diff --git a/lec_4.tex b/lec_4.tex index 60a9465..7d0771d 100644 --- a/lec_4.tex +++ b/lec_4.tex @@ -47,8 +47,8 @@ $K \# m(K) \sim $ the unknot. \end{fact} \noindent \begin{theorem} -Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot. -$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathscr{C}$ is $-\{K\} = \{mK\}$. +Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $[0]$ denote class of all knots concordant to a trivial knot. +$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $[0]$ and the inverse element of an element $[K]\in \mathscr{C}$ is $-[K] = [mK]$. \end{theorem} \begin{fact} The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot). @@ -70,7 +70,7 @@ Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice. \end{figure} \noindent \\ -Pontryagin-Thom construction tells us that there exists a compact three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$. +Pontryagin-Thom construction tells us that there exists a compact oriented three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$. Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$, i.e. there are cycles and $\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$. Let $B^+$ be a push off of $B$ in the positive normal direction such that @@ -78,16 +78,13 @@ $\partial B^+ = \beta^+$. Then $\Lk(\alpha, \beta^+) = A \cdot B^+$. But $A$ and $B$ are disjoint, so $\Lk(\alpha, \beta^+) = 0$. Then the Seifert form is zero. \\ -????????????????? -\\ +\noindent Let us consider following maps: \[ \Sigma \overset{\phi} \longhookrightarrow Y \overset{\psi} \longhookrightarrow \Omega. \] Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $\gamma \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$. % -\\ -????????????\\ % % \begin{proposition} @@ -97,20 +94,76 @@ Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $ where $b_1$ is first Betti number. \end{proposition} \begin{proof} +Consider the following long exact sequence for a pair $(\Omega, Y)$: \begin{align*} & 0 \to H_3(\Omega) \to H_3(\Omega, Y) \to \\ \to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega, Y) \to \\ -\to & H_1(Y) \to \H_1(\Omega) \to H_1(\Omega, Y) \to \\ +\to & H_1(Y) \to H_1(\Omega) \to H_1(\Omega, Y) \to \\ \to & H_0(Y) \to H_0(\Omega) \to 0 \end{align*} -\end{proof} +By Poincar\'e duality we know that: +\begin{align*} +H_3(\Omega, Y) &\cong H^0(\Omega),\\ +H_2(Y) &\cong H^0(Y),\\ +H_2(\Omega) &\cong H^1(\Omega, Y),\\ +H_1(\Omega, Y) &\cong H^1(\Omega). +\end{align*} +Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V} += \dim_{\mathbb{Q}} V +$.\\ +\noindent +Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $K$ +has a subspace of dimension $g_{\Sigma}$ on which it is zero: + +\begin{align*} +\newcommand\coolover[2]% + {\mathrlap{\smash{\overbrace{\phantom{% + \begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2} +\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{% + \begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2} +\newcommand\coolleftbrace[2]{% + #1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.} +\newcommand\coolrightbrace[2]{% + \left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2} + \vphantom{% phantom stuff for correct box dimensions + \begin{matrix} + \overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\ + \underbrace{pqr}_{\mbox{$S$}} + \end{matrix}}% + V = +\begin{matrix}% matrix for left braces + \coolleftbrace{g_{\Sigma}}{ \\ \\ \\} + \\ \\ \\ \\ +\end{matrix}% +\begin{pmatrix} + \coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\ + \sdots & & \sdots & \sdots & & \sdots \\ + 0 & \dots & 0 & * & \dots & *\\ + * & \dots & * & * & \dots & *\\ + \sdots & & \sdots & \sdots & & \sdots \\ + * & \dots & * & * & \dots & * + \end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}} +\end{align*} +\end{proof} +\noindent +Let $V = +\begin{pmatrix} + 0 & A\\ + B & C +\end{pmatrix}$ +\begin{align*} +\det (tV - V^T) = \det (tA - B^T) - \det(tB - A^T) +\end{align*} +\begin{corollary} +If $K$ is a slice knot then there exists $f \in \mathbb{Z}[t^{\pm 1}]$ such that $\Delta_K(t) = f(t) \cdot f(t^{-1})$. +\end{corollary} +\begin{example} +Figure eight knot is not slice. +\end{example} +\begin{fact} +If $K$ is slice, then the signature $\sigma(K) \equiv 0$. +\end{fact} + + -\begin{figure}[h] -\fontsize{10}{10}\selectfont -\centering{ -\def\svgwidth{\linewidth} -\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}} -} -%\caption{Sketch for Fact %%\label{fig:concordance_m} -\end{figure} diff --git a/lectures_on_knot_theory.tex b/lectures_on_knot_theory.tex index 038146d..ac1ba7b 100644 --- a/lectures_on_knot_theory.tex +++ b/lectures_on_knot_theory.tex @@ -200,59 +200,7 @@ Let $A$ and $B$ be closed, oriented surfaces in $X$. \begin{proposition} $A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes. %$A \cdot B$ gives the pairing as ?? - -\end{proposition} -\begin{proof} - -By Poincar\'e duality we know that: -\begin{align*} -H_3(\Omega, Y) &\cong H^0(\Omega),\\ -H_2(Y) &\cong H^0(Y),\\ -H_2(\Omega) &\cong H^1(\Omega, Y),\\ -H_2(\Omega, Y) &\cong H^1(\Omega). -\end{align*} -Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V} -= \dim_{\mathbb{Q}} V -$.\\ -\noindent -Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $K$ -has a subspace of dimension $g_{\Sigma}$ on which it is zero: - -\begin{align*} -\newcommand\coolover[2]% - {\mathrlap{\smash{\overbrace{\phantom{% - \begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2} -\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{% - \begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2} -\newcommand\coolleftbrace[2]{% - #1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.} -\newcommand\coolrightbrace[2]{% - \left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2} - \vphantom{% phantom stuff for correct box dimensions - \begin{matrix} - \overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\ - \underbrace{pqr}_{\mbox{$S$}} - \end{matrix}}% - V = -\begin{matrix}% matrix for left braces - \coolleftbrace{g_{\Sigma}}{ \\ \\ \\} - \\ \\ \\ \\ -\end{matrix}% -\begin{pmatrix} - \coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\ - \sdots & & \sdots & \sdots & & \sdots \\ - 0 & \dots & 0 & * & \dots & *\\ - * & \dots & * & * & \dots & *\\ - \sdots & & \sdots & \sdots & & \sdots \\ - * & \dots & * & * & \dots & * - \end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}} -\end{align*} - - -\end{proof} - - - + \end{proposition} \section{\hfill\DTMdate{2019-04-15}} @@ -776,5 +724,15 @@ The proof is the same as over $\mathbb{Z}$. %Lectures on the Topology of 3-Manifolds %An Introduction to the Casson Invariant + +\begin{figure}[h] +\fontsize{10}{10}\selectfont +\centering{ +\def\svgwidth{\linewidth} +\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}} +} +%\caption{Sketch for Fact %%\label{fig:concordance_m} +\end{figure} + \end{document}