{itemize}
|
|
||||||
\item
|
|
||||||
a trivial link with $3$ components:
|
|
||||||
\includegraphics[width=0.2\textwidth]{3unknots.png},
|
|
||||||
\item
|
|
||||||
a hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png},
|
|
||||||
\item
|
|
||||||
a Whitehead link:
|
|
||||||
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
|
||||||
\item
|
|
||||||
Borromean link:
|
|
||||||
\includegraphics[width=0.1\textwidth]{BorromeanRings.png}.
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{definition}
|
|
||||||
A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that:
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
\item
|
|
||||||
${D_{\pi}}_{\big|L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
|
||||||
\item the double points are not degenerate: \includegraphics[width=0.03\textwidth]{LinkDiagram2.png},
|
|
||||||
\item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{definition}
|
|
||||||
\noindent
|
|
||||||
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
|
|
||||||
Every link admits a link diagram.
|
|
||||||
\\
|
|
||||||
Let $D$ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).\\
|
|
||||||
We can distinguish two types of crossings: right-handed
|
|
||||||
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
|
||||||
|
|
||||||
\subsection{Reidemeister moves}
|
|
||||||
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
|
||||||
\begin{enumerate}[label=\Roman*]
|
|
||||||
\item\hfill\\
|
|
||||||
\includegraphics[width=0.6\textwidth]{rm1.png},
|
|
||||||
\item\hfill\\\includegraphics[width=0.6\textwidth]{rm2.png},
|
|
||||||
\item\hfill\\\includegraphics[width=0.4\textwidth]{rm3.png}.
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
\begin{theorem} [Reidemeister, 1927 ]
|
|
||||||
Two diagrams of the same link can be
|
|
||||||
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
|
|
||||||
\end{theorem}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%
|
|
||||||
%The number of Reidemeister Moves Needed for Unknotting
|
|
||||||
%Joel Hass, Jeffrey C. Lagarias
|
|
||||||
%(Submitted on 2 Jul 1998)
|
|
||||||
% Piotr Sumata, praca magisterska
|
|
||||||
% proof - transversality theorem (Thom)
|
|
||||||
|
|
||||||
%Singularities of Differentiable Maps
|
|
||||||
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
|
||||||
|
|
||||||
\subsection{Seifert surface}
|
|
||||||
\noindent
|
|
||||||
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
|
||||||
\begin{align*}
|
|
||||||
\PICorientpluscross \mapsto \PICorientLRsplit\\
|
|
||||||
\PICorientminuscross \mapsto \PICorientLRsplit
|
|
||||||
\end{align*}
|
|
||||||
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{15}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/seifert_alg.pdf_tex}}
|
|
||||||
\caption{Constructing a Seifert surface.}
|
|
||||||
\label{fig:SeifertAlg}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\noindent
|
|
||||||
Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$; now we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$.
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=0.6\textwidth]{seifert_connect.png}
|
|
||||||
\end{center}
|
|
||||||
\caption{Connecting two surfaces.}
|
|
||||||
\label{fig:SeifertConnect}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{theorem}[Seifert]
|
|
||||||
Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface.
|
|
||||||
\end{theorem}
|
|
||||||
%
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{12}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{1\textwidth}{!}{\input{images/torus_1_2_3.pdf_tex}}
|
|
||||||
\caption{Genus of an orientable surface.}
|
|
||||||
\label{fig:genera}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{definition}
|
|
||||||
The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$.
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\begin{corollary}
|
|
||||||
A knot $K$ is trivial if and only $g_3(K) = 0$.
|
|
||||||
\end{corollary}
|
|
||||||
|
|
||||||
\noindent
|
|
||||||
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$.
|
|
||||||
On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$.
|
|
||||||
\end{definition}
|
|
||||||
\hfill
|
|
||||||
\\
|
|
||||||
Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$.
|
|
||||||
Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$:
|
|
||||||
\[
|
|
||||||
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
|
||||||
|
|
||||||
|
|
||||||
\begin{example}
|
|
||||||
\begin{itemize}
|
|
||||||
\item
|
|
||||||
Hopf link:
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}},
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
\item
|
|
||||||
$T(6, 2)$ link:
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}.
