some inkspace pictures
@ -1,824 +0,0 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
|
||||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
|
||||||
|
|
||||||
<svg
|
|
||||||
xmlns:osb="http://www.openswatchbook.org/uri/2009/osb"
|
|
||||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
|
||||||
xmlns:cc="http://creativecommons.org/ns#"
|
|
||||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
|
||||||
xmlns:svg="http://www.w3.org/2000/svg"
|
|
||||||
xmlns="http://www.w3.org/2000/svg"
|
|
||||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
|
||||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
|
||||||
width="210mm"
|
|
||||||
height="297mm"
|
|
||||||
viewBox="0 0 744.09448819 1052.3622047"
|
|
||||||
id="svg2"
|
|
||||||
version="1.1"
|
|
||||||
inkscape:version="0.91 r13725"
|
|
||||||
sodipodi:docname="ball_4_v1.svg">
|
|
||||||
<defs
|
|
||||||
id="defs4">
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker11429"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path11431"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker10933"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path10935"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker10449"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path10451"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="StopM"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="StopM"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6505"
|
|
||||||
d="M 0.0,5.65 L 0.0,-5.65"
|
|
||||||
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692"
|
|
||||||
transform="scale(0.4)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker9447"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path9449"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="StopL"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="StopL"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6502"
|
|
||||||
d="M 0.0,5.65 L 0.0,-5.65"
|
|
||||||
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692"
|
|
||||||
transform="scale(0.8)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
style="overflow:visible"
|
|
||||||
id="DistanceStart"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="DistanceStart"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<g
|
|
||||||
id="g2300"
|
|
||||||
style="stroke:#fc0000;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692">
|
|
||||||
<path
|
|
||||||
style="fill:#fc0000;stroke:#fc0000;stroke-width:1.15;stroke-linecap:square;stroke-opacity:0.9807692;fill-opacity:0.9807692"
|
|
||||||
d="M 0,0 L 2,0"
|
|
||||||
id="path2306" />
|
|
||||||
<path
|
|
||||||
style="fill:#fc0000;fill-rule:evenodd;stroke:#fc0000;stroke-opacity:0.9807692;fill-opacity:0.9807692"
|
|
||||||
d="M 0,0 L 13,4 L 9,0 13,-4 L 0,0 z "
|
|
||||||
id="path2302" />
|
|
||||||
<path
|
|
||||||
style="fill:#fc0000;stroke:#fc0000;stroke-width:1;stroke-linecap:square;stroke-opacity:0.9807692;fill-opacity:0.9807692"
|
|
||||||
d="M 0,-4 L 0,40"
|
|
||||||
id="path2304" />
|
|
||||||
</g>
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="SquareS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="SquareS"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6409"
|
|
||||||
d="M -5.0,-5.0 L -5.0,5.0 L 5.0,5.0 L 5.0,-5.0 L -5.0,-5.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="DotS"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6400"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotM"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="DotM"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6397"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.4) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Send"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow2Send"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6366"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#fc0000;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.3) rotate(180) translate(-2.3,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotL"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="DotL"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6394"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.8) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<linearGradient
|
|
||||||
id="linearGradient6028"
|
|
||||||
osb:paint="solid">
|
|
||||||
<stop
|
|
||||||
style="stop-color:#ffffff;stop-opacity:1;"
|
|
||||||
offset="0"
|
|
||||||
id="stop6030" />
|
|
||||||
</linearGradient>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible;"
|
|
||||||
id="marker9485"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Send">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) rotate(180) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path9487" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Send"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Send"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4342"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) rotate(180) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker8725"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path8727" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker8511"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path8513"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker8333"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path8335" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7839"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7841"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7685"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7687"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7537"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7539"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7475"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7477"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker7191"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path7193" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mend"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6495"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6497"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#e30000;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) rotate(180) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Sstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4339"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6279"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6281"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6149"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6151"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6049"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6051"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker5867"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path5869"