From b2a61ac84351b4d7fd7627cea9d4a4530ca77b44 Mon Sep 17 00:00:00 2001 From: Maria Marchwicka Date: Tue, 28 May 2019 00:13:20 +0200 Subject: [PATCH] lecture from 20.05 --- images/3unknots.png | Bin 0 -> 3941 bytes images/BorromeanRings.png | Bin 0 -> 12351 bytes images/Hopf.png | Bin 0 -> 5040 bytes images/LinkDiagram1.png | Bin 0 -> 1192 bytes images/LinkDiagram2.png | Bin 0 -> 967 bytes images/LinkDiagram3.png | Bin 0 -> 1208 bytes images/WhiteheadLink.png | Bin 0 -> 11899 bytes images/unknot_and_trefoil.png | Bin 0 -> 6746 bytes lectures_on_knot_theory.tex | 419 +++++++++++++++++++++++++++++++--- 9 files changed, 389 insertions(+), 30 deletions(-) create mode 100644 images/3unknots.png create mode 100644 images/BorromeanRings.png create mode 100644 images/Hopf.png create mode 100644 images/LinkDiagram1.png create mode 100644 images/LinkDiagram2.png create mode 100644 images/LinkDiagram3.png create mode 100644 images/WhiteheadLink.png create mode 100644 images/unknot_and_trefoil.png diff --git a/images/3unknots.png b/images/3unknots.png new file mode 100644 index 0000000000000000000000000000000000000000..aaf791ce1a06324c554dd10d93da9b46cd441808 GIT binary patch literal 3941 zcmV-r51R0aP)N?Ai%4!_6OZZ=X{8@& zmB8#7fX%mo{3yuvdh-?%WEQI5hM~Lk<{ble1^E_mDuUFC>810x6)l#`0lPVo%Mr}@ z6>+t~ghuWTs9pi|F8)kN;5Cq=V7&xl4^;1iQw}Unn;8P*e6T(Sax1U}cq5B{I|=ex z*nAcU-wF{qQ=G*dzd$fVGkp|Pu$Tm1A;k++c#MPU?xG3&tXdT%H=CfeR`d7vRa}3N| zK{lyCe%LbrqrU<3wI<~q&{s}KD5|Bdk<5Fhb4Sm+V-Zl0;K)Q_QQJwnVAECMmfa>fc3^Nj($)`$1uS+m$i)bbhFbmz+gZyl>|WYsj5o0r!T3tIYtiRP zxF-dd0md@Pq<{qpWdrtAVLSzUEyx2KCA>?*DFzHl=oi#|q0I#U<9fJIhy20Feh1_Y z_TvGzY4ikaJ`Y4CdU;0g1>sI)6Y4|ZQYxLi;DG?r4W*sS}4JkBI^;oxvK;GYyxKI z{9qn&o}n6A5g9H}2GNH@D<@3sH6pjd?`r8DXN=%gmMQ3ntrta@Rb>8`o?H*#T&pZ2 z$y*(6nZu_kGiSdHrHDLLN7-VSQrAeHtYc2D+_*^SEh;A199$cLh}uxiGYQ**=jaXc zS6tXiKIY4{-3OY@niA|&Oq$Lbuqn*IpA?hwdjC14 z-Pxtk*O;Qi%sbCCt1ZhM&vcN2t3jz2p+XMG1Ep-@-q8a|ueZCntZXaUK*F~$w8sR1gk##fP5jKcu;9&4 zYnCYiRDW;(HFTI{cCV7+hZ^!q7ALbGkO*LcA9(L8y~}H{2^RwDj9Cf3()yk5!K_S^ zQ;^-jo`G5q8h|WUdFEKRl4Hg(%k~=pGqBVBY`uL5scUFBY_@aBgo|-bELOg&Q=a7T zKE-^>eZqG(DXw;|x~ieA!@vYUvdI9j;2QTc5y2Mys4?*7(OVplPAZF?UEo||X`EGT z>$ARduowbB@`?s|l1Y_+03djS0d@BMbX+op%-`Bee$-vJ(Z3p=ES!lD`4-HvBq~g`&HMo4qn>v_2_NDpk2MIC zOcr<&00G7{JmkJV2)~O>s1Olw$h~fHtIzSyoe6Zdp%cSt5Uh2+ZqIU#cOAC#ia6QC zhDqXa?-wb7u;Mk>8xmeEEGvDPs zjQ9KdTSF17cm8&Ng>f+4Zz=`P#wtn3xK6_iTJYKHkupOOCNW5-@euRAZZ~Y}1gnKZ zR-KHjO^g|?BCR8V?r%b%wWiebZ`kD(#`XSa`P)xsc~i>W-NR)0uzTs5WCH#gi!c!( zn_jNOTFu_}lZLPr9>Z_L;Px#3CJj0VclV3z_6PNF`wWX#%m=ql&AvS>c@l!Njw1i* z^L~3;TCzruI0eb$6=-A>{fm~F$X_yEg68& z;Bh9Y2*(qU@IS+qVmAO*msc2fuchQ(Tz5*{a3pytBz&N~v;EnOb5>+5T*=}jT@HNw zTGHF~XJMu|OMOPKhna`Z#V1v`6tTUrw;l|~a!;Rj@hq8ek2*Z;KMQ65Semn!N!hu~ z9|*t zw%c2;he^Sy@kkUtmZSI*TJ*zp;!kVWhffPbrg#yzJAW561dz379aA0d>9QG;UW7M( z`6k%&r|!%ky7-eBiv2#<&+{S$dJ1 z)o5bzNfsWe2h8^FGz*RsjN-~^JBjp_ibL|D;MqBDh-{x^-Q;bk=EN^wJ5Oam7oU^^ zDsY~^JEb#@u{P+FCJ7kM?=6nNrjg~-wt(w~2w;MrE}yuA$Z!Gff~>*Cb)WfjL(~~4 z&(^|%rHbrPqIO*wj&xCz-CBF5L;42kc`{B*tT`r6j1-u39QZ9hNg7@dqIj8sr7hkLr^y4$Py@ zbA)pg-3@n<@9^{eS#D6`+kmd9c_xX4wqS-2%45ko-@W~(R1(S0?g+tWdVTG^+>=d6T24jW~&(#v#K zV5KZiDAAu=JFZ{UX2!%v3C7&YGK1$RJ0P-GQM^QlUaukh?D2|Q(F^a6q}Uw)@Dy)S zM?l^P80Xi@xTSSxFh^jQp16?lFatZ4v5UU=jetF~6hbi7P}nn2Us*=3S@|A~xHD$C zc7s^OK#oV0Ua|f0yS~A4v`82(YB$9iaieyb60#SDQ$|p-7b?A>-UZ558Rs*e5*7%) zn;ZaTb*lfKSApHo+!gmiGTB5bmJy-sQKRLCk(iFJ}@ zm>kb3``g@#QVe~ndkXfdJ&nG#jrJ))xuI97CS&hg=32;98WedB(tikcNK5vEc^{;U z%APj&Wr4XnQRdf5NCqg7Zm2ktJcr2>talveN(#JOXLi+kwFykLj5S+wq%sXpT5u-V zwwZvb4G|qlb;eT};5boxj}$z<4kZFsBFNnV)^?DMe!3)xS?q|;&%nY#5HCUHf6((* zIA$GKZ+9FAZo!UWvzDg6kDP|okKm*m!hMzynPeLa{1w>P%(2CBRV7{*`_SdVPt7fnzF{=*!fWQ#th@-2HFat@d6Qs0wspdb7P6kUcQd_%zZ zB=o34S}@xW8wE)Y5oewY^5-Bqae8s2Z?y9eg{8Fh#guz^5gwX%tMr+&Xxtfc-(rh@QQJ zaNNz?;eH2TE8xLzVAyGJlCe#I`F8fP`&jI{?$7u22F7%u6s0xVH};6!4;&W(Ka7aES$P z6R<%p(F#lZl|2qN`H^##RdnO4!njE2oq<=YjzR~@te%E=Jbgw}5gF+;c3;oN!xZl?3pAe0aZ-<+PMe00000NkvXXu0mjfJ85ou literal 0 HcmV?d00001 diff --git a/images/BorromeanRings.png b/images/BorromeanRings.png new file mode 100644 index 0000000000000000000000000000000000000000..36e252a7043a6d2f1986070db24b69d71292a6e2 GIT binary patch literal 12351 zcmV-FFu>1=P)DWG7(QcR^$o*+dX< z!39xJ;VHO3l?S3CK2bqLQ64HF4;~7ltb!l}S%k0?2oN9(OeWLaGd)#3lVzsszCWrb zOy67GGd*41Rn>ie-`8JKr)xRWRj2N~=bn3xppHnvd;wd!FdLXBp;N%-KqoL;!ek3t zBuoODfhoYW+~Mnh^|}9V5HKiVoq%2my+H5C{{^g(urdoPJ7Kkejn)2J4TeI9uob8T zY1nEAb{4P`up_W@?%&oB)Nz4s32zE`O~O(OUI3QPgttP_$57|Q-smMXBw<$z4w7&n z-e*qOdX1B`@Lm8<0FSxwSO;{4tyH9uG|*2gl2#gNCd+2pK7xKGv7U_#(1wj58-k{h zC6-3t3tLJ!QNjm+{ehOSbqbJG0v-kaF${OihP7cUR5c`NLh=?CUAVkW18*T&Lkm3t{WXy#Hb$R-?FF0&oCNGiFuJeD zGpa72N5Xmw`XyxX9*`j*10Z3V@W%M$#{Nyx`^*q9gLghN1JG*(7gz$^?!q0N@N9tR z4wr74Xks5Edmz{o$)3P=g#S$1z{|i=;AJFBae0~PtVAF~)-4di{(*~P!>o;P2JmrU z(F9Mk26zd0S;A5QuL5ftU`;!ugVJ>b2@Sn4Prw2fwgMJNSRlOrzZ~dVBH&>G{}!;c5{6w4Hq6=piv;W>V3CBqfn9*c5>As5a6=ZZigfEQv2Zv5!Kp|- zOniJT<3lir9GB|I_C z4X~H+TEG2)Lm0oG;&vDQD^kXvVK$PpkbDlTM6WAQV7D(peP0t3>>n(i^;N>8LSHU{AClm(Mzy;;Uozc z1KW<{kOXj#gg?!KdxSUct|=rm^uhiv91ENP>@fBr-08ykp&EahJ+L?zIE9@5W1Or3 zo1j` z7=177;=<*?`^MPyX#u~q;l{1riH56N5}v_-%!1EL@8K&%O2F4=z#l65f^_Ia@_pbl zjOCLMJcZ>sf@V8hsZ` zn*tX}I2ULru-irfw*bGK>CIOgeCUCrEw~78`qCExi-9l9^ky%D#o=TmR{|YH_UcCR zTi|-ySRS|zQK6eAn%SQ$2O&5Z*q8A;pe1lO7C)nz`zxnp2qfT;BrH#YEb!TwfUEmp zLD;&+1qmVvCnVwdBEReUBz#E*^@6vVNk2DXBMW{Ume9{9kg=MQ3l7N?Y!1Ta5^P>B z`dj6Ho}{0n!dAa*Buq-eB}vE@c`$EY3)_UPYh00FrQnPtB#ZpUx7#qQ?2BcXgH3mV zhxTP`K7kZ>%4Rj>o z+9bFIe($%FaA?^V%5a$S@TPD$6IoKML47jFd>p=u&GIn}Ka0&(^fM!DmB&pFyf*=f z0uSH1Bz#*2KSyd{%%Rk93eGG0BK>?X_i*0LU|DnV^@&7~;c#qj$HpyU{A;l}E^Kwj zBmtjG!iEA5-Q!7bnX93KB%mb;*B9z#rQo+^y>ulF*c>0A%JoZ{J+Zm7h~c~R^J`>D z(W%uV3EwR6pt(u7T*fQjI`*XCy|882IvR3#>lMC$O}c>LchS#2VXKJ*k$|fUJyfPU zA3nM6{@)7Rqm>ERK5QKgqv&NzZ2nom@H3=2B2@j7aCw1o^V zGK50Tx##EAzc#R?xrX5A=R%*>zAv!x{cA8K2`~Fh&HXfx3m76nZi%j6%*FX(>t;}p zSlHazMk=AEH+dVn-hGDei^ciRg_8ivro7Fq5#!4M2yuiH3|Rrx$n=J zNXrOfbDNJ-?+X(;R|@t^>X}$xF&^F8Ck0#N0(CUUUf8-B6ugvN8x_M}J)vwyDR{`| zrhljcY8xU*5)MtmuuqHs@vwC>C^%f<)7qa@(m9f_w~xU;W~OiIi==;Ilyo1wD{S2i zqwt)1YHR;MN#{ty&FanWg##<3vLT}65~SSj)7t+_7Or1l2m_lxX{ojx7LMM5Qp@0n;7U#6)fU`DL8Bjr&!fD>1^g^9 zuLyy0p=p|=4UrYup@$vL7cwRtA_h)Mcm{XpHDRK>fS%B zNH@*8X+}Q-4#BH~KI$C&u_DSDDnpiYQLEPoeih^;T+eI2S`nX=g7*h`9m9lqMA@EA z+A9*P8NJk7d3T6_mg*TQkJrkdqe$PTncITAOebUnd_|Q@xWcTwi~!PSYF%&uC`O-) zv^!3bJvIk=Dyg3#K!*7)Qd$Y2 zyp&g4XIGss(@cA;`WUu(@ywEUQ#4_9!oWGLIM(IaZOCfu$xb! z#MjD7q%cm>(4K^pnq(yf^DBLALlL}^SfihZEL}|7)Y9jS`@N%&5wKY3VV8y|BKa|@ zV^(rOCC2h9)1gnm4;1la3E!;rwGBmCrfgfZuwc_elJY8=bSgVNRB^Qo<>PP&Qmbk9 z9If0`Efr?KmB1=Rd`1H1RZ9nhg4Cu|A3ty(%56dHL;lUZyr+UV6HceNS8Y}L;2PlV zd{sEBTkk;{s=-vcfZ;ru7-jTQH~QxVl^+ip%0My&!S@xZ%Wybr+_!@b0xng=(;9t( zcnnp*3&+imv2mGWftT`Fz^=+6PghAb!$fg78$D&!4Yc!22-*NJ2)_Z=D&n)#&>n_9 z22#p)y9LnWJve#s_R<)AwCQ6y@NGr95tj=?&}I|!VV%^g9yMp-(_!dipf7JrFx>)} z1UsmEHlR)H8=^!5-vVYT(kqy*WK9VH>8-#^E3(g*ziq5a(qM9;Lv+Fdv@X=5-sb4lI z+nZUr>AJimm{QM(Vu%90YzdsENMEOg>%&lIEM~&rfHk9K0!|J|o%%#-MnA<$!W@+4 zn3f(xZHNMmd>cJ0%?}Yu)Kx?fUNqP(ig@p}ypxXEP+=_X*=VqY|MExE(npO!=A+Ja z3s%v>4WZ~WP9*PSVI9FT1yHMptK~`@vQWDAIrKn%L%0m_P4x2MKMX3vZKasyl|joZ zhh@PBLsF;y5Q_gtGHgkhrS3OL52G}Mi9-j1GxB7T)ii5!;gLf?Rw%_6BC}*#r zdh4(aV<2e&&QzpHn)zKA>P!R)PpC2hdxxP*-Jy2xb1l7U^pT0`G5`+8ps%F62BD-k zjxe*lxR1OTZ~?o7q)vU|YDPa~2_;prG)5mS1ZOJ}7nk3JqRRxy@iC^gy<1>KOdVa3HFY2yP5VnewsVKvgE;@i26$L-LK@^~Us;vXiM@7dDck zG>H}8lHn5GqlhxI;Q3ILsVBOahQ3Hk@7_z((no=OqnA8K6I~(cQWm-Kyjo}PaWjmp z0&PCA5W;KeOBx)q|z(kVL|5Vdzqa%=VEbEy!Pp_R2fP}JCiTZ0 zP2#dfGkR%^K3pWbE0Q;&l+V5tQm_+xdUeyvR}0stT5y(xC6pAorlk*^t(5K9dbv&4 zK4gT}y`aKR{n zi?^gTgLj|TfLsGs7r3v3cm-GnEj?vu?MnwZ61GUf?!a-vt8DX^ps!;nirT$5MjtsE zwCE|Il;oFky)xTp;VrlrS#+_p_q`;4KPLh5DG*CQJ_+u_FkLNiTr#;_i%;b~7fL<) z(@;qybCk(nWAv3p3ScUT@h2s*n4)!lU9Bupu@kJDVDGsD#8JRe-pioD1?O3i4}iD} znjZ#Hb_AVCxLQRd77lasWWtN;w9qq}m^4OZ(|-&&PeA79B^@Swq9gre1(87|%d~(! zKzt2&05WUAz8>u3L7Lf}I50pbYM`C;jJ{DouhKSjND#*1G7&O|13v&c5@53k2EPx} z##b@OBCWNB(l?Z{0OC<_zcotG09Gr=7Q8P07I@>lEm8C67iR{D(}2?;lLF`e!1@C; zJz2sz4Ao?qEqs>Jy#>%HL3QFZ+TH_V3SNvGXCcT-K_0DqF$J<;2fjS6(`4xLF~t(H z#x}nIyfF5D(t`AsFll>WCvf)!u@|sCV~@LM0$&98i(oGSeg!QzfiTHeqJ-sBuCBq$ z$6yKF=o#{l*)?d`Gr{>4@H`0B;79l@^o_5z?j(brJ5H@j5CFo3_7%{4FEn2Ut)GCF zg)lS&-K^XvuUcaT{D_J2ak_=BQ?P{#8BZf;DU^)Y&>&+i%XkOJ(}K`aBl zK*2>y;!dy*hW7NhPc4)*QbH?qQ9)+(L+kC(`W0x|9U8U-&IazK_>${R5EsMbmEN>r zkBRjN8&_M|xSkd-oZAvU#VRe+(ig$m88Q!fEu3EbGsk`4?hDPwLer9xPA^%mNVb`X zmccM>HMIN+THX(03lQf4&lEXeI&c9@eI1;$L7F0!VIi2ONY)@cKb?h7fd)J>mUMHkUp#GT=ppYycMA(0WIHw;dcQS;$J95fcPYc7hvE6RaLLP$#1wvt>Lh| zZO!Pnth`Q9M^1&z?{Z^zKgZOoz@gCkDevJA2!ZYcu%c@8BebWX<$EBu1+K(D|J_`0 z?*!*ckbb=-Lr|n?M}20c($ZsEdWHV&AoDoL(|x{_z;9t-4`_KX@JqLnWYqX8$6kS7 zry?}3g_d(b>2${zqt>z6d1Vw|-9KCp_X2MAKUaf*U)2_(;a2&`S2G*1K z*H2#!;z(~iJExN6ztl*#gOPDcVA}jVG#>==O#G`L?+y)5g7dyAD^?%4K0Z0MrO*20 zEF03(9Mu8#r$OG0@A?CAC%C&o^FJ!ChUA}$q=Nw#Rs6bvA|$k44ULO{2Yq&!3H%*0 zAFHljb%5n#^bPu$ewojqJ62Ass38S77lHUapw2C4LH;K+9S3dI2~D`Y+C>k{*+>)lekTc564oU_j{5w#dRm5w6yRLu<$TaS z$xynW5`j$@HgeSG_NwakVo!VuY_(X1VJxJN(QhnZ^f^@L%66e6+_vNr)8`Ev0l@WDuQ z=~bF}7?iyCf)9nGOmU=_@naxpmp)zL&m2XX~Nzo}K2afWPO@d%QO0RNTUboyeC-A zs!ih+=$U{Xg{JR>p-ssMHfmmc$)RMTmB&zcV|vvQ+En_P27Zi|!cBew`b&I))FCc= zYcheBwoS`%F7$QK`**>#;54fy_OT#7p$Hwwp5}!i#01Ho6-gsmP7Xzv;^cMB#e~Y9 z&lv#mQ$^SU))&jrt3I&UQ;|r9$7tyRT(p?)DN}R@SPYPpeI6cwufcRRe?YWp;ck>X zh6tj#Bvp-Zn4sr9a}~<;F>ofx2EV-xIi%))TTVM#`gP6dhv9zol2$Pc|8&kn_hjA+ z%~yw^O<4#w0JkX8{YXb8Q|>16=Gx_ijegDmUbfxQ%m=4XK@o#wGX(F;llgS*!N=(5 zLPCj?aDygk;G?1FGES_rs?;`KjaFbooKcoSwT#W7 zNM#uAa*yAxzIDqiP_x7A)hKukOpe0`+lT)8x}7&Tl~^6_w#DM((WA6dLA z&KOKx2~wH2=O`1CUyx&z?JS}MqsJ>_l((ON%AD?3ImAjBW*OX#iq zPocvvL1VnIv@Skak#gwe)!Y^O6kdr8+>RELFC!PD5IX(r2U^X;I}7dZYxDv(O7gn~ z5)Myj#uPQ=B;fOkFa?8Gg`rL0H1jO5RFQrZN$6f}={-yBimc3>f^!DYAKpVujXVXx zSw6CYfoH{Pk^fcMo?^j~6I828WR6EKzIg?7`c+0uH@l^m^!ii*QP3l26KU5yL6u3SseS&1(<8DSk)+rbC}ZOWAZ>uWwHHC@?r5 zI6@KL;jP!MA=+69JgP`fLgtUBLqJQUn$;`tPJpSa(Cac7qX&>QB2b;yeYEg@#SSah zy+@!qjy7|N=6Y^$PeS{9YOIwXL11HrtW|YpFs^k z6I_Q-S1RUH)aYHf4ZQ|=l)S~Gkm^)U5~itBkF|m1W|W~9GW4OBI?i4-2LdYnCGS%N zjW8wV3&F~yi)lzMP^3e+TshXEMUB1_GD3Ig9oiSU0+&uF+WG+Tw?IlqM-gxSRehly zjhtxMYk5d-*>au{3OzSNIagSW78>sE9^Cn3NHgaG^YUbpYiJw0cU9Er0bIR{-;jkf zOH#1n$YVjBw#w@HL9+klOV^rSFUanaWRxOz{dOr)B> zv3`wSawV!mUGh_!)I0?KjA`@&vI71`5zpx*Dp^^j01i=v4@NMvZLqYHM(~g#Jq}sj zmvIVOfzuT6lbx_U;7h4SzZIlwxEMjg41naC+iGWrgDdC_*IO(+Z$=?*uM5@$u4UvNVrFZZ1D*onrey51CQ)7(>u~L`G zdAcm-q-m#t`v7%HawCG1nO@%N#gdI)c&n#0uf2euubyzqz+LVo4QoZZf4?VD* z^a^RJ6>C;oaBK%uD;3#VT{PTTrE6D*5rdan;R+YQr)VjEI=W<|2k7*?__r(KZKlF^ z%T;Ln^luF`=gXw(Z!nZe0$MDug;&Rw3E=%R)eOBAMfe!Kh*Wv6vKU|<7K?oh9wg_{ zq9sP15EC+bPY1q+UeV<1y;TdCuomeu`9gKBT^~rWEVvQaS^28ph4;_W>mE;R4*CE9 z53or@K~z?lX$kaP`n6&7X|^WIV*KsrJGAkOpe{9Gqwj!M1^h@6PjcZJ2~|j3DAe(e zgpKtPlv5>A@I$HRQy&6O?9^l7tAH3r%ez+tExp6RSUiUR6y&#Q<>G3qRFKzTN)ldD zy}3!B`TXE<{-k(v14zwe7$F5GCBgN%w`Yf|ne(D@-){_8pE8gLY`%fbu#cBMixc*5 zU4R~VZxXV~gON>DJaewIRJr-LRrY%ILlPDy!Sdt)^5n+ja{$Rj7IS!eK3t#!I^SIC_L=wCU$GES^H2g9msHm%V9@$W_@```}%rpV>*~8@)a5^uP5?FDy#JqebpV6(T8Xj6vq(@C$4<6fyW- zY(5ujXI-hJ;LAzaSl~e$NWg_Q%o^X>WTWS}%QN~2B{)EC!--)4Q4sXPfl25p(#i}Z;a9!jvwChc1M~FhI{WnM{1x${2bz=c zoh0-X`Q2Ym>8t2UL)Ou7Aj2;7b7O&c`O)+4_mLUvS*`;TFgFQ*EAjx2OclM6gv(R- zjejz`=|(?rboKw5=widHBz!jsYm5BO*%VxrP{M5|aIq7xd65je1*CrTkW9hhWE}3n z#w}{>Hm_mx!LU`197*_K5>||5{5`OpestzYAEV!^`hP|ANW#Jt{3Z#5WBj%+_Uh@Y zODD~q*kp1K`w;#7nv9yAIL2hy1&7P9NseLY5}Oq`oL%j*VzHtdno@9nk=CduR{~if zbDD1S>$a@^Ul0wtU|JGBnSzIs{!3v;e^LqfdLa1@2H66ew|yS|_1IiXzgCYR9t^St z{hWi%ljAUSiOn)>K8>tK4v89JHB8M#@hwvx(7*a0kvUg4dKpSx_OOu9kXzFHt0bhy z>M7Of=q?;Sg{K zlHbzG-x0*Jl2W9Metcvu0Xce#t`Az&q>ZuUHJCEf%RIZIgdGL!B)#ax9f4^joa$u> zm#v5E=fk=Rsp}zWB*PgcpXVM4LA(q&{0CBUCCyonN0)p zfKCMSaG8x@bG+YhAuzK<9RXefeuv=tiIkCw8Zk6_=a=NCY+4O1ksH%@LsNrSyS-I- z|F#J)w?M0e4heIFmjGgOynpAQS0pWk^?1oIu9*q{6jZqtl5B>~$6Zv?I%UA&!?72<|{|8%-=mL?UTO;Kb1Ag_>w!!UYp8cm$YMs7V}= zk7b}$9@yCu9uaU)1N^lee5$^LOfxS4F97G0W-BZXLvSdP{h3hMb;Wo+R{-=uvfN*8 z<(Rk-L!;MP`U%xS7oJyp1>U zaoHQeLL^&bu?>=~fdvGfVF~b@Z#{Tru9pF?;PN7ZCA6vOwCjTy8og-F-@Ei zAsKznv%VJZvqpLkW*6|bgk>9GS;d`jVbDSXxGVR02T22I=F`XmU>1^QBrOP9fHov; zShOI?l3!#c%{!f~1d_Eh(2b-USev_^VH7bmdew_9CT#T5ziaFQ{kiYc7DyK|xulRA zfI(#++k&k040JtSAx9^-pFQ%Ckd|I$7<)FP1#FzC-ZhCJi`Vm75w0S&PaKV24ThL- zS2qhkZGdZCNKJxdyVq(M3^h$0jXp4Dd*i&iaNZaUBg8I*&|ol>hcSACq0We-(Z@30 z*Wxui=Ts9bk zp$>?l(F?`s155#BFw_BYjL1_$Wlc+8AK1r(I0wWkkSjr~fTsTgVb(B|NDPf$*h)GI zWAt@_*abM^oqI2{z)c}46kB50y?52_eJe=g!LNPhE8E>5YBIA;rHP@@3tJIbkZktd z)lfr7)#z7;qDBo6N2B*y{@Pp<*>DZT5Ne6Dw?a{)28f~2)2)k!Hm|-KhAN|EJeI4% zQ6v7u(CA&CH@r~0eukPN;ib&V!!q6b2@*r2AM`VNpX#=T+F>)Fx(3o1{RD}j(a#wG zHH)d-Iuun5Rl@J3?!H}pJ!*p(8a;q`O%Vi9P{9ycT%VS{(TwRQNKB31U8V?j3`Gq? zl@O|M~~VdrbaLRt;^hfs;`HkI!MLnr3uU_gP0n9OOLnGYBXZsaC9+L0k!VEPk@$T zyu{S#!Kbx97-S4r4H}9g8-Y$m*cFB*wL*-Io(GieHgHU9UvsRRi}svKWAtSZW20}p zTbGHWtFMQlvJ9zRd%!YAUj{KY`l+jcmlWZtW^H|~p?dBC)4eZ?7#lqRw<_D)fNi?? zHHGkr#v3wm_hk@sqn9`6GV5d2*TYab)VO;w0PUuvcp1dp=v$Wo&nUu=7%zS;p=Qi6 ztLw@o=0*=7)YiTO29F3u6+9`lc@6 zpNjA}NN*E{HijUP4QSDLCIq)!YQX3L_y?65U6luCCKI2-ftrTw$8wW`A%r4+;P+I#T)6I_qnLCvGmNjA3 zhH>It;M2|Tf&ss5EQUxhuxD=kKKh>B6Sh`{*dQl?