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
\end{itemize}
|
|
||||||
\end{example}
|
|
||||||
\begin{fact}
|
|
||||||
\[
|
|
||||||
g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) =
|
|
||||||
\frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}),
|
|
||||||
\]
|
|
||||||
where $b_1$ is first Betti number of $\Sigma$.
|
|
||||||
\end{fact}
|
|
||||||
|
|
||||||
\subsection{Seifert matrix}
|
|
||||||
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
|
||||||
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
|
|
||||||
Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{20}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/seifert_matrix.pdf_tex}}
|
|
||||||
}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
|
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
|
||||||
|
|
||||||
\item
|
|
||||||
$V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients,
|
|
||||||
|
|
||||||
\item
|
|
||||||
|
|
||||||
$V \rightarrow
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
V &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & 0\\
|
|
||||||
1 & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix} \quad$
|
|
||||||
or
|
|
||||||
$\quad
|
|
||||||
V \rightarrow
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
|
||||||
V &
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & 0 \\
|
|
||||||
\sdots & \sdots\\
|
|
||||||
\ast & 0
|
|
||||||
\end{matrix} \\
|
|
||||||
\hline
|
|
||||||
\begin{matrix}
|
|
||||||
\ast & \dots & \ast\\
|
|
||||||
0 & \dots & 0
|
|
||||||
\end{matrix}
|
|
||||||
&
|
|
||||||
\begin{matrix}
|
|
||||||
0 & 1\\
|
|
||||||
0 & 0
|
|
||||||
\end{matrix}
|
|
||||||
\end{array}
|
|
||||||
\end{pmatrix}$
|
|
||||||
\item
|
|
||||||
inverse of (2)
|
|
||||||
|
|
||||||
\end{enumerate}
|
|
||||||
\end{theorem}
|
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-03-04}}
|
\section{\hfill\DTMdate{2019-03-04}}
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
@ -583,7 +307,7 @@ $\Delta_{11n34} \equiv 1$.
|
|||||||
%
|
%
|
||||||
\begin{lemma}[Dehn]
|
\begin{lemma}[Dehn]
|
||||||
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f_{\big|\partial D^2}$ is an embedding. Then there exists an embedding
|
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f_{\big|\partial D^2}$ is an embedding. Then there exists an embedding
|
||||||
${D^2 \overset{g}\hookrightarrow M}$ such that:
|
${D^2 \overset{g}\longhookrightarrow M}$ such that:
|
||||||
\[
|
\[
|
||||||
g_{\big| \partial D^2} = f_{\big| \partial D^2.}
|
g_{\big| \partial D^2} = f_{\big| \partial D^2.}
|
||||||
\]
|
\]
|
||||||
@ -641,7 +365,7 @@ Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||||
A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
Put differently: a knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
|
||||||
@ -657,6 +381,7 @@ Concordance is an equivalence relation.
|
|||||||
\begin{fact}\label{fakt:concordance_connected}
|
\begin{fact}\label{fakt:concordance_connected}
|
||||||
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
||||||
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\fontsize{10}{10}\selectfont
|
\fontsize{10}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
@ -685,21 +410,69 @@ Are there in concordance group torsion elements that are not $2$ torsion element
|
|||||||
\noindent
|
\noindent
|
||||||
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
||||||
\\
|
\\
|
||||||
\\
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_seifert.pdf_tex}}
|
||||||
|
}
|
||||||
|
\caption{$Y = F \cup \Sigma$ is a smooth close surface.}
|
||||||
|
\label{fig:closed_surface}
|
||||||
|
\end{figure}
|
||||||
\noindent
|
\noindent
|
||||||
Let $\Omega$ be an oriented four-manifold. \\
|
\\
|
||||||
???????\\
|
Pontryagin-Thom construction tells us that there exists a compact three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$.
|
||||||
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$ (i.e. there are cycles). \\
|
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$, i.e. there are cycles and
|
||||||
??????????????\\
|
|
||||||
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
||||||
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
||||||
$\partial B^+ = \beta^+$.
|
$\partial B^+ = \beta^+$.
|
||||||
Then
|
Then
|
||||||
$\Lk(\alpha, \beta^+) = A \cdot B^+$
|
$\Lk(\alpha, \beta^+) = A \cdot B^+$. But $A$ and $B$ are disjoint, so $\Lk(\alpha, \beta^+) = 0$. Then the Seifert form is zero.
|
||||||
%
|
|
||||||
%
|
|
||||||
%ball_4_alpha_beta.pdf
|
|
||||||
\\
|
\\
|
||||||
|
?????????????????
|
||||||
|
\\
|
||||||
|
Let us consider following maps:
|
||||||
|
\[
|
||||||
|
\Sigma \overset{\phi} \longhookrightarrow Y \overset{\psi} \longhookrightarrow \Omega.
|
||||||
|
\]
|
||||||
|
Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $\gamma \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$.
|
||||||
|
%
|
||||||
|
\\
|
||||||
|
????????????\\
|
||||||
|
%
|
||||||
|
%
|
||||||
|
\begin{proposition}
|
||||||
|
\[
|
||||||
|
\dim \ker (H_1(Y, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z})) = \frac{1}{2} b_1(Y),
|
||||||
|
\]
|
||||||
|
where $b_1$ is first Betti number.