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker5529"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path5531" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker5441"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path5443" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker4911"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4913"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mend"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow2Mend"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4354"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#00d800;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) rotate(180) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker4699"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4701"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#00d800;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow2Mstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4351"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#00d800;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Mstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Mstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4333"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.4) translate(10,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Lstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Lstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4327"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.8) translate(12.5,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Lend"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Lend"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4330"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.8) rotate(180) translate(12.5,0)" />
|
|
||||||
</marker>
|
|
||||||
<pattern
|
|
||||||
patternUnits="userSpaceOnUse"
|
|
||||||
width="138.10021"
|
|
||||||
height="139.11037"
|
|
||||||
patternTransform="translate(168.84081,1754.5635)"
|
|
||||||
id="pattern6034">
|
|
||||||
<ellipse
|
|
||||||
ry="67.491684"
|
|
||||||
rx="66.986603"
|
|
||||||
cy="69.555183"
|
|
||||||
cx="69.050102"
|
|
||||||
id="path3482"
|
|
||||||
style="fill:none;fill-opacity:1;stroke:#00ef00;stroke-width:4.12699986;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
|
||||||
</pattern>
|
|
||||||
</defs>
|
|
||||||
<sodipodi:namedview
|
|
||||||
id="base"
|
|
||||||
pagecolor="#ffffff"
|
|
||||||
bordercolor="#666666"
|
|
||||||
borderopacity="1.0"
|
|
||||||
inkscape:pageopacity="0.0"
|
|
||||||
inkscape:pageshadow="2"
|
|
||||||
inkscape:zoom="0.91545961"
|
|
||||||
inkscape:cx="352.42389"
|
|
||||||
inkscape:cy="810.24624"
|
|
||||||
inkscape:document-units="px"
|
|
||||||
inkscape:current-layer="layer1"
|
|
||||||
showgrid="false"
|
|
||||||
inkscape:window-width="1386"
|
|
||||||
inkscape:window-height="855"
|
|
||||||
inkscape:window-x="0"
|
|
||||||
inkscape:window-y="1"
|
|
||||||
inkscape:window-maximized="1"
|
|
||||||
inkscape:snap-global="true"
|
|
||||||
inkscape:snap-nodes="false" />
|
|
||||||
<metadata
|
|
||||||
id="metadata7">
|
|
||||||
<rdf:RDF>
|
|
||||||
<cc:Work
|
|
||||||
rdf:about="">
|
|
||||||
<dc:format>image/svg+xml</dc:format>
|
|
||||||
<dc:type
|
|
||||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
|
||||||
<dc:title></dc:title>
|
|
||||||
</cc:Work>
|
|
||||||
</rdf:RDF>
|
|
||||||
</metadata>
|
|
||||||
<g
|
|
||||||
inkscape:label="Layer 1"
|
|
||||||
inkscape:groupmode="layer"
|
|
||||||
id="layer1">
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:4.10533857;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 949.56479,1396.7109 c 3.46665,2.894 6.60268,6.064 9.35673,9.4672 2.75405,3.4032 5.12614,7.0395 7.06488,10.8661 1.93874,3.8266 3.44416,7.8434 4.46488,12.0077 1.02072,4.1642 1.55676,8.4758 1.55676,12.892 0,8.8323 -2.14417,17.2465 -6.02167,24.8997 -3.87749,7.6531 -9.48829,14.5452 -16.42159,20.3333 -6.93332,5.788 -15.1891,10.472 -24.35651,13.7091 -9.1674,3.237 -19.24644,5.027 -29.82629,5.027 -10.57984,0 -20.6589,-1.79 -29.8263,-5.027 -9.16743,-3.237 -17.4232,-7.921 -24.35649,-13.7091 -6.93327,-5.7881 -12.54407,-12.6802 -16.42158,-20.3333 -3.87749,-7.6532 -6.02167,-16.0674 -6.02168,-24.8997 0,-8.8323 2.14416,-17.2466 6.02165,-24.8997 3.87749,-7.6531 9.4883,-14.5453 16.4216,-20.3333 6.93332,-5.788 15.18911,-10.4721 24.35651,-13.7092 9.1674,-3.2369 19.24645,-5.027 29.82629,-5.027 5.28993,0 10.45465,0.4475 15.44281,1.2996 4.98819,0.8521 9.7998,2.1089 14.3835,3.7274 4.58372,1.6186 8.93951,3.5988 13.01604,5.898"
|
|
||||||
id="path3480"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="cssssssssssssssssssc"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/Hopf.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6041"
|
|
||||||
d="m 1174.1448,1234.3679 c 0,16.3937 -6.4347,31.2354 -16.8382,41.9786 -10.4036,10.7433 -24.7759,17.3881 -40.6512,17.3881 -15.8752,0 -30.2476,-6.6448 -40.6511,-17.3881 -10.4035,-10.7432 -16.8383,-25.5849 -16.8383,-41.9786 0,-16.3937 6.4347,-31.2354 16.8383,-41.9786 10.4035,-10.7433 24.7759,-17.3881 40.6511,-17.3881 31.7505,0 57.4894,26.5793 57.4894,59.3667 z"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#18e404;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 908.98533,1233.4985 c -10e-6,16.3937 -6.43473,31.2354 -16.83825,41.9786 -10.40354,10.7433 -24.77587,17.3881 -40.65113,17.3881 -15.87526,0 -30.2476,-6.6448 -40.65114,-17.3881 -10.40353,-10.7432 -16.83825,-25.5849 -16.83825,-41.9786 -1e-5,-16.3937 6.43471,-31.2354 16.83825,-41.9786 10.40354,-10.7432 24.77588,-17.3881 40.65114,-17.3881 31.7505,0 57.4894,26.5793 57.48938,59.3667 z"
|
|
||||||
id="path6045"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6047"
|
|
||||||
d="m 908.98533,1233.4985 c -10e-6,16.3937 -6.43473,31.2354 -16.83825,41.9786 -10.40354,10.7433 -24.77587,17.3881 -40.65113,17.3881 -15.87526,0 -30.2476,-6.6448 -40.65114,-17.3881 -10.40353,-10.7432 -16.83825,-25.5849 -16.83825,-41.9786 -1e-5,-16.3937 6.43471,-31.2354 16.83825,-41.9786 10.40354,-10.7432 24.77588,-17.3881 40.65114,-17.3881 31.7505,0 57.4894,26.5793 57.48938,59.3667 z"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#1aa0ed;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 1044.0284,1235.5114 c 0,16.3937 -6.4347,31.2354 -16.8382,41.9787 -10.4036,10.7432 -24.7759,17.388 -40.65118,17.388 -15.87525,0 -30.2476,-6.6448 -40.65113,-17.388 -10.40353,-10.7433 -16.83825,-25.585 -16.83826,-41.9787 0,-16.3936 6.43472,-31.2353 16.83825,-41.9786 10.40354,-10.7432 24.77589,-17.3881 40.65114,-17.3881 31.75048,0 57.48938,26.5794 57.48938,59.3667 z"
|
|
||||||
id="path6049"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="cssssssssssssc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6052"
|
|
||||||