^Nf$-KkR*Hh!#?S^Pqme20jqB zW`+4Wr!utDL!3B3HH~+*32+MdMlqWY8RaMg{_$( zwq${(%J zXNWziRJ#Te|ND_Kc@7Ohk!~;G(U*|9*c8jCCYew8`&yhIgsqvO z=5RW|d9lD4|Bv1n(@GI>;&D{BHrnAM)n%O?NXGGG7B{*yndn zfW1T5+8OE!DIjx60mGM&xg7?4N+uh|M^AHsX*mhbS}$tSUAD;QZXYb9Rgee;Ay5ym5bA9ao7Ku#X4(58(8T@%N6*aQqE2 zyN0c~!Jj%Dg9gdK9w09Sc`Rf9mKl(@fw&XoKcF>P1qCO7oD7-$fWv{qfPH|*aU7Th zZUyTn&}4GdM;K%Df#56z@l}wg0aM0tfD7_z5cdN2!MY{TnW?anK1d6kZ9(h`>;~)! z;y{q4^h$a`UJLFOF#XL6DQXB1WAuTNnFD+Y>VG7l`%c z=_CaV&Vk`A!I}?ZKFA$_T|q1=(ZEN@0uKPcgXX`0*ifF1hH7Grz9Ps;;2Z_wG~jrk zoaLekpbNxXKsU%N$N{i6dSAQ!Af^G$xlbF=n*0A;U<)9K*@P_cFW_bnw?cDw0OvG> zfHC@t(>EO&J`Cbi;6TcI0aTl1!2KZa2lqjk-WRq)hVn5+UsdEZ7 z|A8S67^9CI_Dm4(_8e~R<{;+by$I$4ow=QwfsqKeHefxF$$k2~e}w~XFNjsZYOq#= ly9(B?f)1y;f0H3f{6Ef^A!_bfU&8(ZK~#90?cIBroK=0m@z0svgb*r(izFslE`gAQ2zW`oQ1FV_ zQmoY$74cHrqSA_wcf6s1TF_F_R`Ic7d9*;SShb3^SOM{dU;qU+JDZT(&L%{Vn-F4> z-8uc^o!NP3b~f3|J2QKk@AK@l?|J8)bAIo6e{1Xf@k z4lMoOh2P>qJP_F!SRGish_QBK+z#`4i+7ZgK-e{ zEq!Ay_NmEbJ08Kqctr4s=;2a&qhOO@lYRB-vZG0NHfH)*6?i?)#FNLF&F}H6$c;I! zTf}XF!R(~Wp2@AaQO-KcM5{!ruo6e33%MpqF^KiJOLT{vpPFlRE0sAC3cMWW2cFS@ zBJRhvIj&jAErHm8GA6|2QrwN^*x_V3r{LL=hw`KrOI43uxE0?s=sGKPH>=v7#ghO|a;^Nz$>c&%g*u_p%6BUmlEQ`D*%GCgCtj#fKLp zvl0y@d&SLLDENfv4TeuyJtDeNr+>H9otc+CS?IP>hl>p#NZlbi(+X=xo7D#9@58)B z^kysM#OUXRMLrhzqneK%4P3B@e`(}gaCVAYu&?djh4&jic-buYtmq2MJ(gLSlbtnQ zBIlp6JazUV!OJace!s906gVw%X&By3S{*n$%YkF|^mwVfP4Z&ZU$1-gIMYo!TP@Inqwb8s*i#I7* z<2mvkNY&SNJ)YZYv9e|hrxduiMtPqo@V2bV7+)W^$14S2k?zX|-HOh%!rd9kHa*E( zC7Gu#*WG<~d%ENNriD^vPHExf(#Tt-^eph7o&3!L&7Pa@@oss8H7)Js3Zq`CZPVja zc{@{MfggxXGa70teVkfgYfbChvuW=urWulVQH{brG@S++O{K@VHFf#ER*TdqwsB~I z8)}sI;r`)s!406tg*6qu!P;j2YNi=c(Bqp`GYxAkX|-65BGOUdf&#^q^6o4oHW3XX z@0?-NTz8w_xB_Pg-44=gTdHpVr_~}gntskGusx-`#XjDheMxzLEN`GnY43Gt_65yQ z^3JMxll^h4MQSt!o>kyC>8?W`AI`3Xdv(=J-xRE~IJ*McfV>-1b$q)x3GAdB%x0Dp zSesVf{=^1iRE#{5jdBKDjYCRjo)DaFss0Jd+@_Y`{VLmIo+0m*trVvj9L|P8o=?SY zBl3xU-Z`ey?`&kjNZ%Q*xV`>_)S^Q0UdOsGV_DnOBj+=z)Sp>r|CY(pWR9Sx z$g5NwlPv7yD{%y~gyD)CU6@MU>=<9pT*@}}dCYYZPctyb!1N!ar8%7c!@E+aPA%|v z^{%Z}+#aV(_S%;}Jui!$s%=I|ve&M%xiUDjb;7iU#e5FmE2jgW+QPEh>#7wuIDhCk z`krIl+CUlG)Fb+jRO-dLNABlMM*^{vHw8o1a&wD(y7sz?;`Vwmo|XFK!rF`5G=b%Q zB5`m69XiH4H8gc8dCW=M?w+=pm!z+$C~nakQs=L?%r6@&UYoiEMXFle8EJjDIO#GC z&9db9OjOxXlPK=5?I%6xf`QYZnG2cY_PU`qXtIf?I&nZVtjBm|O{d~8n5>5m9czNU#IqoTN^Zg^cY1%vYxs{>a(6jCD#7u;oVjRY5 z{8u@hOU*Epy9%#LU4QLl_6Iu|S84Z_td_s;pUT6S68A=a&@%W{i@(k5$Tw)?jNX8FulaoS5>xTFl@TH-m_Y2lXD?}z>mrYfv4r9O~-<5Ef8qR5|S1dL=AXbg(}6Ju`O)M=5jj%3bz|fGnocK* zm2FLONj!?I3rH*O(KFe#Rb*4@_=ucT9$MO_yj26H_kZ zgNFHW*}8#8jNM z$hMqxA1Y*GOFCo7al4AW=t1`l52TkxAsbSueXOk;C~w-6ORYDAlH#U4h#%j4k)|$P zJQPyXG=myoPjHk+N!gD?M`T{c6d+bdw%nGJgzhYJT$AOQ^2F3KZ{(B)6_O5M*r>kr zWM`;15ZI8Dt7>r%pULKP<010>@^RqL8r09NC~j;(cVuet^wjaMa+cbNhe{`c-POA( z+w7UyT&EI2abck`#xO&(7jiSNkGqcjrQS3}?#z`Oe*EvyRdHAt&o+CY6u0)aaykqT zgF10y%J?bHJjI>OvsKFAM%KeK5HFO-jp&f8tmP_-JI7UcqLez=<5j*E+U$jxxC|<9ZrpEQUXx+w zX&aKqM!ar%^1AXt z?~oWRIo_)>!*D`@w~RTH0k2hgMjI@f{=VG`yg_AC=wOkL*1K-c`XIR9)@t}-=+|aM`gw7IV(P(M+-jL769vvq)lDq$ifl_*YlXarQ_A~W z>l~YHA=8rrpG!TM!P-cPGnFkYE3iFPH{aU(x5i_=)Z^6BR-dv z*l#y?Vrl8r{dh(fTUsbqOIgjV`N@2DIUK?Lvp8;ny}P>|yE~s1ejqwiWoPSRIX|{; zq9efR%>uTEWJRd#9rI9pqhRJ5?9b<)RL9VG%V?B#V&uKGW~QM}x1$?d=+vjc*){#S zuQ$XO!z8D`>uT!ZisqHx>zy@oy#3b9T(8-qrN9@{53R3GSo`VB7M@hDb+&@1~WvpG#XUS2O5mae=>C9RRB$D8F1q?C7ue0$H@ zo>E)W@3C{qF9o-g@2w@?I|QiInmd)|sG`mu_;f9(A`%oXR z&O+Q)($B$t++H&n{X(nds?T}{$opQ6^6u2*-BY&fkl1Vdg}fiu%%sFDW>UJDUEs?# z${P#(Z^6`@X6)yf8as{H&*!t~$2V>u5OrAVL!ytUw*LQ_=&!A)ifu4?S>q`>oGp4Y zbxjK&E#1#IvnZ~gzl_P8X4+5jE?hRi1xKdCdre|Cb5btxsWuc>Byjm6-WDnb_T#4U zBiJ6#7hJ9Sq3^(j23=;QT@9CEtVBWH^9AQf3_fPnx#}*_<%+JhvdSslgekSKpI7ar z5Y|P`@8a4}9X@H&5b4;$c`@n3mg_A>&OfYrFW!V`&eTh{`xVc=YbIlNmF`FN=X9;o;IX0VYtvv^nJ15|D8+8jCKFn*bJna!WMf_0k1;_Yq!{ylvn^@7o`H~-3?ErTRz7+WK zV)~mU(`sfd;5DUgLG9|-f9&F%qZ;JvtaYn2YdlqOnNZi$%Vu05`g&%AxQ*u6=|sUP zqSJ7~2v`0VSL*OZORdkO>}eG~*t8UvLXXDKnQm3L;?(&xyQNGKJUZ?d%)z@4LBtiRKPi znT(2?X00WPUM2|!@?2w&mAg%Fx1yiRxxr(8VbxHOmT66Y@}vKgn7r0cG;!DdMcf_u zVdUDy+?K^c!g!h7id##MgXJs{9VwbGm@C*{(SYCy>=13yp&XT>2~bSNFxkkw-!@uv?3@f$rV>tQmdR(enR=OSnCl1=Q030000liI%;i1Cy9K7S&isutQ%q~zRMPoO*g*4VU6f)ERTpAaTk8i7Lv&Y*n!E}LNYl+ z1Ynh3Sza&v!m4Z`S#;tNY{3c1T2h#VTksWb#o@VfnokEdq96BTZmyi>vmAHg8!Cen+W@e01h9XKUZP)n1(=V+|NIXEAG;EAGb!k#AS7?p;s z(??)BR^W6o=g$>){{>-)?T6@l51K}dh$FE?>^ls#X?R)O?U(STlE(!9#}KWUEuQaQ zEH2tiu`TxoUN2f7{%WMqL(NErn1LRVEk1GBv0JS1w-#+naqLs_yL}+E;3+H>kz70e z6o1%YaZRgmZf!VX*zf*muK|9=Zx|@r_rrc35b5`wMe7#^Efp=;Ae`HWBK6fj?DGL( z82HIv;}H9jL+SK3OetDN(T*B+?8I?J>nhIm<1?{-*eV?8R3HA@)a?Fv=3Ke|2X651nXQs6#=Rnyw^0K(h{q~DxK9+7T%4?> z6s!`{@T2NtG!t-}@E^;QwUmPM#4`V?Y$0W!N0ce9&lXY!x`h+HB3noq=oJMfOS6TP zfz=|9(mr&es>{-MMKXB~HYaOIXSR4mI;rl6AhKx3i;(}tTq*hVidkeVR}M9dx3Qwi zkH!%5Fs(L3Y(|}#Eusv}$NRODh;&~^Z3uo*XR{DFi#_#-hN_@DNH$AEeMaTO&&%;xwuo$6L@uH?TSzvii7i1?`_Z@tcV~;p zrbCn;bq$@U>WEl_r!}ESt<1EDDRX7EkZjHtPO^*@g-zvQQIS_^y2O%t%Dx{|%~`G! z1!q5G3&~^xc8N0QN^_+sU#>ixacQ=QY!-^gV!~(_RK;0t5U*4Y{?~=$naN_xoVmY? zsxTt1!?WVis5IL|?xE70B?`wXA6Go2{WdAIJP$&qW z1g$8fqL-+*AQXKG!XS|diin7U9wG{&9(w5?grK1Paj49!q)|(YxSFLY4Lz)LhwF9j zJ!kIua|3^HxZHi#Ip4eYT6^ua_oaO8#mwf$o(jN6aY;A82QknJycDZT0w2(($9;ID zByigve}N&KUp4p-e1>~U0FOJ=jk+HDadE-m>##G;XhULDBzzWr$zr$>BO=O+m~NAB z98q%!()vPvPOjk*dAHX}BvRB#QD@1yIPt#DB4SoWz;FMUC=hbhdEfRUO zK=}8n9v3|469&f};B5M(=)tnM};93z(eGP3(@KxF1Pw;S4+iV$YuTHf_6pYPo z?8QIhv=^coV%jWiasQCw%V+R9o^5k~Sj_7}b*EVR+HHeA#2pkjk1xW@qQYobaUK>y zR+yt-#9R0@#cm8-M33*oHFz+C?O{jyGizpREUo^<5xUC zfoI0RooY4qI6W6<(IR}`DfCK_frdJG_5vK~1bQw$mo0)@=~(if3F%e5kpl`pV_+il z_#xbYn{t9{=+A0ADEzuOCzLo{T9#!x^@|gM$Hmb^Ue(Z-2JRIb?e|5pC_**#r-3&o zpHCJ9C8kqfyWm=jyKoEsEf8Eoe=G1ZJcHX4!y)#Fk0bOSsM$GQQ&5J%4{@O1py p4e({y-wp6>*ikifk@!<=;6K^2p=J(1jg$ZY002ovPDHLkV1n9Vy4C;y literal 0 HcmV?d00001 diff --git a/images/LinkDiagram3.png b/images/LinkDiagram3.png new file mode 100644 index 0000000000000000000000000000000000000000..10db52fe649fb0e745b9814c2e113c95b603ed93 GIT binary patch literal 1208 zcmV;p1V{UcP){CeZKG4>wJE{^Zi_2-!K1vX5uk4+AXjRu0>BON150fALGPMige?_;-@=-sT>T$ zv$!Hfv0glhn^P3azzxEGvJbNlFXQr51uNnde28(W3y;G)SdzMMNgROXm{FEMKR&^k zWeFr=M|_DR$`+b}uW&-yLTxevui^Zv1ZUzq74&=?+>5)b7Tpg&;Gn972Vn``5*Pf+ znI}4A?;PR-I22!F=bR>v#=KKw>nqgUWG=>gVqsJTSK=A5{-`Ba<5i3*S?5@MiU}p_bVLKUicf5KNg8{KQEXO8 z^^?+#`|+^!U*YZX1&&Kxw^VxZ1n$zo?$Q8y@B%JMRIgI{@S@mLNWm>wCSB)N&RD#O z3p=cHHr~Zn9Xra*w)g<&wt4;>u`ryP%u!}0;xnAKndeOw)BSm=4drH6d?V%vo5CnD ziCb8jqs;7q?{U}=?HXcuzN2(UnQ87%9ymywOT;F0SrfNfafp~j&fds-^TpO;f2EEx zbBwq+PHQRW~}cv=jfYw#!