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
\begin{align*}
|
||||||
|
& 0 \to H_3(\Omega) \to H_3(\Omega, Y) \to
|
||||||
|
\\
|
||||||
|
\to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega, Y) \to \\
|
||||||
|
\to & H_1(Y) \to \H_1(\Omega) \to H_1(\Omega, Y) \to \\
|
||||||
|
\to & H_0(Y) \to H_0(\Omega) \to 0
|
||||||
|
\end{align*}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{10}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
|
||||||
|
}
|
||||||
|
%\caption{Sketch for Fakt %%\label{fig:concordance_m}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section{\hfill\DTMdate{2019-03-25}}
|
||||||
|
\begin{definition}
|
||||||
|
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
||||||
|
\end{definition}
|
||||||
|
\noindent
|
||||||
|
Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not.
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-04-08}}
|
\section{\hfill\DTMdate{2019-04-08}}
|
||||||
%
|
%
|
||||||
%
|
%
|
||||||
@ -718,6 +491,55 @@ $A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes.
|
|||||||
%$A \cdot B$ gives the pairing as ??
|
%$A \cdot B$ gives the pairing as ??
|
||||||
|
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
By Poincar\'e duality we know that:
|
||||||
|
\begin{align*}
|
||||||
|
H_3(\Omega, Y) &\cong H^0(\Omega),\\
|
||||||
|
H_2(Y) &\cong H^0(Y),\\
|
||||||
|
H_2(\Omega) &\cong H^1(\Omega, Y),\\
|
||||||
|
H_2(\Omega, Y) &\cong H^1(\Omega).
|
||||||
|
\end{align*}
|
||||||
|
Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
|
||||||
|
= \dim_{\mathbb{Q}} V
|
||||||
|
$.\\
|
||||||
|
\noindent
|
||||||
|
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $K$
|
||||||
|
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\newcommand\coolover[2]%
|
||||||
|
{\mathrlap{\smash{\overbrace{\phantom{%
|
||||||
|
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
|
||||||
|
\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{%
|
||||||
|
\begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2}
|
||||||
|
\newcommand\coolleftbrace[2]{%
|
||||||
|
#1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.}
|
||||||
|
\newcommand\coolrightbrace[2]{%
|
||||||
|
\left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2}
|
||||||
|
\vphantom{% phantom stuff for correct box dimensions
|
||||||
|
\begin{matrix}
|
||||||
|
\overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\
|
||||||
|
\underbrace{pqr}_{\mbox{$S$}}
|
||||||
|
\end{matrix}}%
|
||||||
|
V =
|
||||||
|
\begin{matrix}% matrix for left braces
|
||||||
|
\coolleftbrace{g_{\Sigma}}{ \\ \\ \\}
|
||||||
|
\\ \\ \\ \\
|
||||||
|
\end{matrix}%
|
||||||
|
\begin{pmatrix}
|
||||||
|
\coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\
|
||||||
|
\sdots & & \sdots & \sdots & & \sdots \\
|
||||||
|
0 & \dots & 0 & * & \dots & *\\
|
||||||
|
* & \dots & * & * & \dots & *\\
|
||||||
|
\sdots & & \sdots & \sdots & & \sdots \\
|
||||||
|
* & \dots & * & * & \dots & *
|
||||||
|
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-03-11}}
|
\section{\hfill\DTMdate{2019-03-11}}
|
||||||
@ -1037,7 +859,7 @@ If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of
|
|||||||
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
|
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
??????????????????? 1 ?? epsilon?\\
|
??????????????????? 1 ?? epsilon?\\
|
||||||
\begin{theorem}(Matumoto, Conway-Borodzik-Politarczyk)
|
\begin{theorem}(Matumoto, Borodzik-Conway-Politarczyk)
|
||||||
Let $K$ be a knot,
|
Let $K$ be a knot,
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
&H_1(\widetilde{X}, \Lambda) \times
|
&H_1(\widetilde{X}, \Lambda) \times
|
||||||
@ -1071,7 +893,7 @@ field of fractions
|
|||||||
|
|
||||||
\section{\hfill\DTMdate{2019-06-03}}
|
\section{\hfill\DTMdate{2019-06-03}}
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4(K)$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
|
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
|
||||||
\[
|
\[
|
||||||
u(K) \geq g_4(K)
|
u(K) \geq g_4(K)
|
||||||
\]
|
\]
|
||||||
@ -1129,53 +951,7 @@ S^1 \times \pt &\longrightarrow \pt \times S^1 \\
|
|||||||
\section{balagan}
|
\section{balagan}
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
\begin{proof}
|
|
||||||
By Poincar\'e duality we know that:
|
|
||||||
\begin{align*}
|
|
||||||
H_3(\Omega, Y) &\cong H^0(\Omega),\\
|
|
||||||
H_2(Y) &\cong H^0(Y),\\
|
|
||||||
H_2(\Omega) &\cong H^1(\Omega, Y),\\
|
|
||||||
H_2(\Omega, Y) &\cong H^1(\Omega).