d="m 935.77533,1487.7729 c -6.93327,-5.788 -12.54408,-12.6802 -16.42157,-20.3333 -3.87751,-7.6532 -6.02167,-16.0674 -6.02169,-24.8997 0,-8.8323 2.14415,-17.2465 6.02165,-24.8997 3.87749,-7.6531 9.4883,-14.5452 16.4216,-20.3333 6.93332,-5.788 15.1891,-10.472 24.35652,-13.7091 9.16741,-3.237 19.24645,-5.027 29.82629,-5.027 21.15967,0 40.31627,7.16 54.18287,18.7361 13.8665,11.5761 22.4432,27.5684 22.4432,45.233 0,8.8323 -2.1442,17.2465 -6.0217,24.8997 -3.8775,7.6533 -9.4883,14.5453 -16.4216,20.3333 -6.9333,5.788 -15.1891,10.4721 -24.3565,13.7092 -9.1674,3.2369 -19.2464,5.027 -29.82627,5.027 -10.57985,0 -20.6589,-1.7901 -29.82631,-5.027"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#1aa0ed;stroke-width:4.10533857;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/Hopf.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/BorromeanRings.png"
|
|
||||||
sodipodi:nodetypes="cssssssssccssssssssssssssc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6062"
|
|
||||||
d="m 939.50185,1025.3518 c 0,4.0985 -0.40217,8.0999 -1.16797,11.9645 -0.76582,3.8646 -1.89526,7.5925 -3.34982,11.1438 -1.45457,3.5512 -3.23423,6.9259 -5.30049,10.0843 -2.06625,3.1583 -4.41908,6.1002 -7.01998,8.786 -2.60089,2.6858 -5.44983,5.1155 -8.50829,7.2492 -3.05845,2.1337 -6.32643,3.9716 -9.76539,5.4736 -3.43895,1.5021 -7.0489,2.6684 -10.79131,3.4592 -3.74242,0.7909 -7.61729,1.2062 -11.5861,1.2062 -3.96882,0 -7.84371,-0.4153 -11.58614,-1.2062 m -29.06503,-16.182 c -2.60088,-2.6858 -4.95371,-5.6277 -7.01996,-8.786 -2.06625,-3.1584 -3.84592,-6.5331 -5.30048,-10.0843 -1.45455,-3.5513 -2.58401,-7.2791 -3.34982,-11.1438 -0.76582,-3.8646 -1.168,-7.866 -1.168,-11.9645 0,-4.0984 0.40217,-8.0998 1.16799,-11.9644 0.76582,-3.8647 1.89527,-7.5925 3.34983,-11.1437 1.45458,-3.55132 3.23425,-6.926 5.3005,-10.0843 2.06625,-3.15838 4.41907,-6.10031 7.01994,-8.78611 2.60091,-2.6858 5.44985,-5.11554 8.50831,-7.24922 3.05845,-2.13376 6.32643,-3.97155 9.76539,-5.47359 3.43898,-1.50204 7.04893,-2.66841 10.79135,-3.4592 3.74241,-0.79085 7.6173,-1.20613 11.58612,-1.20613 7.93761,0 15.4995,1.66118 22.37743,4.66533 6.87793,3.00408 13.0719,7.35107 18.27366,12.72274 5.20177,5.3716 9.41133,11.76788 12.32046,18.87048"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#18e404;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/BorromeanRings.png"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 906.58829,1089.7057 c -1.45457,3.5512 -3.23424,6.9259 -5.30049,10.0842 -2.06625,3.1584 -4.41908,6.1003 -7.01996,8.7861 -2.60091,2.6858 -5.44985,5.1155 -8.5083,7.2493 -3.05846,2.1337 -6.32643,3.9715 -9.76539,5.4735 -3.43897,1.5022 -7.04892,2.6685 -10.79133,3.4592 -3.74241,0.7909 -7.61729,1.2062 -11.5861,1.2062 -3.96882,0 -7.8437,-0.4153 -11.58612,-1.2062 -3.74242,-0.7907 -7.35238,-1.957 -10.79135,-3.4592 -3.43896,-1.502 -6.70694,-3.3398 -9.7654,-5.4735 -3.05846,-2.1337 -5.9074,-4.5634 -8.50828,-7.2493 -2.60086,-2.6858 -4.95368,-5.6277 -7.01993,-8.7861 -2.06625,-3.1583 -3.84593,-6.533 -5.3005,-10.0842 -1.45456,-3.5513 -2.58402,-7.2791 -3.34984,-11.1437 -0.76581,-3.8647 -1.16799,-7.8661 -1.16799,-11.9646 0,-4.0984 0.40217,-8.0998 1.16798,-11.9644 0.76581,-3.8646 1.89525,-7.5925 3.34982,-11.1437 1.45457,-3.5513 3.23424,-6.926 5.30049,-10.0843 2.06625,-3.1584 4.41908,-6.1003 7.01997,-8.7861 m 29.06502,-16.182 c 3.74242,-0.7909 7.61731,-1.2061 11.58613,-1.2061 7.93762,0 15.49952,1.6612 22.37746,4.6653 6.87794,3.0041 13.07191,7.3511 18.27368,12.7227 5.20178,5.3716 9.41135,11.7679 12.32047,18.8704 2.90911,7.1025 4.51778,14.9114 4.51777,23.1082"
|
|
||||||
id="path6066"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="csssssssssssssssssccssssc" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/BorromeanRings.png"
|
|
||||||
sodipodi:nodetypes="csssssssssssssccsssssssc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6068"
|
|
||||||
d="m 899.88425,1009.01 c 3.74242,-0.7909 7.61731,-1.2062 11.58614,-1.2062 7.93763,0 15.49953,1.6612 22.37746,4.6654 6.87793,3.0041 13.0719,7.3511 18.27366,12.7228 5.20176,5.3716 9.41132,11.7679 12.32043,18.8703 2.90912,7.1026 4.5178,14.9114 4.5178,23.1083 0,4.0984 -0.40217,8.0998 -1.16798,11.9645 -0.76581,3.8646 -1.89526,7.5924 -3.34982,11.1437 -1.45454,3.5513 -3.23421,6.926 -5.30047,10.0843 -2.06626,3.1583 -4.4191,6.1003 -7.01999,8.7861 -2.60089,2.6858 -5.44982,5.1154 -8.50827,7.2491 -3.05846,2.1338 -6.32643,3.9716 -9.76539,5.4736 -3.43898,1.5021 -7.04893,2.6684 -10.79135,3.4592 -3.74241,0.7909 -7.61728,1.2061 -11.58608,1.2061 -3.96883,0 -7.84372,-0.4152 -11.58614,-1.2061 m -29.06503,-16.1819 c -2.60087,-2.6858 -4.95371,-5.6278 -7.01996,-8.7861 -2.06625,-3.1583 -3.84594,-6.533 -5.3005,-10.0843 -1.45458,-3.5513 -2.58402,-7.2791 -3.34983,-11.1437 -0.76581,-3.8647 -1.16797,-7.8661 -1.16797,-11.9645 0,-4.0984 0.40217,-8.0998 1.16799,-11.9645 0.76581,-3.8646 1.89526,-7.5924 3.34983,-11.1437 1.45457,-3.5513 3.23425,-6.9259 5.30049,-10.0843 2.06625,-3.1583 4.41908,-6.1003 7.01995,-8.7861"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#1aa0ed;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:1.63528061;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 1167.8613,1047.1051 c 0.973,-4.113 1.484,-8.4667 1.484,-12.7334 0,-4.2666 -0.5014,-8.5549 -1.484,-12.7333 -0.9547,-4.0594 -2.3989,-8.0494 -4.2565,-11.8599 -1.8306,-3.7551 -4.1068,-7.3622 -6.735,-10.73228 -2.6163,-3.35474 -5.6216,-6.49712 -8.9198,-9.35068 -3.3079,-2.86189 -6.9441,-5.45765 -10.8111,-7.71505 -3.9058,-2.28009 -8.0773,-4.2449 -12.4083,-5.82533 -4.4136,-1.61059 -9.0257,-2.85655 -13.7119,-3.68151 -4.8353,-0.85119 -9.7904,-1.28363 -14.7219,-1.28363 -4.9314,-10e-6 -9.8866,0.43243 -14.7218,1.28361 -4.6863,0.82496 -9.2983,2.07091 -13.712,3.6815 -4.3309,1.58042 -8.5024,3.54523 -12.4083,5.82532 -3.867,2.25742 -7.5031,4.85319 -10.811,7.71509 -3.2983,2.85357 -6.3036,5.99596 -8.9199,9.3507 -2.6282,3.37006 -4.9044,6.97716 -6.735,10.73226 -1.8576,3.8105 -3.3018,7.8005 -4.2565,11.8599 -0.9826,4.1784 -1.4841,8.4667 -1.4841,12.7333 0,4.2667 0.5015,8.5549 1.4841,12.7334 0.9546,4.0593 2.3988,8.0494 4.2564,11.8598 1.8306,3.7551 4.1068,7.3622 6.7351,10.7323 2.6163,3.3547 5.6216,6.4971 8.9199,9.3507 3.3079,2.8619 6.944,5.4576 10.811,7.715 3.9059,2.2801 8.0774,4.2449 12.4083,5.8253 4.4137,1.6106 9.0257,2.8566 13.712,3.6816 4.8352,0.8511 9.7943,1.1128 14.7218,1.2836 9.4725,0.3283 18.9617,-0.165 28.4338,-0.501 8.1765,-0.29 18.048,3.1088 24.5042,-1.3071 3.0205,-2.066 4.2981,-6.3267 3.4833,-9.6121 -1.0422,-4.2022 -5.3756,-7.8537 -9.8738,-9.5533 m -19.429,0.3619 c -9.6932,1.5731 -18.0538,7.7067 -27.8373,8.7647 -3.9426,0.4263 -7.9639,-0.3493 -11.8585,-1.0366 -3.7752,-0.6662 -7.4903,-1.6725 -11.045,-2.9728 -3.4894,-1.2764 -6.8495,-2.8632 -9.995,-4.7039 -3.1157,-1.8232 -6.0444,-3.9195 -8.7084,-6.2299 -2.6574,-2.3047 -5.078,-4.8424 -7.185,-7.5507 -2.1176,-2.7218 -3.9508,-5.6346 -5.4251,-8.6663 -1.4966,-3.0774 -2.6597,-6.2993 -3.4286,-9.5768 -0.7916,-3.3743 -1.1954,-6.8369 -1.1954,-10.2821 0,-3.4452 0.4038,-6.9078 1.1954,-10.2822 0.7689,-3.2775 1.932,-6.4994 3.4286,-9.5768 1.4744,-3.0316 3.3075,-5.9444 5.4251,-8.6663 2.107,-2.7083 4.5276,-5.2459 7.185,-7.55065 2.664,-2.31039 5.5927,-4.40671 8.7083,-6.22993 3.1456,-1.84073 6.5057,-3.42756 9.9951,-4.70393 3.5547,-1.3003 7.2698,-2.30661 11.045,-2.9728 3.8946,-0.68725 7.8861,-1.03653 11.8585,-1.03653 3.9724,0 7.964,0.34928 11.8585,1.03653 3.7753,0.66621 7.4904,1.67253 11.045,2.97282 3.4893,1.27638 6.8494,2.86322 9.995,4.70394 3.1157,1.82321 6.0444,3.91952 8.7083,6.2299 2.6575,2.30475 5.078,4.84235 7.185,7.55065 2.1176,2.7219 3.9508,5.6347 5.4252,8.6663 1.4965,3.0774 2.6596,6.2993 3.4285,9.5768 0.7916,3.3744 1.1955,6.837 1.1955,10.2822 0,3.4452 -0.4116,6.9609 -1.1955,10.2821 m 12.4145,13.549 c 3.0267,0.1562 -2.0231,13.4528 -5.7802,18.483 m -15.0149,10.6142 c -4.6214,1.1543 -6.7171,0.3552 -9.4811,-1.0342 -2.009,-1.0098 -4.1193,-2.8071 -4.2286,-4.8378 -0.1306,-2.4279 2.9415,-4.118 4.4123,-6.177 1.4706,-2.059 2.9414,-4.118 4.4122,-6.177 1.4706,-2.059 3.0096,-4.0817 4.4121,-6.177 1.9024,-2.8419 3.9364,-5.6144 5.4252,-8.6664"
|
|
||||||
id="path6074"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="caaaaaaaaaaaaaaaaaaaaaaaaaaaaccaaaaaaaaaaaaaaaaaaaaaaaaaccccaaaaac"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/WhiteheadLink.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<g
|
|
||||||
id="g6082" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/WhiteheadLink.png"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#18e404;stroke-width:1.93287003;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 1161.5088,1013.868 c -1.9457,-0.4453 -3.873,-0.8542 -5.7768,-1.227 -1.9037,-0.3727 -3.7838,-0.7092 -5.635,-1.0098 m -10.7175,-1.373 c -1.7143,-0.1573 -3.3891,-0.2791 -5.019,-0.3655 -1.63,-0.086 -3.2151,-0.1375 -4.7502,-0.1533 -1.535,-0.016 -3.02,0 -4.4495,0.058 -5.7183,0.2174 -10.55,0.9946 -14.1567,2.3186 -3.6066,1.3241 -5.988,3.1951 -6.8054,5.6 -0.4086,1.2025 -0.4069,2.4816 -0.029,3.8155 0.3776,1.3339 1.1313,2.7227 2.2263,4.1446 1.0951,1.4219 2.5317,2.8768 4.2754,4.3432 1.7437,1.4663 3.7944,2.9441 6.1179,4.4114 2.3235,1.4674 4.9196,2.9244 7.754,4.3492 2.8344,1.4249 5.907,2.8177 9.1835,4.1567 3.2765,1.3389 6.7568,2.624 10.4065,3.8335 3.6498,1.2095 7.469,2.3435 11.4231,3.3801 3.9542,1.0366 7.8562,1.9269 11.6636,2.6723 3.8075,0.7455 7.5205,1.3462 11.0965,1.8037 3.576,0.4575 7.0152,0.7719 10.2751,0.9447 3.2599,0.1728 6.3406,0.2041 9.1998,0.095 2.859,-0.1087 5.4965,-0.3573 7.8701,-0.7443 2.3735,-0.387 4.4831,-0.9123 6.2864,-1.5743 1.8034,-0.662 3.3004,-1.4608 4.4487,-2.3946 1.1483,-0.9339 1.948,-2.0029 2.3567,-3.2054 0.4087,-1.2025 0.407,-2.4815 0.029,-3.8154 -0.3776,-1.3339 -1.1311,-2.7227 -2.2263,-4.1446 -1.095,-1.4218 -2.5316,-2.8768 -4.2752,-4.3432 -1.7437,-1.4663 -3.7946,-2.9441 -6.1181,-4.4114 -2.3234,-1.4674 -4.9195,-2.9244 -7.754,-4.3493 -2.8343,-1.4248 -5.907,-2.8176 -9.1835,-4.1566 -3.2764,-1.3389 -6.7568,-2.624 -10.4065,-3.8335 -0.9124,-0.3024 -1.8355,-0.6001 -2.7685,-0.8927 -0.9331,-0.2926 -1.8763,-0.5801 -2.8289,-0.8622 -0.9526,-0.2822 -1.9148,-0.5589 -2.8859,-0.8299"
|
|
||||||
id="path6080"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="csccssssssssssssssssssssssssssssssc" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
style="fill:#ffe6d5;fill-opacity:1;stroke:#18e404;stroke-width:6.61493587;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 620.56777,160.39803 c 0,31.56035 -12.4633,60.13273 -32.61397,80.81496 -20.15049,20.68237 -47.98832,33.47473 -78.73691,33.47473 -30.74876,0 -58.58638,-12.79236 -78.73687,-33.47473 -20.15065,-20.68223 -32.61401,-49.25461 -32.61401,-80.81496 0,-31.56022 12.46336,-60.13261 32.61379,-80.814847 20.15071,-20.6825 47.98833,-33.47472 78.73709,-33.47472 61.49736,0 111.35088,51.16912 111.35088,114.289567 z"
|
|
||||||
id="path6085"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="ssssssss" />
|
|
||||||
<flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot6095"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
transform="matrix(0.8704838,0,0,1.7921135,-489.17721,561.5534)"><flowRegion
|
|
||||||
id="flowRegion6097"><rect
|
|
||||||
id="rect6099"
|
|
||||||
width="485.07117"
|
|
||||||
height="203.91527"
|
|
||||||
x="1078.2792"
|
|
||||||
y="-251.45964"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
|
||||||
id="flowPara3417">$B^4$</flowPara><flowPara
|
|
||||||
id="flowPara3419" /></flowRoot> <flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot6107"
|
|
||||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px"><flowRegion
|
|
||||||
id="flowRegion6109"><rect
|
|
||||||
id="rect6111"
|
|
||||||
width="593.20807"
|
|
||||||
height="435.63715"
|
|
||||||
x="886.72241"
|
|
||||||
y="-381.22391" /></flowRegion><flowPara
|
|
||||||
id="flowPara6113" /></flowRoot> <path
|
|
||||||
style="fill:none;fill-rule:evenodd;stroke:#fc0000;stroke-width:5.94736767;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:0.9807692;marker-start:url(#marker11429);marker-end:url(#marker11429)"
|
|
||||||
d="m 606.9724,106.44007 c 0,0 -10.30864,9.51604 -13.66191,15.59131 -4.95103,8.97004 -8.96713,19.24568 -8.84005,29.54142 0.10675,8.64915 3.22242,17.50049 8.03642,24.61786 5.30196,7.8388 21.69832,18.05308 21.69832,18.05308"
|
|
||||||
id="path5440"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="caaac" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path5442"
|
|
||||||
d="m 256.30112,152.34058 c 0,31.56036 -12.46331,60.13274 -32.61397,80.81497 -20.15048,20.68236 -47.98831,33.47472 -78.7369,33.47472 -30.74877,0 -58.586395,-12.79236 -78.736875,-33.47472 -20.15067,-20.68223 -32.61401,-49.25461 -32.61401,-80.81497 0,-31.56021 12.46334,-60.132611 32.61379,-80.814851 20.1507,-20.68251 47.988325,-33.47472 78.737095,-33.47472 61.49735,0 111.35087,51.16912 111.35087,114.289571 z"
|
|
||||||
style="fill:#ffe6d5;fill-opacity:1;stroke:#18e404;stroke-width:6.61493587;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<flowRoot
|
|
||||||
transform="matrix(0.8704838,0,0,1.7921135,-853.44382,553.49592)"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
id="flowRoot5444"
|
|
||||||
xml:space="preserve"><flowRegion
|
|
||||||
id="flowRegion5446"><rect
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start"
|
|
||||||
y="-251.45964"
|
|
||||||
x="1078.2792"
|
|
||||||
height="203.91527"
|
|
||||||
width="485.07117"
|
|
||||||
id="rect5448" /></flowRegion><flowPara
|
|
||||||
id="flowPara5450">$B^4$</flowPara><flowPara
|
|
||||||
id="flowPara5452" /></flowRoot> <path
|
|
||||||
sodipodi:nodetypes="czzzc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path5454"
|
|
||||||
d="m 242.70576,98.382609 c 0,0 7.76475,15.332791 9.64369,24.617871 1.87895,9.28508 3.3081,16.27419 4.01821,23.79725 0.7101,7.52306 -0.40839,15.69667 -0.80364,21.33548 -0.39525,5.6388 -5.6255,18.05309 -5.6255,18.05309"