*;f=!A=%VfT;&pU!yifcK^@_PicTtOo zH5%dq+=G!~qqwIy)+OdYir21|wu?75qZ?ibwu%fi)D&qNY84r1XhhMzX{cdCxHG9m zV}0?{hu^WPIR0bt`V-b+Eq=kTMJKMu%A(B*{DIZ@t!THl_0`k8V(Gto!kVSii~(ns zQ2S(&tW7GRc5*Ch95#4yo-|waPuQKR;?SBGn WlF*3aCj5W^0000E`-sEP)^%v?aEDUcYgPe z-*2>|w%Rhg=gjPUUaxu0tTgA$bINmm?RmaWro)V~mPNztiM@u|NBq2?i#-B+2IgU} zj5#$HW>m8HJ%N28V^N?B3ot+JdXe~V73urZz9wPjL)eVLjLm@ua9_q++=sP+YDRB` zdkbwuJQs+t!wJ9CthV*(-3E^r~@a7C$e`I54o()E)4CY!F+v^?^+p4`KxO z2SUaWr1ucwzmMRdEVhOlvgj~s={prhLfp4X+~>m(cyJS2#xiI=bF+ry8i@~|`B;## z5c`V{sr|7Zx^V~&#U5kq`mT&?#Mia+xOTr}V~5EzYaO?jWnDZn(;0+kL%;6-J%; znhMu1jSsO7<78GiZgSG62A-I4B2JLTi#uTiIqt#A^nMRk)u_&A&HfBz49|%1EzC;x z*po*EPOWij#;JIOI2LbY1i!--xT35jA zQ{a}sO>?;GKzg&?bSpbdo__YKaS9$II`XMFMx0b@~xW?PD>w;VYZ*o4`d~{A4LN z7h-6MXi3Knbgkypz&Rm0>f>!YmU& ze+8axbhdhB;6puprClAk6powoh`@OnueR;P(f}^X_~9HbIv|GLb?C4I_tMkFD>L3G z28F=g_;5F0YF7uIaZ*?KB{~0-6B=Ik=6txyV?#+EEFD^hz??o_pL2J^J@vbOPAl5B zmL@Q_%4>3NYdEnF33TN#r+I_!>qPRRLHLkoLX&Y!IqO-bv}VOq&~X3l-- z{<}Gk2@)N4MjFSyGiPHuVQZ_rIqVpC-l4;^)5}p+Ry6eXjw{-x(vh=&&ZP~l>{s)c z64s$ZVN^LF=c;s1<{js4Am=eT_cXM!FD}}q4jt+YurTM>>Hhpf@3v8Rvy+^&(=2hw zxvrnXi?*plhwVv|RyU^m^unU;DU?3W%h^;v8NE?YsY8cS(#ugf59fqFo>;U!g;3?i zIa`v`ex|ctHnXf`ah1bzj!Q$8$E@O*)f~}3Il;JDLC(k0J^PiSZJ7v7iA?H?i2xUh zIg}so;jfyp-wvY$=H?ucBzBI&@fk-14#q*EqT^URBxcXtnsH-|8}{TEvt7(>6(?7? z9_zX}pjC3Tr|h_SR519ZC@S{vOLThT`kF6bsq-~b8z5M87GApyZacUA*LH~ zLEvAP#TIDRkn>%<0B`K!vqjr89wzO$w=i#Ceuc;3%1xYgc#;e4FgAfXIghXK^bkb> zPP1cB%BsMX8CM3bsd3wK)-}_Pq|W&4TFk0>ns`6d@HPBRPt;0od#b!W@KK!K!z+rm zXIjbm*Lnm>|F(Iv9d<&M<8$6p0ez z{YUt_EGi7#I>d*j!KTu&g86%JNS0pW@gFMweZ+A5ynXLw6RyN%8J8{P+AIoxw*)|AXQh=^f&+-J2Zqo-N$l&W<@Ak}T>^GS0;B=kwThtGbuRhw}2kquXXJ zJLjUb{PW48ZJ7vZ8Rm2KVDj{;Rk^Xsr}}v5>KHoM_RAhqC8fjNmL?{@S+qUPCg&&V z*v>23mZq?ZN7dK%*2M8%=~>MYIp58xH8|`QId3guowQx(=fs?c(nI{!McdO%az2wB z_x}`aOH)Wo93kg(MccAFdf7AQgESAxFnss(N}OMZnmU3iX*$cgn3j>SR-~<9?=u4 zfR~08qId)L3w)-BKc5vz{P#On%~J)B6%+1{xBIz@fvvBgUuF#kWcmfG)vS@pt+&SE z6T4Yg@q|i@$-aLM%MLU~%hv+ru@zr5%(6+b7t9c)g$*LPb#c4nCAh9+2ROUdc_{lF*w$?57`mHW%y6~ zx=_}HFw2~8rK$11next>Oj@T6IjaX^cd$LV&v6EQ%b=P;A-(Q5=zG?Aw;^X)XP=_Y z%z10N9+wnt%T&ont4Kb28g{z&qlg)oH(z7@>Rc`zreicgBt zu!>{q>&j`2+kOO@L2ol?W4frDt@BN5JyY1Nn&XVKnuGEv%{$yGk#)NwDUpOc_U5LS zHI^Fmc7s+nIPfLbI(Sn1>*vg5{4Qq{iy}$CguDfECMU&!g$8|R>xCThbwlN^29fi# z6b9L{S!0l=(jx9d=HZe$EU$SCk@s zchUAVo%{2(3UL zKTJJ`a|O-+YQ~QF7L7(3`zcI99waXozj3cpcpW(^_q($%&5O{0)__?LA zoJM;v*Fy?wn`)*7{Ic0qkP=*&W`m;zz6c2Ke1{YooediKXyh99fO>YrY_jGingU`#O~0&Y3BHyMVr$MR&!*!PJ^wg zD3Zh%$|ch}(`m7vRzpQiie=YnjT8>TDP0fOI_rQBd1>*_4S>ZR?Z=^GrH zKK-i2yT@Be6I7X4bM@lkx2I@q1-?m^6iK zYs_l9B}UZmom0pBR(UDM7|3-s%_59C?kQ!N zCz&8M$jWH@ushSIo~_39@kp_%e7>B%Vl3O1DhFc`)*oc-r0$mE01t={ql#La==dU4 zx?7LEs;w!5Ti)65xm$-G}k|w4?iCVTS<}uQ4PCLpMLFNqw+tF<5q6^0rYQ^N3 z3pLZLwlOKPtuyt#jopFLO-!+M=Cu`q>?h79-xSMuoMNrhiZ-W-w6f#QgGw1|2aP0c zuFTbqj(a>*Vl}=}5JuJZ+EcM{sfX|-Q1Ou|B~h1)x>Rc`I&L{z+#r*AUHbg(M#nu4 zwvbKLdL5{Hgei~XoVtYnA% zvH9QCQtCgv%93$&K2r^%m8Lq_7 zTc3<~l}v`U-XmzAz>A%+#Mi|f;|jiH(E9~l1zR;~x}$jA7Id%NecjUtd{v0$uYV{9e4W6NKA}+R8hN({dUd1-Y@g6^w-}R@=NP?P;_hwQc>uYuxIOa zm*-L<$6e=5;zK>iyxBh1ksLRqfbgtj8dD)ju4Y=d^_dWh{WD%9Y9ODk=4OLFW_|gU z^|vQW-R01F-Q{6Q&{bY(4}(4_^J!!<@3Pp1_5ZGSMUR78i6*9?lE${R5-D*^JNx>c zxlR;(OYFA&m72Q^`sk$9|B9jRxGmM<_VDN)vL3E0%!nap+1K^>3k(b1Z1GmH1&liG zQIJih_RBO9L?wt!`-B9Ji@mM3#Cd8?7c-(3;_WI{8uDZ7yiBh>3$}7hYArlLRR}?5 z$kPqFTyUA-II$GWS(fZVJR)aZ%0VnuE!irsN_Jhi`){`~>zr=T_Y4}|P8j{mhCE%^ zeYw<`W))9J*RHgsSxdo?!wq?dLANwq+XoE#pnMFa$(#l01doI?FfR+MI4jv!nlQ{l z8PJn1@{J7_IT$o#(02^^v$AL~uVbH_f6RGB(YBP1`yFGQcNuiecGq!@As_O919rEI zte2y^;-pl6Psz%8^mBME#woAsX@Q!hGs-$A;*~NlVFx*r-{TU&Zv?;DRXx}aGeD48 z=XjYXsd$p$$!s%Mu>ltgzHPnljJN1oR^=%v*Y&!dlF4cYx~j1j>bxy1IW#H&bl9Hz z9c#onGUo`MVn_MfRe~#Ju2k{g7P)aZmDxK?me}KYG)}>zQ&q+NxBJ!uxJc$goBh~< z6Av)Tk|@^sfgdf4RRT&yl@%dQo}JngtHN~{i(tO>&cM?Ir;8FY+dJ|WaqM{muE+I) z8=FU)8aZW~0Kvt3*-0cZ*X6>kq zBXt~i_r#X;^7JB@W4)6Er^}osc!DT*`>6DKb=oc%^as(2ug48WT<-wYA`YW8thETo z>vDqNc$|Ra1~#YxK7Qr_H((c8}kQ6sg5u7Zx5~qmktw-WWSyIlQgCYHDZj`xIutLS})vU0u-e%v7g%NAo9&Xr? zGDqPk!7(zAP+w`;@kqCb%cr;C7MWXQZm`H*GjU$#7@hPPnC>5&44JKR9i8>SX0g~H zewJR5UVB>PM8PR)PLVkUCkmFzEX6rnTbK+(HW;)*oIG45R=BUK>DOhAVYwyN6grmf zwWmESHphX29+?AWmZoEh|Hfg4EJxQifwiNbhXr@Z+>BdgZdP-vecjQNLe!IFj+8nV zVnTNrsdtaZEIZg?iY&K5Ty`5>dJEsWP*tV2|{99`=&iOR!M9mlulT z%!L}OztS-xa9`s1Qw+SX(=6dgloEDx8#_6*tavY zJcGn;_RZE|J|`WrVoft zxdyAZevZ9^)wsuIcO_ASmSIjk=e1H&$6d~bJl;5`%#FHOrK;IGYuVds(GhknQXj{T zi_|OW0_E38D2yJb?RU9#HW>8WOZ6 ztSLT8-Yp#!4hE`)g{s)f5fAvrD{ z*Q!5j@AgV?{HM-**OhYm$kksNl8@}-8=NyWY{hrlxnHm5^} z!l_779h*z+xDfa$+f?uC(1P@HW*=Yf-Ot^!}_ut>`dm z4vNuMYq7^F<&fE_QyEQYDZQR`1^p08CR?*Jy17yeZ#%4?6N|Q|!=$+lDkbYKFO9W* zH)HXtl1n93vgEiKON%yUcck(tKY*I{DF!_Ysdtx4<+xcKHr@?gCGRd*LQ0@-1;>Sq zZ>IN-sKXg%&p@5>9dVkcx#DoIxM z7PpcdSL?L6Tku^7omRIc$!wL2EuG^gjkD6vELV)4#8S=hjYW-bq>tx@(K0F>T7)fW z*+mH*H*1lZ%HHCp zb+!A%b+sdkHfTI#)Us4hDDbkP?ddQvQqo8tR7%$BJ{0Tvj^Lm&ht}4+nYTh$6m@P1 zGR{x$FYi_E%5@!fN*{D3dEl~eG@Hb(e73p7t?o9Ci{pzjWTGtPDlv9>@f^-A+MW&* zW^H;eUD57(cezq_$IV7n{92~Pg}@in`~NE1mJSo9w6%}37Ff%zK!`0DEw(N?%vZ%~ zXQx+N?4i>kDli5X7j4M)gcexKt-wS4R_xm!y{1Lhb0KLgUjTtWE!dn66Cg`1u5z}x zt>L&wvnh+UWejs#u_jHJ&!zWQt&|k*JCvR?*iJ+XY@ ztynT&Dpu8@^n{d7n(bHuv~cE)uH_!Qg879SvkMxdj(!7KYX&rYKE3}%p;mMlH(3n8 z5K8D62gZj=Ke`rhSi$D(l&y~2m0DapCf86Fq6OH4FN=cikIOluXnQ*Bp3K%Ne)9@7 zWY^S}gi6_6-s-q1g6bB`&v;64CQY0rF}ePW>Cd+nX-kLkQM0uIUa1|otjPx32k2i6 zfpZG5Wvcv}m}vik)g?XI9Y$$raZA@#W^`s*N$;g?95*B}HZAD5J=_!c4k|U?TC_bK z#wH|nQ6*Iu4JFSK+QxA=$C8N;QtJsl`2++|V9 z<{He~$REwTNmC<9Z2m*~{GLv$TUtup;!^JPzFp}xeK)JD`8!Rv~) zr$cK}Pwy*Zvcc{g_nEC0Ma9-u_d^hPS6SmtXF09V;+8hqV5g4T69ubp#@-pvnOT#X zLpNW;3M}7?*A{J0ht{JZy{|PKH}Q2^SBx!VBulL>-g8TNL+fTGWuH}sk9_~+ zhrrdCKaUs9piNC9V>s~l5O`mi+~1`1X6!=eG~E zNO7}vC&cR_D}M=@Ql|HfdD0G~KjRmubn(YCV^Z_!iRp@$V(%@yuV{NZv_@B%@}~Fg z_Gwp3-Q`M)&Mwyp{I&R$|I?h~ineFAQ%h-m8FP!aWh}~?-nU!F9gaD!n*yh`a)SCY zt{2yK=itKyo6{lA)(RyrAJf&Uj+?ZLe~4_P^#d9HR!m)dLAAx?dD@MT9Jh=rkBuD2 zy&10wJg;b5CQOxQ<%FEx7MKMblbjEyW4S4mRDEGKa4$XSIt=ap+Z`rFpptV>PN?#% zqV1UqISX>`PB+b87H!XLWhIN#HQ2oSZ+F<9aZSaiC6)h2l!cjAi>8?#9!?Wg@b|5{ z%+=~VoVv=G8%jPwRYt}gZr0D?sWiiI#=+eTOru@XP9K+NoQePH;Z;T3GaJd-f;scq zXTPY6J!1s2ex4FI4=0E<4FR%)Z7<8N;DiJfk44N;3Z!@sxs@w6xz z+aw%JJN=vxxF+?s)&@R`XX4brGw`;I%P}u-Ud9bM?`rA$BQUpNV&|1b+cQ-LSXiYm z9nZUpwr94HGn^9!SU3~Emu9l7>3aWctdg>;IU?t44K46bT2WMDD^=c<4&>HQ{y5X! zlJkOeJR3R@RWrw07NzsPWv1?A!Ey`L} z`9``hziEeuQ7h2PQR$rLGx2*lFG|06e|3Tt_I4ul-@tvGaC3YVV1?1{f~=&^Qo2$|4lQ@ zx1?7014Y}@3njme z-rRhPXMjGQkxu@@6CLoEl|If($FwQuF-6g3*$rTO8!_s&|y$qZ1>YSGs zZBsijhm+FBTe4B@sirf+x#A?_MN3#e-tDqvUl+HG@tv=Txx^>0;!#tzb)qz7A^Ac6 zSuC=3L>GV4jC~eOlDc_!`tv`^8f@N*gya|*H%;g7WTOE>-yZKa11t=2IdDYG6xu0E zc}SdPmK9JOuPKguG@ELpGi>i{m(am(J|PzRUX<~@mJN3+8Chzf0>7KC-$>ll&(8n= z4eUuoK~$5akHNP^@c z*FM*0oH^ao{4>SjaUAmkag6jw)zLy?9VS7_1Ud$_Inz6_b8dRSV1nD71u3;}Oj0n% zwNT;l6a1Yi(NxDhh}HO)^yfdeOY79b?HPX}O8ESBUsO%#FbTGBig;h#ks|P#&MHn8 z9qFO@ak+9_tYr}%E9M9Pd_3C(u1fExO~TYk({#tG#BpJNh#3{;Uz^Bm@R(+uUTLOEEQ}|M4nJcw-Eq@^{+}Rg1BshP zy5n)3j|CY&N>BC<6QdrDcI|ZRJWU|J9BO=KBHK1hGJSUfo86k;TeeuhRt8v@vpy|i zKe1?gnn{Y${&8A-?_U+iYaPZ(J-$8X$`-i~83e%*<#8k=l1)Um0{K!L2vXT^F@0}~bPU&GQ6C#Gs)av#IfDl^Q!Hgo7RPGW;gF19<)gEv9kwGx;c>+;E6>EyIU=FqMP z%*pw``KXBY$6HdDXc}0>!Reel(2R(>oL44EnvnC>DeUJ*X&;jgWvy~!PFTegCcBSP zlJm^E#7#ek7j4gUlkb?tPQpPcKK;^{A$j zB#^TzEkU*4o;<{#4wLV>Vnl3@b9e7a7bL)sK#{9P#vv5H7OdMc2}BE6R_!1 zX+K|^qD>E`AwXL#dxD%p>SLTdNxQZ?t2id-*7~@&%G+nF>}$?f(s_8>6!!6ghMvs7 zP32s!=AfL1(!=C&likl6mezZdZQCGK`J>b|spSQz1{6Wgf+}BZ82A3T8fTwp6*<36 z-N|Q6X8TmbXH(k8zfbi6nDeo8JuaEbeyTh*pP`Bjg;M2x=|I=drZvw#UY3qIA>##Hy0b936)*;CzD zOOTxRq6X)kRaFC4b3`APH?+RjS7WSg+tJ6*KZgXzkUI^X+z9>#p+R`o!EgzuTX_Kaj^nj%L~M z*yL!N^Cl>f=A)%ZCKP7b79{7rARi4~d+%&pG8tfDm48Z4?t0y#&*mIbv~A5GJ)A;y zj4~iOkI1>C;Q{uWW~WN#DTlhsr<%0C^OLQA+l>9S9I55`KzbU6KE64tx*myCA?||u zc}NcYnO4vB&3Q{Yp3iUpe^s86CM)aVi|cdV7Gkze)2Q;QhB<{Ds_;#er1Daqr)Ucu z@kx`49oJ9Bwe8a4Oq5leoX1GBx&v>{`C9)BOMo_ud{j>66Fd38s~e8-Kc{1sJuUy- zms;DVjF;=Zh&+kK&3gJcCFkCBQr1;@NzpbHMLHMXZD@@`&Q&>o(n>X&s=PhfzJqvM zAFr+QPtz$Vp7X8r`&Tq;_P#!O*0MEnr-Sr_ytLtF{laW6ciGF)RX&*~J*D&-%K1Xh zlgd6PP!Ceb3#fdUk7`M6XjT$H>Jim)Hm+j7X6&dI9~Wq!7@mPL6i z)O=He1BaZuQ^5S$Wz2bQ7+;RN_*OGWsf26NyvbiTYrlCa!@08_M2AGqsrhK2el6$! zCdK(#P3lH}ykY62{<=TsdsW`CiYH99VtNXMct##;C{5PZ=O){JITc$bLduQ)RYMoK zDU)5jQRu&xCJqamgDG_vtIkUHn9twg9pVM3X1r@D|CJF6Hm^_ubNV?W@ElQj@|f+u zvO$y_y%o3NjvD=QSrh1QtVox$f5t&Ix-(7+JU(e^EyaT)9J-u!6SZ+QM~-kO*7eL# z*Rsk#h1kjtjBv{G2}Es;Mb3qyaQf$actbPxIT>2QaqHxqiZ2)~(|A>dw{-K{Vl68V zt2m|-HLy+>L;9K#%+ZVUyZA(^4>chIm1?Y*x7RSs4oPyR(?uSOw0$T3v}g59F$1V! zzt6-^v8lo%ma?)L`<)Ce<+#MITYrr0{h;{tu4R0si}xHzf6?}pjWsOY!igD=!0}>s z&QdY8@BrJ+vTnlajK08~8CM6c>gM_^7Cf6YY1!m)f#)r2Lb&0s=;QP(CJ*e15B4-E z_&>!J+>FCB-rvm!nz7$mM=wj#Olw^YVSSZ%Om$4xVS32yqf zoNaGNc(|>M6M!v8KPObVtYLEI_M8`$eTihYktP{K&id&nKa!%(ded)Q)XX|QIZsXv zL@l4Dnn$yiv|jgz1_!<-Z(@LYhpAJKl1f_0&D`&)4YTW4H*?KDr2+OQyFb~i{dQ;| zX&b*ik69&k2mVz@pu8O9oRhA}L)AFmo-#=e>B0K4Pcs!Ys~pg<6#476sK!@jQntfq&grg4HcbL-^qx19VSzKS_|_-Ss(+KEBz^GB+uD@A|r}ZK>c`R#vfJniOda z6}%?rh3%|3QD#!~*KMimxuTC#Cc2M4PN{Nb!!`YAGp}baN9EjEk4kIx?5vjM9`>#B zcX_H~T7Qb>{O^1grVkcPk~FPLzHH3-#CWoTQnc7t^HB||HEGSZY4r1)hMDP`dRf-Y z{WptQHS;>a!p*!XizO@S-L(7gA62WB(nRzzXK4Vr0K-Xn{B7 zoIh2$&JGi!%H#U@VM8lA*6aS9&-QY3Gi^xAJ$Izv7|Hqjve$f?RW0uJq=LxL5X&^4 zEuD{y-vvH1hw~5Q!9tCkB@EELnP*pcV&I63C4tQt$hfJ-m7BTva5gsUH~Uy#;Ughx zTxYlouj}E8X8lHoX(knb`qzf>P5lY~g}ezeo*l|VmBVuWBX7|7N|8~W`Hog4XF(sY zPqWXB-LyM$-d)zoiVnMH702}P<$N^9yH@4d?xp;!!!D*e;-BB#*Ksf7Vey zC_jO@eLO!E9UpGEh8L{j*K-o891@Y;-Xj7HFG!DSiW*vt_?W*i1T(I|X`K*2TG^BcEp5=$#ux<^D^$`R^>Y z&K;UaS_^(k;CWf>5j6&JJcJ7}zPywx+D$2?Up>_Hflyl{#95j^oY%y&N@% zvqN;^C)+XgYy*CW>qVKE>xa2{dHnabrk?{xII6-ifurz9(NPcE$=A1JTvOxM_*ISH zOh&w}9q2gj3=^oV=J;Cd>YbimI}>yp7L^h22&~9hQQ^)JR`f)b%i)={dol#(R_P8L zTwz&=Yv9YX`1vUDwa+d#-y+WZ-iRAAt_%FOhlgj#{8H0#+!8QA_b{h~IA%Lpd_Tgj zuTKy~-PVLCJGv&s(7;WB2k=nF#*FnD8%E;ip-Oyzc!c}6#HEp4GM9y2Y5cgEN>_BS zy|5r-VJ*tfEXbn9^^(AT74{2pZF`CMzW*4qRJUi`Fv!i1j3JL5c0$K- zOUgR-+01dZ7}ax3#?c`L*B@!utyCEq6dx|V$OEe~R#o^zjXS&PZMPZUnV{piElAFS zuGmU1%~%@f$=ExK4!s~m6~cWp_6Sj?bRTh+doQu2Y@CVR$F|E@!(yvl=V4K{bwt!g zelY#pgSbD7pV!t{o5k_wS~1n`z7f{UhH-ik{C@(KT$E`xhOqzu002ovPDHLkV1iPj B@67-J literal 0 HcmV?d00001 diff --git a/images/unknot_and_trefoil.png b/images/unknot_and_trefoil.png new file mode 100644 index 0000000000000000000000000000000000000000..089308088334150c694611c54bd6cc1ee183b2d9 GIT binary patch literal 6746 zcmV-g8l~llP)`_1iM!iZb zXbgF<#TH|U;7#mYjTkkFii&!TJ=iOj=#>~NMeHJoG?gaO&e{3nJL8$PW@ewg_nDbB zGkd+yGY{;2X3zYlty$|^U#Y@ku_S?3zyM$eU^}1>&2R#Gg&NQ(Hs~BoDS?&#QJlQVc9!~jpt+J9xX&y zU=Xkma4@hd{?GJRzzM($#R#_q(-t||X99O3Y|e!w#X-xJRQ`x;Z{r7bW6RpaNtCMHECfu91OQh5A44e22jn(c~`D#X{~0>mS= zF^94j5IdG7n^Xgr5PToJLULb5-GBwCdapIA$RIs|`w4!K-$#aJjrl;Bpgl64ev`tD z(KKKiLmDm7(4XMzJ_{IbPFm3nMMf3wUi=m&1({$Rumb-JIUO0NriH=4jfmfo-|?&m zu11EOmUMGG;y9>Z;}wWGAx*9vQ&5j#vROItQ3KqC|HC>LIKZ5=CbJ1}4q_blJHAhl zH;^TLR0B8Re_bCYJpZ0J*#hYSImfXaH8?ht^hUfu^^5oe@Oz-8IccF%gV>H%;yu<{ z;7Xz~rdy(+4e%u1Yxym3oIzb-a1ZJ+{miVKXgL6xzSb|~%Rpa)x}u~T5}@e!_MCx) znOKrdJG`?=dEj42dX2Pm2;^7>;4bTNf6-CG8sK>dFSvlb`3U6fl z=h)y+kc+$&?@fNSNl}&`*#_^6;wqzxqUAKyWBs{VIpMG~GR)8$Ae(Bkfj&sAo8Ayj zG%3mgz;meAz@e zvH&to`V#87t0Vo6aA~6hsx4?Ka&5BCF{t<6sb=Mr&v?8K(XmDqrHf7Q`lS4T*w-xa zFcS6r-)L4&Z2SuKxQ{U_r#uEC4~+XjE;XtsowP^N*SgQ+7nD|&!BRedKt1;(&B}?5 z|3y9SGzE_X(p{a6dJr#>?b(DV*#fbnxzFc|REB4{Y3@Wl@0Bu}`zq=ProCA?rE?AH zg>S|+!(L$W10 z=lL75pBH>5#16C$i6Kh`JyEUcwMe3OOLX`R%T6+?D7*Zf$~@0KNl~J+_c?_ZMrx3mfNM?KGPo0VhH*$UNvWgV5{&}Et`B(Jgi0Xg5OqUX7%oA5JKSkj zPQ@|^b;^DLwuV_0j6%KNSCFo7q}E8XvWtMnfKTzJTW)NrLkf1@2b_%I#DuNzRuvs& zQc#7XXJb6ttei|z1-yWIo*yx)s4&eDzn{y1*YU<4hPAwgG)QgZIjjc8X+oZgTYyF3 zaMbJZPqT6|OJBSxYLZl*XelCNvx9@A`Zo@;0`Zp&3%7 z&OI}^Gw_xfIhp2SlJSA{|CUl8>>DIPel9Y^T3r9#H%J_)<0G_b z{n7^+?F^!DYL8V&afTa^-d7~(uI%qbwIfSO=ykEKH7h5xw7{D$>-w1X-3n=Ju0s5k zYAL>_G8-xBJcg#_cyES8+D|}c34`|cJ`q+E)~DsiN3|nMNpwLqG=5@MPNvx#buwTB z(L@PU)o=Ga;2C7Ls@O(n5#l&}0?}3n*&BEO{|0d_a3&##aJ4`!(zgz|`7Oy{I_gbO z$(3!RMvvcnC8X_c2Al}ogBsD^*s=zxhjuP9WQsd>b35RP0Bv_5ZAU2RMbRD%Yr~dM zI1BaqTw+#Ers<5gYVJX0Y^Mqd8l8yP@Z3GDLQ8G^`d1>MC9TRolu#Lsf8+T)4L*fU zLQi)&B8-h%LZcVzO>7O*(V~}2eyzyg)c}V9w;+b?VtYIDkRI64BzpwX1Ft(n9_gt! zsUhlun!0r{)+sKDxT|y2Au}76XlRKyo59uv)*XZR7JW}~jm`?BcHekZZ|yWtjWn|Q zF+D>Q+Kpdm8@sN_GA&VXCF*rL)U2G$qi0{dz-OHy$V*$VnxZdtNbhwbuov;gr=5g& zQlE(2FJbO?BHrWtYq=Y{SKH8#5CmGn=SbA+bg5Z6nWs1E`F_%8o%ibh_8eZ5#t(== zcO2%zK%UVwg>7Hb>$l}8BQH}kBxkg{n`nn($z)5^i~X2UHI>0~8qW8-K7V)YBlD0D zhsD5cNJ@}UjI~W<25O@i1-GN#m#YXKy85!0wt@RY7HA0<_w2+X!&=f#8yYXz;I{Gn z+vo4wA-#<^fn5-f2NDQ019hpH1of*A5H8y;WmJoRg^?Ic#+B+%akY39| z3TF##gLHvARV#3Cuu|XUpdCCoYb%_Vng$rxe5x< z-a}jO>gZ*LN-I?T&&IIN2ef_uU(kxqxOI0_7x3wkNwb8-LhZBBhtq4XQ=w}(d|HbS;V)qhJ&`)!MA5YHoNf)t#dkUJ84F%s)yNj6UEU5D6qX2l}S z5(c%d|0m5kE^ZD(%GF$ox3uwWq-4^8NO(o5=n3A_-V<6E7@th8Fs6H=gdpnoQj)+IU-uu~z_@N92UJQAkdQYgSJ*&7e-4g_Vr^|Oq6BlK;IqAX3LoAx=&jZibB4Ao@Rp+z3J1_?ZUGs6Arvq}2!Ch4@+KAY-j z=*i#?1?gtG9kJqwDY1lu9?!JYh>GZGg9Jb7@m@=iXzixVdKHV_2qmTJMX@BM5qd)V zJQSoSC^6|pbznEPpCZR1E0A*?