|
|
||||||
\end{align*}
|
|
||||||
Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
|
|
||||||
= \dim_{\mathbb{Q}} V
|
|
||||||
$.
|
|
||||||
\end{proof}
|
|
||||||
\noindent
|
\noindent
|
||||||
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $4$ - manifolds???\\
|
|
||||||
?????\\
|
|
||||||
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
|
||||||
|
|
||||||
\begin{align*}
|
|
||||||
\newcommand\coolover[2]%
|
|
||||||
{\mathrlap{\smash{\overbrace{\phantom{%
|
|
||||||
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
|
|
||||||
\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{%
|
|
||||||
\begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2}
|
|
||||||
\newcommand\coolleftbrace[2]{%
|
|
||||||
#1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.}
|
|
||||||
\newcommand\coolrightbrace[2]{%
|
|
||||||
\left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2}
|
|
||||||
\vphantom{% phantom stuff for correct box dimensions
|
|
||||||
\begin{matrix}
|
|
||||||
\overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\
|
|
||||||
\underbrace{pqr}_{\mbox{$S$}}
|
|
||||||
\end{matrix}}%
|
|
||||||
V =
|
|
||||||
\begin{matrix}% matrix for left braces
|
|
||||||
\coolleftbrace{g_{\Sigma}}{ \\ \\ \\}
|
|
||||||
\\ \\ \\ \\
|
|
||||||
\end{matrix}%
|
|
||||||
\begin{pmatrix}
|
|
||||||
\coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\
|
|
||||||
\sdots & & \sdots & \sdots & & \sdots \\
|
|
||||||
0 & \dots & 0 & * & \dots & *\\
|
|
||||||
* & \dots & * & * & \dots & *\\
|
|
||||||
\sdots & & \sdots & \sdots & & \sdots \\
|
|
||||||
* & \dots & * & * & \dots & *
|
|
||||||
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-05-06}}
|
\section{\hfill\DTMdate{2019-05-06}}
|
||||||
|
|
||||||
@ -1219,6 +995,38 @@ $a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$.
|
|||||||
\\
|
\\
|
||||||
\noindent
|
\noindent
|
||||||
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
|
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
|
||||||
|
\begin{definition}
|
||||||
|
The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$.
|
||||||
|
\end{definition}
|
||||||
|
%see Maciej page
|
||||||
|
\noindent
|
||||||
|
Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.
|
||||||
|
\\
|
||||||
|
?????????????????????
|
||||||
|
\\
|
||||||
|
\noindent
|
||||||
|
$\Sigma_?(K) \rightarrow S^3$ ?????\\
|
||||||
|
$H_1(\Sigma_?(K), \mathbb{Z}) = h$\\
|
||||||
|
$H \times H \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}$\\
|
||||||
|
...\\
|
||||||
|
|
||||||
|
Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\
|
||||||
|
Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c = 0 \in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$.
|
||||||
|
\[
|
||||||
|
\frac{1}{\Delta} \sum_{j\in \mathbb{Z} t^{-j}}(F \cdot t^j d) \in \quot{\mathbb{Q}[t, t^{-1}]}{\mathbb{Z}[t, t^{-1}]}
|
||||||
|
\]
|
||||||
|
\\
|
||||||
|
?????????????\\
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{10}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{1\textwidth}{!}{\input{images/covering_pairing.pdf_tex}}
|
||||||
|
\caption{$c, d \in H_1(\widetilde{X})$.}
|
||||||
|
\label{fig:covering_pairing}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot $K$.
|
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot $K$.
|
||||||
|
Loading…
Reference in New Issue
Block a user