|
|
||||||
style="fill:none;fill-rule:evenodd;stroke:#fc0000;stroke-width:5.94695854;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:0.9807692;marker-start:url(#marker10933);marker-end:url(#DotS)" />
|
|
||||||
<flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot5468"
|
|
||||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px;-inkscape-font-specification:'sans-serif, Normal';font-stretch:normal;font-variant:normal;text-anchor:start;text-align:start;writing-mode:lr;"><flowRegion
|
|
||||||
id="flowRegion5470"><rect
|
|
||||||
id="rect5472"
|
|
||||||
width="120.15823"
|
|
||||||
height="41.509205"
|
|
||||||
x="535.25024"
|
|
||||||
y="108.57398"
|
|
||||||
style="-inkscape-font-specification:'sans-serif, Normal';font-family:sans-serif;font-weight:normal;font-style:normal;font-stretch:normal;font-variant:normal;font-size:40px;text-anchor:start;text-align:start;writing-mode:lr;line-height:125%;" /></flowRegion><flowPara
|
|
||||||
id="flowPara5476">$\Sigma$</flowPara></flowRoot> <flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot5478"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
transform="matrix(0.73570134,0,0,0.75122167,-126.1657,50.463889)"><flowRegion
|
|
||||||
id="flowRegion5480"><rect
|
|
||||||
id="rect5482"
|
|
||||||
width="157.29803"
|
|
||||||
height="85.203102"
|
|
||||||
x="530.88086"
|
|
||||||
y="110.75867"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
|
||||||
id="flowPara5486">$\Sigma$</flowPara></flowRoot> <text
|
|
||||||
xml:space="preserve"
|
|
||||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
x="633.56152"
|
|
||||||
y="121.68215"
|
|
||||||
id="text5488"
|
|
||||||
sodipodi:linespacing="125%"><tspan
|
|
||||||
sodipodi:role="line"
|
|
||||||
id="tspan5490"
|
|
||||||
x="633.56152"
|
|
||||||
y="121.68215" /></text>
|
|
||||||
<flowRoot
|
|
||||||
transform="matrix(0.73570134,0,0,0.75122167,237.2973,60.162533)"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
id="flowRoot5629"
|
|
||||||
xml:space="preserve"><flowRegion
|
|
||||||
id="flowRegion5631"><rect
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start"
|
|
||||||
y="110.75867"
|
|
||||||
x="530.88086"
|
|
||||||
height="85.203102"
|
|
||||||
width="157.29803"
|
|
||||||
id="rect5633" /></flowRegion><flowPara
|
|
||||||
id="flowPara5637">$\widetilde{\Sigma}$</flowPara></flowRoot> </g>
|
|
||||||
</svg>
|
|
Before Width: | Height: | Size: 46 KiB |
@ -1,824 +0,0 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
|
||||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
|
||||||
|
|
||||||
<svg
|
|
||||||
xmlns:osb="http://www.openswatchbook.org/uri/2009/osb"
|
|
||||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
|
||||||
xmlns:cc="http://creativecommons.org/ns#"
|
|
||||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
|
||||||
xmlns:svg="http://www.w3.org/2000/svg"
|
|
||||||
xmlns="http://www.w3.org/2000/svg"
|
|
||||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
|
||||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
|
||||||
width="210mm"
|
|
||||||
height="297mm"
|
|
||||||
viewBox="0 0 744.09448819 1052.3622047"
|
|
||||||
id="svg2"
|
|
||||||
version="1.1"
|
|
||||||
inkscape:version="0.91 r13725"
|
|
||||||
sodipodi:docname="ball_4_v2.svg">
|
|
||||||
<defs
|
|
||||||
id="defs4">
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker11429"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path11431"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker10933"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path10935"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker10449"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path10451"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="StopM"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="StopM"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6505"
|
|
||||||
d="M 0.0,5.65 L 0.0,-5.65"
|
|
||||||
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692"
|
|
||||||
transform="scale(0.4)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker9447"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path9449"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="StopL"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="StopL"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6502"
|
|
||||||
d="M 0.0,5.65 L 0.0,-5.65"
|
|
||||||
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692"
|
|
||||||
transform="scale(0.8)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
style="overflow:visible"
|
|
||||||
id="DistanceStart"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="DistanceStart"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<g
|
|
||||||
id="g2300"
|
|
||||||
style="stroke:#fc0000;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692">
|
|
||||||
<path
|
|
||||||
style="fill:#fc0000;stroke:#fc0000;stroke-width:1.15;stroke-linecap:square;stroke-opacity:0.9807692;fill-opacity:0.9807692"
|
|
||||||
d="M 0,0 L 2,0"
|
|
||||||
id="path2306" />
|
|
||||||
<path
|
|
||||||
style="fill:#fc0000;fill-rule:evenodd;stroke:#fc0000;stroke-opacity:0.9807692;fill-opacity:0.9807692"
|
|
||||||
d="M 0,0 L 13,4 L 9,0 13,-4 L 0,0 z "
|
|
||||||
id="path2302" />
|
|
||||||
<path
|
|
||||||
style="fill:#fc0000;stroke:#fc0000;stroke-width:1;stroke-linecap:square;stroke-opacity:0.9807692;fill-opacity:0.9807692"
|
|
||||||
d="M 0,-4 L 0,40"
|
|
||||||
id="path2304" />
|
|
||||||
</g>
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="SquareS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="SquareS"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6409"
|
|
||||||
d="M -5.0,-5.0 L -5.0,5.0 L 5.0,5.0 L 5.0,-5.0 L -5.0,-5.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotS"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="DotS"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6400"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotM"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="DotM"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6397"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.4) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Send"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow2Send"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6366"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#fc0000;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.3) rotate(180) translate(-2.3,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="DotL"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="DotL"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6394"
|
|
||||||
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.8) translate(7.4, 1)" />
|
|
||||||
</marker>
|
|
||||||
<linearGradient
|
|
||||||
id="linearGradient6028"
|
|
||||||
osb:paint="solid">
|
|
