diff --git a/lectures_on_knot_theory.tex b/lectures_on_knot_theory.tex index 385117f..075b2e9 100644 --- a/lectures_on_knot_theory.tex +++ b/lectures_on_knot_theory.tex @@ -582,6 +582,7 @@ A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in $S^3 \times [0, 1]$ such that $\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\} $. \end{definition} +\noindent Let $m(K)$ denote a mirror image of a knot $K$. \begin{fact} For any $K$, $K \# m(K)$ is slice. @@ -700,9 +701,7 @@ In general \section{\hfill\DTMdate{2019-05-20}} -Let $M$ be compact, oriented, connected four-dimensional manifold.\\ -??????????????????????????????????\\ -If $H_1(M, \mathbb{Z}) = 0$ then there exists a +Let $M$ be compact, oriented, connected four-dimensional manifold. If $H_1(M, \mathbb{Z}) = 0$ then there exists a bilinear form - the intersection form on $M$: \begin{center} @@ -723,13 +722,13 @@ H_2(M, \mathbb{Z})& \end{center} \noindent Let us consider a specific case: $M$ has a boundary $Y = \partial M$. -\\??????\\ -Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite. \\ -Then: $H_2(M, \mathbb{Z}) +Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite. +Then the intersection form can be degenerated in the sense that: + \begin{align*} +H_2(M, \mathbb{Z}) \times H_2(M, \mathbb{Z}) \longrightarrow -\mathbb{Z}$ can be degenerate in the sense that -\begin{align*} +\mathbb{Z}\\ H_2(M, \mathbb{Z}) \longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\ (a, b) \mapsto \mathbb{Z}\\ a \mapsto (a, \_) H_2(M, \mathbb{Z}) @@ -863,30 +862,24 @@ Reduce to the case when $h$ has a constant sign on $S^1$. Prove in the case, when $h$ has a constant sign on $S^1$. \end{enumerate} \begin{lemma} -If $p$ is a symmetric polynomial such that$p(\eta)\geq 0$ for all $\eta \in S^1$, then $p$ can be written as a product $p = g \overbar{g}$ for some polynomial $g$. +If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$. \end{lemma} \begin{proof}[Sketch of proof] -Induction over $\deg p$.\\ -Let $\zeta \notin S^1$ be a root of $p$, $p \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that +Induction over $\deg P$.\\ +Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by +$(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$. +Therefore: \begin{align*} -(t - \zeta) \mid p,\\ -(t - \overbar{\zeta}) \mid p,\\ -(t^{-1} - \zeta) \mid p,\\ -(t^{-1} - \overbar{\zeta}) \mid p,\\ +&P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\ +&P^{\prime} = g^{\prime}\overbar{g} \end{align*} -therefore: +We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and +$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid P$ (at least - otherwise it would change sign). Therefore: \begin{align*} -p^{\prime} = \frac{p}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\ -p^{\prime} = g^{\prime}\overbar{g}\\ -\text{we set } g = g^{\prime}(t - \zeta)(t - \overbar{\zeta}\\ -p = g \overbar{g} -\end{align*} -Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid p$ (at least - otherwise it would change sign). -\begin{align*} -p^{\prime} &= \frac{p}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\ -g &= (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}\\ -(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k} \quad \text{ isometry whenever $g$ is coprime with $p$.} +&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\ +&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.} \end{align*} +The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$. \end{proof} \begin{lemma}\label{L:coprime polynomials} Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist