some new text
This commit is contained in:
parent
aa683e2eab
commit
94e0077612
@ -157,7 +157,7 @@ a Whitehead link:
|
|||||||
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
\includegraphics[width=0.13\textwidth]{WhiteheadLink.png},
|
||||||
\item
|
\item
|
||||||
Borromean link:
|
Borromean link:
|
||||||
\includegraphics[width=0.1\textwidth]{BorromeanRings.png},
|
\includegraphics[width=0.1\textwidth]{BorromeanRings.png}.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{example}
|
\end{example}
|
||||||
%
|
%
|
||||||
@ -214,7 +214,7 @@ Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
|
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\
|
||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}[h]
|
||||||
\fontsize{15}{10}\selectfont
|
\fontsize{15}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
@ -276,21 +276,21 @@ Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can
|
|||||||
\begin{example}
|
\begin{example}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item
|
\item
|
||||||
Hopf link
|
Hopf link:
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\fontsize{20}{10}\selectfont
|
\fontsize{20}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}}
|
\resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}},
|
||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\item
|
\item
|
||||||
$T(6, 2)$ link
|
$T(6, 2)$ link:
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\fontsize{20}{10}\selectfont
|
\fontsize{20}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}
|
\resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}.
|
||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@ -301,7 +301,7 @@ Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a
|
|||||||
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
|
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
|
||||||
Let $lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
|
Let $lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
|
||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}[h]
|
||||||
\fontsize{20}{10}\selectfont
|
\fontsize{20}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
@ -521,7 +521,7 @@ If $K$ is a trefoil then we can take
|
|||||||
$S = \begin{pmatrix}
|
$S = \begin{pmatrix}
|
||||||
-1 & -1 \\
|
-1 & -1 \\
|
||||||
0 & -1
|
0 & -1
|
||||||
\end{pmatrix}$.
|
\end{pmatrix}$. Then
|
||||||
\[
|
\[
|
||||||
\Delta_K(t) = \det
|
\Delta_K(t) = \det
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
@ -529,7 +529,7 @@ $S = \begin{pmatrix}
|
|||||||
1 & -t +1
|
1 & -t +1
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
= (t -1)^2 + t = t^2 - t +1 \ne 1
|
= (t -1)^2 + t = t^2 - t +1 \ne 1
|
||||||
\Rightarrow \text{trefoil is not trivial}
|
\Rightarrow \text{trefoil is not trivial.}
|
||||||
\]
|
\]
|
||||||
\end{example}
|
\end{example}
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
@ -554,6 +554,7 @@ If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb
|
|||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{example}
|
\begin{example}
|
||||||
There are not trivial knots with Alexander polynomial equal $1$, for example:
|
There are not trivial knots with Alexander polynomial equal $1$, for example:
|
||||||
|
\includegraphics[width=0.3\textwidth]{11n34.png}
|
||||||
$\Delta_{11n34} \equiv 1$.
|
$\Delta_{11n34} \equiv 1$.
|
||||||
\end{example}
|
\end{example}
|
||||||
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
||||||
@ -582,6 +583,17 @@ A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk
|
|||||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in $S^3 \times [0, 1]$ such that
|
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in $S^3 \times [0, 1]$ such that
|
||||||
$\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\} $.
|
$\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\} $.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
Let $m(K)$ denote a mirror image of a knot $K$.
|
Let $m(K)$ denote a mirror image of a knot $K$.
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
@ -666,7 +678,7 @@ Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Se
|
|||||||
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
|
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
|
||||||
$A = V \times V^T$, where $n = \rank V$.
|
$A = V \times V^T$, where $n = \rank V$.
|
||||||
%\input{ink_diag}
|
%\input{ink_diag}
|
||||||
\begin{figure}[H]
|
\begin{figure}[h]
|
||||||
\fontsize{40}{10}\selectfont
|
\fontsize{40}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
@ -727,11 +739,11 @@ Then the intersection form can be degenerated in the sense that:
|
|||||||
\begin{align*}
|
\begin{align*}
|
||||||
H_2(M, \mathbb{Z})
|
H_2(M, \mathbb{Z})
|
||||||
\times H_2(M, \mathbb{Z})
|
\times H_2(M, \mathbb{Z})
|
||||||
\longrightarrow
|
&\longrightarrow
|
||||||
\mathbb{Z}\\
|
\mathbb{Z} \quad&
|
||||||
H_2(M, \mathbb{Z}) \longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
|
H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
|
||||||
(a, b) \mapsto \mathbb{Z}\\
|
(a, b) &\mapsto \mathbb{Z} \quad&
|
||||||
a \mapsto (a, \_) H_2(M, \mathbb{Z})
|
a &\mapsto (a, \_) H_2(M, \mathbb{Z})
|
||||||
\end{align*}
|
\end{align*}
|
||||||
has coker precisely $H_1(Y, \mathbb{Z})$.
|
has coker precisely $H_1(Y, \mathbb{Z})$.
|
||||||
\\???????????????\\
|
\\???????????????\\
|
||||||
@ -764,23 +776,27 @@ H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\ma
|
|||||||
\end{fact}
|
\end{fact}
|
||||||
\noindent
|
\noindent
|
||||||
Note that $\mathbb{Z}$ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition.
|
Note that $\mathbb{Z}$ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition.
|
||||||
\begin{flalign*}
|
\begin{align*}
|
||||||
\xi \in S^1 \setminus \{ \pm 1\}
|
&\xi \in S^1 \setminus \{ \pm 1\}
|
||||||
\quad
|
\quad
|
||||||
p_{\xi} =
|
p_{\xi} =
|
||||||
(t - \xi)(1 - \xi^{-1}) t^{-1}&\\
|
(t - \xi)(t - \xi^{-1}) t^{-1}
|
||||||
\xi \in \mathbb{R} \setminus \{ \pm 1\}
|
\\
|
||||||
|
&\xi \in \mathbb{R} \setminus \{ \pm 1\}
|
||||||
\quad
|
\quad
|
||||||
q_{\xi} = (t - \xi)(1 - \xi^{-1}) t^{-1}&\\
|
q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1}
|
||||||
|
\\
|
||||||
|
&
|
||||||
\xi \notin \mathbb{R} \cup S^1 \quad
|
\xi \notin \mathbb{R} \cup S^1 \quad
|
||||||
q_{\xi} = (t - \xi)(t - \overbar{\xi})(1 - \xi^{-1})(1 - \overbar{\xi}^{-1}) t^{-2}&\\
|
q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1})(t - \overbar{\xi}^{-1}) t^{-2}\\
|
||||||
\Lambda = \mathbb{R}[t, t^{-1}]&\\
|
&
|
||||||
\text{Then: } H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
|
\Lambda = \mathbb{R}[t, t^{-1}]\\
|
||||||
|
&\text{Then: } H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
|
||||||
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
|
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
|
||||||
\oplus
|
\oplus
|
||||||
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
|
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
|
||||||
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
|
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
|
||||||
\end{flalign*}
|
\end{align*}
|
||||||
We can make this composition orthogonal with respect to the Blanchfield paring.
|
We can make this composition orthogonal with respect to the Blanchfield paring.
|
||||||
\vspace{0.5cm}\\
|
\vspace{0.5cm}\\
|
||||||
Historical remark:
|
Historical remark:
|
||||||
|
Loading…
Reference in New Issue
Block a user