||||||
<stop
|
|
||||||
style="stop-color:#ffffff;stop-opacity:1;"
|
|
||||||
offset="0"
|
|
||||||
id="stop6030" />
|
|
||||||
</linearGradient>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible;"
|
|
||||||
id="marker9485"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Send">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) rotate(180) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path9487" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Send"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Send"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4342"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) rotate(180) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker8725"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path8727" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker8511"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path8513"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker8333"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path8335" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7839"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7841"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7685"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7687"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7537"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7539"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker7475"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path7477"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker7191"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path7193" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mend"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6495"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6497"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#e30000;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) rotate(180) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Sstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4339"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6279"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6281"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6149"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6151"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker6049"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path6051"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:0.9807692;fill:#fc0000;fill-opacity:0.9807692"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker5867"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path5869"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker5529"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path5531" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:isstock="true"
|
|
||||||
style="overflow:visible"
|
|
||||||
id="marker5441"
|
|
||||||
refX="0.0"
|
|
||||||
refY="0.0"
|
|
||||||
orient="auto"
|
|
||||||
inkscape:stockid="Arrow1Sstart">
|
|
||||||
<path
|
|
||||||
transform="scale(0.2) translate(6,0)"
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
id="path5443" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Sstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker4911"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4913"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#e30000;stroke-width:1pt;stroke-opacity:1;fill:#e30000;fill-opacity:1"
|
|
||||||
transform="scale(0.2) translate(6,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mend"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow2Mend"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4354"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#00d800;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) rotate(180) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="marker4699"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4701"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#00d800;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow2Mstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow2Mstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4351"
|
|
||||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#00d800;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
|
||||||
transform="scale(0.6) translate(0,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Mstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Mstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4333"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.4) translate(10,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Lstart"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Lstart"
|
|
||||||
style="overflow:visible"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4327"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.8) translate(12.5,0)" />
|
|
||||||
</marker>
|
|
||||||
<marker
|
|
||||||
inkscape:stockid="Arrow1Lend"
|
|
||||||
orient="auto"
|
|
||||||
refY="0.0"
|
|
||||||
refX="0.0"
|
|
||||||
id="Arrow1Lend"
|
|
||||||
style="overflow:visible;"
|
|
||||||
inkscape:isstock="true">
|
|
||||||
<path
|
|
||||||
id="path4330"
|
|
||||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
|
||||||
style="fill-rule:evenodd;stroke:#00d800;stroke-width:1pt;stroke-opacity:1;fill:#00d800;fill-opacity:1"
|
|
||||||
transform="scale(0.8) rotate(180) translate(12.5,0)" />
|
|
||||||
</marker>
|
|
||||||
<pattern
|
|
||||||
patternUnits="userSpaceOnUse"
|
|
||||||
width="138.10021"
|
|
||||||
height="139.11037"
|
|
||||||
patternTransform="translate(168.84081,1754.5635)"
|
|
||||||
id="pattern6034">
|
|
||||||
<ellipse
|
|
||||||
ry="67.491684"
|
|
||||||
rx="66.986603"
|
|
||||||
cy="69.555183"
|
|
||||||
cx="69.050102"
|
|
||||||
id="path3482"
|
|
||||||
style="fill:none;fill-opacity:1;stroke:#00ef00;stroke-width:4.12699986;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
|
||||||
</pattern>
|
|
||||||
</defs>
|
|
||||||
<sodipodi:namedview
|
|
||||||
id="base"
|
|
||||||
pagecolor="#ffffff"
|
|
||||||
bordercolor="#666666"
|
|
||||||
borderopacity="1.0"
|
|
||||||
inkscape:pageopacity="0.0"
|
|
||||||
inkscape:pageshadow="2"
|
|
||||||
inkscape:zoom="0.91545961"
|
|
||||||
inkscape:cx="425.61117"
|
|
||||||
inkscape:cy="556.62237"
|
|
||||||
inkscape:document-units="px"
|
|
||||||
inkscape:current-layer="layer1"
|
|
||||||
showgrid="false"
|
|
||||||
inkscape:window-width="1386"
|
|
||||||
inkscape:window-height="855"
|
|
||||||
inkscape:window-x="0"
|
|
||||||
inkscape:window-y="1"
|
|
||||||
inkscape:window-maximized="1"
|
|
||||||
inkscape:snap-global="true"
|
|
||||||
inkscape:snap-nodes="false" />
|
|
||||||
<metadata
|
|
||||||
id="metadata7">
|
|
||||||
<rdf:RDF>
|
|
||||||
<cc:Work
|
|
||||||
rdf:about="">
|
|
||||||
<dc:format>image/svg+xml</dc:format>
|
|
||||||
<dc:type
|
|