+i4{p&H%N zW^k)y^nlg01ywdi3*ceI*5hU>;&k|Rj9T=EwoQ!t4uhmLLLk`+95w+4AX z1GLYd8c`7)ci}BGI1w3wt&drYZY%BVyH;}18=<(J72V9xKJS)8y`X6u>sB)Ey6EeH z4@?P(fU!va88;K^7ZWp6%e2o)E=uS}l6pdVnxI`lt&=n-Zbg=|Xo1-8oa^?ESvjGy zCEgsx*P9ds9EGaq46|}d<{zl~I~df`61BkUj2y7qwL;p)x|Pbds1pkBn-UTMSEA0? z{u4<`W)eMtTrVRk$|p%Zp>?QH8GUoWH?A)>r7~lX(#Bxzb2*XWNu(Dr+Vy!gQZdwY zn1pU`Ycy$l!f@9;+erL2H63@G(=vzJ%C{taMz>02nD#j zZHT(tcrQ$;mFE_g1hY029lL#*j*lIJ?Zil zT0n#LBsA*o`}cz!QnuF3HnB^xl)?_Ej*2g0CLl3vTB5ogyhpOq48QIAe{<6HvhL{m z|98ez2t82m-vv1&>zo_i|HP6k4%I%Vu^Ol!eNm0=NvnOQ>)FMKiqdI?YM3@1AF4Z_ zzMcbSYG0o(LQIT5z;3_l3=@VqdVChU_?dfbkshZ?g@?5KEDof@!g52zsAmx zC6z5vliO#>L2(;Y+vH@kay;aaAYn(}a=bOnl1P8l^Ln#EEgcc}0C(A?Ho5u_?xJtq zv38-PG8Q$r%|oVyM1cN=PTD)q&o!i@CsKLCtz`%I3cG55 z)boB=%rhMI8a-=PP9)rmdW`#;mE)lXHKgQwk{?HQJnA_;*^rL=H68!ZS8$vbofXz$ zHonB-MUVgaxmh`pa3bn4-f2{gKYv5jIKilz#yJaB?BXqi*;%0tVytxcG<2JWY5F7fAxGnPKv$!R3NsP)xgHwx{`Wx*w$1~W1+6?( zTk++f6)myzAnLWb+^n2Pxs~J}>!YX|Z!5gIQT~FeHBLXkols}q^T11ZtC##p4k>)- z{()X1+7drIpuTxmknQ-sL8!gH)p)Z=nx;Q$I*K~raHEQXc^vhb*8PT}VnG-~m>`mw81^>~ z_1fi;srlVY*~nyV19yZf(NZkcsBf`6aFJ0(@p1#|vCkrT#`pnveP5O!FOMWpgF2KC zyE3i5uRBoBMIOl=v{$Jc+Z>rfbH9al3Q4G?crHS{nDeQu%$My@Q&8lA-y2or&jEO6 ze>Naf_omZ*^h4EkS48_6gk(L?8=%jSETCm^t+uh(NuKv=mf0G0SeyrrFsjH5N1&dA z^}udM75Ot9aVO9p!jFMdFqiM?Fip>;A#cAq@?y}3UwPnFiZDVKq61#bcG{AArlB=IS2K;uSAB(l}Z;>Z~iZd^89lA=nb5WghFkk_y#GD6eOKM>G_p9qCU6fgke=9 zJ#oDlrL#OpM75Cw{*Wd)fK;a|63IRZX;l4e zD?vlI`zgM6w4e6-QmfeRjn_}jS-!x)Y;860iY85ljl`3=3+0e{3>(KR+UL#-F&bcbz_ zYxx|D*Iw{2Hph2k9D(<|%_bYe*BsK&o{gkk_G=8B-pKX^wlh^*zp(-q)ky9k-3IKo zPbMPe?)Hcqwr)sEgt(NkAF5}19{7I@zGYIzDR>*AIY=7OEU`J_W8`O-SxE3~^@pzY zexR`5&Jd(G>DTzoCkDfFsqBWgJ3Jp-DyS3=K_Z&n=WrJBrCG=dWAQdb^U-n_XM|3` zH8dEuR|ES8tlJayoV;3Kn^OoLdR<9^LxqMRt*cw~D#QWHQkb9N?Ex(SwlFCw#hi$@ zAzF=`=Pa@x;>uAd|MqdH=ff|P;gNXFD~TI=HO5H1mi_g}O=0opG`tVY5|WvRCQXdN zdoR`k7nl?kA&q4d(6dtxbN#IcVt4dweC83d$8#JELvrl852OzG15%>KB2*!7BfpED ziZ@OQ7>Z1k=;!zmvYm<2k55tUL9LK`@MOHtYaVe4xrP+mBm1LzW;)9o1Z32&Fghb8 zl=Sm6hsur#i-N6@s9cij8=kIFCU5k1}nCJRa{9 zejf1zJ(KLeiM9fs$A8>C0UMASCwts5p^?6w4_GI*D4 z#+|iB8X4VnA&>a3Bqi@~rO_U^5C3~{AyQvHD-We!YS~oD=fuzw349HT8h(^)bc?GI zw*);Ova>vewf`i6qwpq2b5EkA{l(Z1^;ug^_Ii3{GZ2`L|HaQEfw3b<-`l7Ka1xSk z)bF^KBPmbPc3fGeJ@6-jUyRRDWNoYjqWcD2VOCBuISOwY2KO=>$zz?gYMVMekc8nu zZ`C}~EzVjDQWYOS0*RWV<|_!ugZm0RE1|rp=2%m(FM;aaoP)yJwJ>Vx0j!nPV4Z zdVdy;4~61b-bZ|Z3T3jhWQ!W4F>(ik2K9*FM22*66gO-K+<>>Y{we9owVf(DBWXjf zMKTZix#EYptgYYA^+@{FEh9fdOOnX}2O%Lz#U!Qw3YlFym2m5bZH`Rp_+<+Cnsihh z@g+&av0`a~lu+ph^hHj7Ut~(WJ@Te#tW5A4Br%kGnTMprdc3x!bYm@+rZNC2-7|{veTvp1jg<4!bMDs;H2!Snft!(GU{GUbu~;gEt&pkmCuo=q ziE60>9tU=c<;W}+OX{dbhEC@pXm*V%ymsv0-*Y w+(VqjvGuG$jNhve`{aj+4QVD~@XjRv0iNtE`D`Wz$p8QV07*qoM6N<$f*%~=r2qf` literal 0 HcmV?d00001 diff --git a/lectures_on_knot_theory.tex b/lectures_on_knot_theory.tex index 8727e23..c9d37b2 100644 --- a/lectures_on_knot_theory.tex +++ b/lectures_on_knot_theory.tex @@ -1,8 +1,8 @@ \documentclass[12pt, twoside]{article} -\usepackage{comment} \usepackage{amssymb} \usepackage{amsmath} +\usepackage{xfrac} \usepackage[english]{babel} \usepackage{csquotes} \usepackage{graphicx} @@ -10,18 +10,25 @@ \usepackage{titlesec} \usepackage{comment} \usepackage{pict2e} - +\usepackage{hyperref} \usepackage{advdate} +\usepackage{amsthm} +\usepackage[useregional]{datetime2} -%... Set the first lecture date -\ThisYear{2019} -\ThisMonth{3} -\ThisDay{5} - +\hypersetup{ + colorlinks, + citecolor=black, + filecolor=black, + linkcolor=black, + urlcolor=black +} +\usepackage{fontspec} +\usepackage{mathtools} +\usepackage{unicode-math} \graphicspath{ {images/} } -\newtheorem{lemama}{Lemma} +\newtheorem{lemma}{Lemma} \newtheorem{fact}{Fact} \newtheorem{example}{Example} %\theoremstyle{definition} @@ -29,43 +36,66 @@ %\theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{proposition}{Proposition} +\newcommand{\contradiction}{% + \ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}% +} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%% For quotient groups / modding equiv relations +%%%% Use: \quot{A}{B} --> A/B +\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}} +%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\newcommand{\overbar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu} +\DeclareMathOperator{\Hom}{Hom} +\AtBeginDocument{\renewcommand{\setminus}{\mathbin{\backslash}}} \input{knots_macros} - -\titleformat{\section}{\normalfont \Large \bfseries} +\titleformat{\section}{\normalfont \large \bfseries} {Lecture\ \thesection}{2.3ex plus .2ex}{} \titlespacing{\subsection}{2em}{*1}{*1} \begin{document} +%\tableofcontents +%\newpage %\input{myNotes} \section{} +\begin{flushright} +\DTMdate{2019-02-25} +\end{flushright} \begin{definition} -A \textbf{knot} $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$: +A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$: \begin{align*} \varphi: S^1 \hookrightarrow S^3 \end{align*} \end{definition} +\noindent Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$. +\begin{example} +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +knot and not a knot (not inection), not smooth, +\end{example} \begin{definition} -\hfill\\ +%\hfill\\ Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function \begin{align*} &\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\ &\Phi(x, t) = \Phi_t(x) \end{align*} such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and -$\Phi_1 = \varphi_1$ -\\ -Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Phi$ such that: -\begin{align*} -&\Psi: S^3 \hookrightarrow S^3\\ -& \psi_0 = id\\ -& \psi_1(K_0) = K_1 -\end{align*} +$\Phi_1 = \varphi_1$. \end{definition} + +\begin{theorem} +Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi$ such that: +\begin{align*} +&\Psi: S^3 \hookrightarrow S^3,\\ +& \psi_0 = id ,\\ +& \psi_1(K_0) = K_1. +\end{align*} +\end{theorem} \begin{definition} A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$. \end{definition} @@ -73,21 +103,36 @@ A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\c A link with k - components is a (smooth) embedding of\\ $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$ \end{definition} \begin{example} -A trivial link with $3$ components\\ -A hopf link\\ -Whitehead link\\ +Links: +\begin{itemize} +\item +a trivial link with $3$ components: +\includegraphics[width=0.13\textwidth]{3unknots.png}, +\item +a hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png}, +\item +a Whitehead link: +\includegraphics[width=0.13\textwidth]{WhiteheadLink.png}, +\item Borromean link +\includegraphics[width=0.1\textwidth]{BorromeanRings.png}, +\end{itemize} \end{example} \begin{definition} -A link diagram is a picture over projection of a link is $S^3$/$R^3$ such that: +A link diagram is a picture over projection of a link is $S^3$($\mathbb{R}^3$) such that: \begin{enumerate} -\item is non degenerate -\item The double points are not degenerated -\item There are no triple point +\item +${D_{\pi}}_{\big|L}$ is non degenerate +\includegraphics[width=0.02\textwidth]{LinkDiagram1.png}, +\item the double points are not degenerate +\includegraphics[width=0.02\textwidth]{LinkDiagram2.png}, +\item there are no triple point +\includegraphics[width=0.03\textwidth]{LinkDiagram3.png}. \end{enumerate} \end{definition} There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\ Every link admits a link diagram. +\begin{comment} \subsection{Reidemeister moves} A Reidemeister move is one of the three types of operation on a link diagram as shown in Figure~\ref{fig: reidemeister}. @@ -106,14 +151,328 @@ The third Reidemeister move slides a strand over or under a crossing. Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane). \end{theorem} -\section{Z nagrania Kamili} + +\section{} \begin{example} \begin{align*} -&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{a polynomial} \\ +&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{ a polynomial} \\ &F(0) = 0 \end{align*} Fact (Milnor Singular Points of Complex Hypersurfaces): \end{example} -\section{} 25.03.19 +\end{comment} +An oriented knot is called negative amphichiral if the mirror image $m(K)$ if $K$ is equivalent the reverse knot of $K$. \\ +\begin{example}[Problem] +Prove that if $K$ is negative amphichiral, then $K \# K$ in +$\mathbf{C}$ +\end{example} + +\section{} +\begin{flushright} +\DTMdate{2019-03-04} +\end{flushright} +\begin{proof}("joke")\\ +Let $K \in S^3$ be a knot and $N$ be its tubular neighbourhood. +\begin{align*} +H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K) +\end{align*} +For a pair $(S^3, S^3 \setminus N)$ we have: +\begin{align*} +H^0(S^3) +\end{align*} +\end{proof} +\section{} +\begin{flushright} +\DTMdate{2019-03-18} +\end{flushright} +\begin{definition} +A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\ +A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$. +\end{definition} +\begin{definition} +Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in $S^3 \times [0, 1]$ such that +$\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\} $. +\end{definition} +Let $m(K)$ denote a mirror image of a knot $K$. +\begin{fact} +For any $K$, $K \# m(K)$ is slice. +\end{fact} +\begin{fact} +Concordance is an equivalence relation. +\end{fact} +\begin{fact} +If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then +$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$. +\end{fact} +\begin{fact} +$K \# m(K) \sim $ the unknot. +\end{fact} +\noindent +Let $\mathscr{C}$ denote all equivalent classes for knots. $\mathscr{C}$ is a group under taking connected sums, with neutral element (the class defined by) an unknot and inverse element (a class defined by) a mirror image.\\ +The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).\\ +\begin{example}[Problem] +Are there in concordance group torsion elements that are not $2$ torsion elements? (open) +\end{example} +\noindent +Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice. +\section{} +\begin{flushright} +\DTMdate{2019-04-08} +\end{flushright} +$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$. +$H_2$ is free (exercise). +\begin{align*} +H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincaré duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z}) +\end{align*} +Intersection form: +$H_2(X, \mathbb{Z}) \times +H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular. +\\ +Let $A$ and $B$ be closed, oriented surfaces in $X$. +\section{} +\begin{flushright} +\DTMdate{2019-05-20} +\end{flushright} +Let $K \subset S^3$ be a knot, \\ +$X = S^3 \setminus K$ - a knot complement, \\ +$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ - an infinite cyclic cover (universal abelian cover). +\begin{align*} +\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z} +\end{align*} +$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\ +$H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ - Alexander module, \\ +\begin{align*} +H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times +H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]} +\end{align*} + +\begin{fact} +\begin{align*} +H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong +\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n} +\end{align*} +where $V$ is a Seifert matrix. +\end{fact} +\begin{fact} +\begin{align*} +H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times +H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\ +(\alpha, \beta) &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta +\end{align*} +\end{fact} +\noindent +Note that $\mathbb{Z}$ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition. +\begin{align*} +&\xi \in S^1 \setminus \{ \pm 1\} +\quad +p_{\xi} = +(t - \xi)(1 - \xi^{-1}) t^{-1}\\ +&\xi \in \mathbb{R} \setminus \{ \pm 1\} +\quad +q_{\xi} = (t - \xi)(1 - \xi^{-1}) t^{-1}\\ +&\xi \notin \mathbb{R} \cup S^1 \quad +q_{\xi} = (t - \xi)(t - \overbar{\xi})(1 - \xi^{-1})(1 - \overbar{\xi}^{-1}) t^{-2}\\ +&\Lambda = \mathbb{R}[t, t^{-1}]\\ +&\text{Then: } H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}} +( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi} +\oplus +\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}} +(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi} +\end{align*} +We can make this composition orthogonal with respect to the Blanchfield paring. +\vspace{0.5cm}\\ +Historical remark: +\begin{itemize} +\item John Milnor, \textit{On isometries of inner product spaces}, 1969, +\item Walter Neumann, \textit{Invariants of plane curve singularities} +%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223–232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva +, 1983, +\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995, +%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41 +\item Maciej Borodzik, Stefan Friedl +\textit{The unknotting number and classical invariants II}, 2014. +\end{itemize} +\vspace{0.5cm} +Let $p = p_{\xi}$, $k\geq 0$. +\begin{align*} +\quot{\Lambda}{p^k \Lambda} \times +\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\ +(1, 1) &\mapsto \kappa\\ +\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\ +p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\ +\text{therfore } p^k \kappa &\in \Lambda\\ +\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\ +\end{align*} +$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\ +Let $h = p^k \kappa$. +\begin{example} +\begin{align*} +\phi_0 ((1, 1))=\frac{+1}{p}\\ +\phi_1 ((1, 1)) = \frac{-1}{p} +\end{align*} +$\phi_0$ and $\phi_1$ are not isomorphic. +\end{example} +\begin{proof} +Let $\Phi: +\quot{\Lambda}{p^k \Lambda} \longrightarrow + \quot{\Lambda}{p^k \Lambda}$ + be an isomorphism. \\ + Let: $\Phi(1) = g \in \lambda$ + \begin{align*} +\quot{\Lambda}{p^k \Lambda} +\xrightarrow{\enspace \Phi \enspace}& + \quot{\Lambda}{p^k \Lambda}\\ + \phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad + \phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).} + \end{align*} + Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then: + \begin{align*} +\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\ +\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\ +-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\ +-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\ +\text{evalueting at $\xi$: }\\ +\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction +\end{align*} +\end{proof} +????????????????????\\ +\begin{align*} +g &= \sum{g_i t^i}\\ +\overbar{g} &= \sum{g_i t^{-i}}\\ +\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\ +\overbar{g}(\xi) &=\overbar{g(\xi)} +\end{align*} +Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$. +\begin{theorem} +Every sesquilinear non-degenerate pairing +\begin{align*} +\quot{\Lambda}{p^k} \times \quot{\Lambda}{p} +\longleftrightarrow \frac{h}{p^k} +\end{align*} +is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number). +\end{theorem} +\begin{proof} +There are two steps of the proof: +\begin{enumerate} +\item +Reduce to the case when $h$ has a constant sign on $S^1$. +\item +Prove in the case, when $h$ has a constant sign on $S^1$. +\end{enumerate} +\begin{lemma} +If $p$ is a symmetric polynomial such that$p(\eta)\geq 0$ for all $\eta \in S^1$, then $p$ can be written as a product $p = g \overbar{g}$ for some polynomial $g$. +\end{lemma} +\begin{proof}[Sketch of proof] +Induction over $\deg p$.\\ +Let $\zeta \notin S^1$ be a root of $p$, $p \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that +\begin{align*} +(t - \zeta) \mid p,\\ +(t - \overbar{\zeta}) \mid p,\\ +(t^{-1} - \zeta) \mid p,\\ +(t^{-1} - \overbar{\zeta}) \mid p,\\ +\end{align*} +therefore: +\begin{align*} +p^{\prime} = \frac{p}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\ +p^{\prime} = g^{\prime}\overbar{g}\\ +\text{we set } g = g^{\prime}(t - \zeta)(t - \overbar{\zeta}\\ +p = g \overbar{g} +\end{align*} +Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid p$ (at least - otherwise it would change sign). +\begin{align*} +p^{\prime} &= \frac{p}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\ +g &= (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}\\ +(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k} \quad \text{ isometry whenever $g$ is coprime with $p$.} +\end{align*} +\end{proof} +\begin{lemma}\label{L:coprime polynomials} +Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist + symmetric polynomials $P$, $Q$ such that + $P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$. +\end{lemma} +\begin{proof}[Idea of proof] +For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial . +\\??????????????????????????\\ +\begin{align*} +(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}\\ +g\overbar{g} h + p^k\omega = 1 +\end{align*} +Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied, +\begin{align*} +Ph + Qp^{2k} = 1\\ +p>0 \Rightarrow p = g \overbar{g}\\ +p = (t - \xi)(t - \overbar{\xi})t^{-1}\\ +\text{so } p \geq 0 \text{ on } S^1\\ +p(t) = 0 \Leftrightarrow +t = \xi or t = \overbar{\xi}\\ +h(\xi) > 0\\ +h(\overbar{\xi})>0\\ +g\overbar{g}h + Qp^{2k} = 1\\ +g\overbar{g}h \equiv 1 \mod{p^{2k}}\\ +g\overbar{g} \equiv 1 \mod{p^k} +\end{align*} +???????????????????????????????\\ +If $p$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is. +\end{proof} +?????????????????\\ +\begin{align*} +(\quot{\Lambda}{p_{\xi}^k} \times +\quot{\Lambda}{p_{\xi}^k}) &\longrightarrow +\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\ +(\quot{\Lambda}{q_{\xi}^k} \times +\quot{\Lambda}{q_{\xi}^k}) &\longrightarrow +\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\ +\end{align*} +??????????????????? 1 ?? epsilon?\\ +\begin{theorem}(Matumoto, Conway-Borodzik-Politarczyk) +Let $K$ be a knot, +\begin{align*} +H_1(\widetilde{X}, \Lambda) \times +H_1(\widetilde{X}, \Lambda) += \bigoplus_{\substack{k, \xi, \epsilon\\ \xi in S^1}} +(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta} +(\quot{\Lambda}{p_{\xi}^k})^{m_k} +\end{align*} +\begin{align*} +\text{Let } \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}} +\sigma(e^{2\pi i \varepsilon} \xi) +- \sigma(e^{-2\pi i \varepsilon} \xi),\\ +\text{then } +\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0} +\sigma(e^{2\pi i \varepsilon}\xi) ++ \sigma(e^{-2 \pi i \varepsilon}\xi) +\end{align*} +The jump at $\xi$ is equal to +$2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum\limits_{k_i \text{even}} \epsilon_i$. +%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$ +\end{theorem} +\end{proof} +\section{} +\begin{flushright} +\DTMdate{2019-05-27} +\end{flushright} +.... +\begin{definition} +A square hermitian matrix $A$ of size $n$. +\end{definition} + +field of fractions + +\section{} +In other words:\\ +Choose a basis $(b_1, ..., b_i)$ \\ +???\\ +of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form: +\begin{align*} +\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}). +\end{align*} +In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z}$.\\ +That means - what is happening on boundary is a measure of degeneracy. +\\ +\vspace{1cm} +\begin{align*} +H_1(Y, \mathbb{Z}) \times +H_1(Y, \mathbb{Z}) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}} \text{ - a linking form} +\end{align*} \end{document} \ No newline at end of file