||||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
|
||||||
<dc:title></dc:title>
|
|
||||||
</cc:Work>
|
|
||||||
</rdf:RDF>
|
|
||||||
</metadata>
|
|
||||||
<g
|
|
||||||
inkscape:label="Layer 1"
|
|
||||||
inkscape:groupmode="layer"
|
|
||||||
id="layer1">
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:4.10533857;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 949.56479,1396.7109 c 3.46665,2.894 6.60268,6.064 9.35673,9.4672 2.75405,3.4032 5.12614,7.0395 7.06488,10.8661 1.93874,3.8266 3.44416,7.8434 4.46488,12.0077 1.02072,4.1642 1.55676,8.4758 1.55676,12.892 0,8.8323 -2.14417,17.2465 -6.02167,24.8997 -3.87749,7.6531 -9.48829,14.5452 -16.42159,20.3333 -6.93332,5.788 -15.1891,10.472 -24.35651,13.7091 -9.1674,3.237 -19.24644,5.027 -29.82629,5.027 -10.57984,0 -20.6589,-1.79 -29.8263,-5.027 -9.16743,-3.237 -17.4232,-7.921 -24.35649,-13.7091 -6.93327,-5.7881 -12.54407,-12.6802 -16.42158,-20.3333 -3.87749,-7.6532 -6.02167,-16.0674 -6.02168,-24.8997 0,-8.8323 2.14416,-17.2466 6.02165,-24.8997 3.87749,-7.6531 9.4883,-14.5453 16.4216,-20.3333 6.93332,-5.788 15.18911,-10.4721 24.35651,-13.7092 9.1674,-3.2369 19.24645,-5.027 29.82629,-5.027 5.28993,0 10.45465,0.4475 15.44281,1.2996 4.98819,0.8521 9.7998,2.1089 14.3835,3.7274 4.58372,1.6186 8.93951,3.5988 13.01604,5.898"
|
|
||||||
id="path3480"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="cssssssssssssssssssc"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/Hopf.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6041"
|
|
||||||
d="m 1174.1448,1234.3679 c 0,16.3937 -6.4347,31.2354 -16.8382,41.9786 -10.4036,10.7433 -24.7759,17.3881 -40.6512,17.3881 -15.8752,0 -30.2476,-6.6448 -40.6511,-17.3881 -10.4035,-10.7432 -16.8383,-25.5849 -16.8383,-41.9786 0,-16.3937 6.4347,-31.2354 16.8383,-41.9786 10.4035,-10.7433 24.7759,-17.3881 40.6511,-17.3881 31.7505,0 57.4894,26.5793 57.4894,59.3667 z"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#18e404;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 908.98533,1233.4985 c -10e-6,16.3937 -6.43473,31.2354 -16.83825,41.9786 -10.40354,10.7433 -24.77587,17.3881 -40.65113,17.3881 -15.87526,0 -30.2476,-6.6448 -40.65114,-17.3881 -10.40353,-10.7432 -16.83825,-25.5849 -16.83825,-41.9786 -1e-5,-16.3937 6.43471,-31.2354 16.83825,-41.9786 10.40354,-10.7432 24.77588,-17.3881 40.65114,-17.3881 31.7505,0 57.4894,26.5793 57.48938,59.3667 z"
|
|
||||||
id="path6045"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6047"
|
|
||||||
d="m 908.98533,1233.4985 c -10e-6,16.3937 -6.43473,31.2354 -16.83825,41.9786 -10.40354,10.7433 -24.77587,17.3881 -40.65113,17.3881 -15.87526,0 -30.2476,-6.6448 -40.65114,-17.3881 -10.40353,-10.7432 -16.83825,-25.5849 -16.83825,-41.9786 -1e-5,-16.3937 6.43471,-31.2354 16.83825,-41.9786 10.40354,-10.7432 24.77588,-17.3881 40.65114,-17.3881 31.7505,0 57.4894,26.5793 57.48938,59.3667 z"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#1aa0ed;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 1044.0284,1235.5114 c 0,16.3937 -6.4347,31.2354 -16.8382,41.9787 -10.4036,10.7432 -24.7759,17.388 -40.65118,17.388 -15.87525,0 -30.2476,-6.6448 -40.65113,-17.388 -10.40353,-10.7433 -16.83825,-25.585 -16.83826,-41.9787 0,-16.3936 6.43472,-31.2353 16.83825,-41.9786 10.40354,-10.7432 24.77589,-17.3881 40.65114,-17.3881 31.75048,0 57.48938,26.5794 57.48938,59.3667 z"
|
|
||||||
id="path6049"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="cssssssssssssc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6052"
|
|
||||||
d="m 935.77533,1487.7729 c -6.93327,-5.788 -12.54408,-12.6802 -16.42157,-20.3333 -3.87751,-7.6532 -6.02167,-16.0674 -6.02169,-24.8997 0,-8.8323 2.14415,-17.2465 6.02165,-24.8997 3.87749,-7.6531 9.4883,-14.5452 16.4216,-20.3333 6.93332,-5.788 15.1891,-10.472 24.35652,-13.7091 9.16741,-3.237 19.24645,-5.027 29.82629,-5.027 21.15967,0 40.31627,7.16 54.18287,18.7361 13.8665,11.5761 22.4432,27.5684 22.4432,45.233 0,8.8323 -2.1442,17.2465 -6.0217,24.8997 -3.8775,7.6533 -9.4883,14.5453 -16.4216,20.3333 -6.9333,5.788 -15.1891,10.4721 -24.3565,13.7092 -9.1674,3.2369 -19.2464,5.027 -29.82627,5.027 -10.57985,0 -20.6589,-1.7901 -29.82631,-5.027"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#1aa0ed;stroke-width:4.10533857;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/Hopf.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/BorromeanRings.png"
|
|
||||||
sodipodi:nodetypes="cssssssssccssssssssssssssc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6062"
|
|
||||||
d="m 939.50185,1025.3518 c 0,4.0985 -0.40217,8.0999 -1.16797,11.9645 -0.76582,3.8646 -1.89526,7.5925 -3.34982,11.1438 -1.45457,3.5512 -3.23423,6.9259 -5.30049,10.0843 -2.06625,3.1583 -4.41908,6.1002 -7.01998,8.786 -2.60089,2.6858 -5.44983,5.1155 -8.50829,7.2492 -3.05845,2.1337 -6.32643,3.9716 -9.76539,5.4736 -3.43895,1.5021 -7.0489,2.6684 -10.79131,3.4592 -3.74242,0.7909 -7.61729,1.2062 -11.5861,1.2062 -3.96882,0 -7.84371,-0.4153 -11.58614,-1.2062 m -29.06503,-16.182 c -2.60088,-2.6858 -4.95371,-5.6277 -7.01996,-8.786 -2.06625,-3.1584 -3.84592,-6.5331 -5.30048,-10.0843 -1.45455,-3.5513 -2.58401,-7.2791 -3.34982,-11.1438 -0.76582,-3.8646 -1.168,-7.866 -1.168,-11.9645 0,-4.0984 0.40217,-8.0998 1.16799,-11.9644 0.76582,-3.8647 1.89527,-7.5925 3.34983,-11.1437 1.45458,-3.55132 3.23425,-6.926 5.3005,-10.0843 2.06625,-3.15838 4.41907,-6.10031 7.01994,-8.78611 2.60091,-2.6858 5.44985,-5.11554 8.50831,-7.24922 3.05845,-2.13376 6.32643,-3.97155 9.76539,-5.47359 3.43898,-1.50204 7.04893,-2.66841 10.79135,-3.4592 3.74241,-0.79085 7.6173,-1.20613 11.58612,-1.20613 7.93761,0 15.4995,1.66118 22.37743,4.66533 6.87793,3.00408 13.0719,7.35107 18.27366,12.72274 5.20177,5.3716 9.41133,11.76788 12.32046,18.87048"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#18e404;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/BorromeanRings.png"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 906.58829,1089.7057 c -1.45457,3.5512 -3.23424,6.9259 -5.30049,10.0842 -2.06625,3.1584 -4.41908,6.1003 -7.01996,8.7861 -2.60091,2.6858 -5.44985,5.1155 -8.5083,7.2493 -3.05846,2.1337 -6.32643,3.9715 -9.76539,5.4735 -3.43897,1.5022 -7.04892,2.6685 -10.79133,3.4592 -3.74241,0.7909 -7.61729,1.2062 -11.5861,1.2062 -3.96882,0 -7.8437,-0.4153 -11.58612,-1.2062 -3.74242,-0.7907 -7.35238,-1.957 -10.79135,-3.4592 -3.43896,-1.502 -6.70694,-3.3398 -9.7654,-5.4735 -3.05846,-2.1337 -5.9074,-4.5634 -8.50828,-7.2493 -2.60086,-2.6858 -4.95368,-5.6277 -7.01993,-8.7861 -2.06625,-3.1583 -3.84593,-6.533 -5.3005,-10.0842 -1.45456,-3.5513 -2.58402,-7.2791 -3.34984,-11.1437 -0.76581,-3.8647 -1.16799,-7.8661 -1.16799,-11.9646 0,-4.0984 0.40217,-8.0998 1.16798,-11.9644 0.76581,-3.8646 1.89525,-7.5925 3.34982,-11.1437 1.45457,-3.5513 3.23424,-6.926 5.30049,-10.0843 2.06625,-3.1584 4.41908,-6.1003 7.01997,-8.7861 m 29.06502,-16.182 c 3.74242,-0.7909 7.61731,-1.2061 11.58613,-1.2061 7.93762,0 15.49952,1.6612 22.37746,4.6653 6.87794,3.0041 13.07191,7.3511 18.27368,12.7227 5.20178,5.3716 9.41135,11.7679 12.32047,18.8704 2.90911,7.1025 4.51778,14.9114 4.51777,23.1082"
|
|
||||||
id="path6066"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="csssssssssssssssssccssssc" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/BorromeanRings.png"
|
|
||||||
sodipodi:nodetypes="csssssssssssssccsssssssc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path6068"
|
|
||||||
d="m 899.88425,1009.01 c 3.74242,-0.7909 7.61731,-1.2062 11.58614,-1.2062 7.93763,0 15.49953,1.6612 22.37746,4.6654 6.87793,3.0041 13.0719,7.3511 18.27366,12.7228 5.20176,5.3716 9.41132,11.7679 12.32043,18.8703 2.90912,7.1026 4.5178,14.9114 4.5178,23.1083 0,4.0984 -0.40217,8.0998 -1.16798,11.9645 -0.76581,3.8646 -1.89526,7.5924 -3.34982,11.1437 -1.45454,3.5513 -3.23421,6.926 -5.30047,10.0843 -2.06626,3.1583 -4.4191,6.1003 -7.01999,8.7861 -2.60089,2.6858 -5.44982,5.1154 -8.50827,7.2491 -3.05846,2.1338 -6.32643,3.9716 -9.76539,5.4736 -3.43898,1.5021 -7.04893,2.6684 -10.79135,3.4592 -3.74241,0.7909 -7.61728,1.2061 -11.58608,1.2061 -3.96883,0 -7.84372,-0.4152 -11.58614,-1.2061 m -29.06503,-16.1819 c -2.60087,-2.6858 -4.95371,-5.6278 -7.01996,-8.7861 -2.06625,-3.1583 -3.84594,-6.533 -5.3005,-10.0843 -1.45458,-3.5513 -2.58402,-7.2791 -3.34983,-11.1437 -0.76581,-3.8647 -1.16797,-7.8661 -1.16797,-11.9645 0,-4.0984 0.40217,-8.0998 1.16799,-11.9645 0.76581,-3.8646 1.89526,-7.5924 3.34983,-11.1437 1.45457,-3.5513 3.23425,-6.9259 5.30049,-10.0843 2.06625,-3.1583 4.41908,-6.1003 7.01995,-8.7861"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#1aa0ed;stroke-width:3.42563248;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#e86200;stroke-width:1.63528061;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 1167.8613,1047.1051 c 0.973,-4.113 1.484,-8.4667 1.484,-12.7334 0,-4.2666 -0.5014,-8.5549 -1.484,-12.7333 -0.9547,-4.0594 -2.3989,-8.0494 -4.2565,-11.8599 -1.8306,-3.7551 -4.1068,-7.3622 -6.735,-10.73228 -2.6163,-3.35474 -5.6216,-6.49712 -8.9198,-9.35068 -3.3079,-2.86189 -6.9441,-5.45765 -10.8111,-7.71505 -3.9058,-2.28009 -8.0773,-4.2449 -12.4083,-5.82533 -4.4136,-1.61059 -9.0257,-2.85655 -13.7119,-3.68151 -4.8353,-0.85119 -9.7904,-1.28363 -14.7219,-1.28363 -4.9314,-10e-6 -9.8866,0.43243 -14.7218,1.28361 -4.6863,0.82496 -9.2983,2.07091 -13.712,3.6815 -4.3309,1.58042 -8.5024,3.54523 -12.4083,5.82532 -3.867,2.25742 -7.5031,4.85319 -10.811,7.71509 -3.2983,2.85357 -6.3036,5.99596 -8.9199,9.3507 -2.6282,3.37006 -4.9044,6.97716 -6.735,10.73226 -1.8576,3.8105 -3.3018,7.8005 -4.2565,11.8599 -0.9826,4.1784 -1.4841,8.4667 -1.4841,12.7333 0,4.2667 0.5015,8.5549 1.4841,12.7334 0.9546,4.0593 2.3988,8.0494 4.2564,11.8598 1.8306,3.7551 4.1068,7.3622 6.7351,10.7323 2.6163,3.3547 5.6216,6.4971 8.9199,9.3507 3.3079,2.8619 6.944,5.4576 10.811,7.715 3.9059,2.2801 8.0774,4.2449 12.4083,5.8253 4.4137,1.6106 9.0257,2.8566 13.712,3.6816 4.8352,0.8511 9.7943,1.1128 14.7218,1.2836 9.4725,0.3283 18.9617,-0.165 28.4338,-0.501 8.1765,-0.29 18.048,3.1088 24.5042,-1.3071 3.0205,-2.066 4.2981,-6.3267 3.4833,-9.6121 -1.0422,-4.2022 -5.3756,-7.8537 -9.8738,-9.5533 m -19.429,0.3619 c -9.6932,1.5731 -18.0538,7.7067 -27.8373,8.7647 -3.9426,0.4263 -7.9639,-0.3493 -11.8585,-1.0366 -3.7752,-0.6662 -7.4903,-1.6725 -11.045,-2.9728 -3.4894,-1.2764 -6.8495,-2.8632 -9.995,-4.7039 -3.1157,-1.8232 -6.0444,-3.9195 -8.7084,-6.2299 -2.6574,-2.3047 -5.078,-4.8424 -7.185,-7.5507 -2.1176,-2.7218 -3.9508,-5.6346 -5.4251,-8.6663 -1.4966,-3.0774 -2.6597,-6.2993 -3.4286,-9.5768 -0.7916,-3.3743 -1.1954,-6.8369 -1.1954,-10.2821 0,-3.4452 0.4038,-6.9078 1.1954,-10.2822 0.7689,-3.2775 1.932,-6.4994 3.4286,-9.5768 1.4744,-3.0316 3.3075,-5.9444 5.4251,-8.6663 2.107,-2.7083 4.5276,-5.2459 7.185,-7.55065 2.664,-2.31039 5.5927,-4.40671 8.7083,-6.22993 3.1456,-1.84073 6.5057,-3.42756 9.9951,-4.70393 3.5547,-1.3003 7.2698,-2.30661 11.045,-2.9728 3.8946,-0.68725 7.8861,-1.03653 11.8585,-1.03653 3.9724,0 7.964,0.34928 11.8585,1.03653 3.7753,0.66621 7.4904,1.67253 11.045,2.97282 3.4893,1.27638 6.8494,2.86322 9.995,4.70394 3.1157,1.82321 6.0444,3.91952 8.7083,6.2299 2.6575,2.30475 5.078,4.84235 7.185,7.55065 2.1176,2.7219 3.9508,5.6347 5.4252,8.6663 1.4965,3.0774 2.6596,6.2993 3.4285,9.5768 0.7916,3.3744 1.1955,6.837 1.1955,10.2822 0,3.4452 -0.4116,6.9609 -1.1955,10.2821 m 12.4145,13.549 c 3.0267,0.1562 -2.0231,13.4528 -5.7802,18.483 m -15.0149,10.6142 c -4.6214,1.1543 -6.7171,0.3552 -9.4811,-1.0342 -2.009,-1.0098 -4.1193,-2.8071 -4.2286,-4.8378 -0.1306,-2.4279 2.9415,-4.118 4.4123,-6.177 1.4706,-2.059 2.9414,-4.118 4.4122,-6.177 1.4706,-2.059 3.0096,-4.0817 4.4121,-6.177 1.9024,-2.8419 3.9364,-5.6144 5.4252,-8.6664"
|
|
||||||
id="path6074"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="caaaaaaaaaaaaaaaaaaaaaaaaaaaaccaaaaaaaaaaaaaaaaaaaaaaaaaccccaaaaac"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/WhiteheadLink.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<g
|
|
||||||
id="g6082" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/WhiteheadLink.png"
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#18e404;stroke-width:1.93287003;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 1161.5088,1013.868 c -1.9457,-0.4453 -3.873,-0.8542 -5.7768,-1.227 -1.9037,-0.3727 -3.7838,-0.7092 -5.635,-1.0098 m -10.7175,-1.373 c -1.7143,-0.1573 -3.3891,-0.2791 -5.019,-0.3655 -1.63,-0.086 -3.2151,-0.1375 -4.7502,-0.1533 -1.535,-0.016 -3.02,0 -4.4495,0.058 -5.7183,0.2174 -10.55,0.9946 -14.1567,2.3186 -3.6066,1.3241 -5.988,3.1951 -6.8054,5.6 -0.4086,1.2025 -0.4069,2.4816 -0.029,3.8155 0.3776,1.3339 1.1313,2.7227 2.2263,4.1446 1.0951,1.4219 2.5317,2.8768 4.2754,4.3432 1.7437,1.4663 3.7944,2.9441 6.1179,4.4114 2.3235,1.4674 4.9196,2.9244 7.754,4.3492 2.8344,1.4249 5.907,2.8177 9.1835,4.1567 3.2765,1.3389 6.7568,2.624 10.4065,3.8335 3.6498,1.2095 7.469,2.3435 11.4231,3.3801 3.9542,1.0366 7.8562,1.9269 11.6636,2.6723 3.8075,0.7455 7.5205,1.3462 11.0965,1.8037 3.576,0.4575 7.0152,0.7719 10.2751,0.9447 3.2599,0.1728 6.3406,0.2041 9.1998,0.095 2.859,-0.1087 5.4965,-0.3573 7.8701,-0.7443 2.3735,-0.387 4.4831,-0.9123 6.2864,-1.5743 1.8034,-0.662 3.3004,-1.4608 4.4487,-2.3946 1.1483,-0.9339 1.948,-2.0029 2.3567,-3.2054 0.4087,-1.2025 0.407,-2.4815 0.029,-3.8154 -0.3776,-1.3339 -1.1311,-2.7227 -2.2263,-4.1446 -1.095,-1.4218 -2.5316,-2.8768 -4.2752,-4.3432 -1.7437,-1.4663 -3.7946,-2.9441 -6.1181,-4.4114 -2.3234,-1.4674 -4.9195,-2.9244 -7.754,-4.3493 -2.8343,-1.4248 -5.907,-2.8176 -9.1835,-4.1566 -3.2764,-1.3389 -6.7568,-2.624 -10.4065,-3.8335 -0.9124,-0.3024 -1.8355,-0.6001 -2.7685,-0.8927 -0.9331,-0.2926 -1.8763,-0.5801 -2.8289,-0.8622 -0.9526,-0.2822 -1.9148,-0.5589 -2.8859,-0.8299"
|
|
||||||
id="path6080"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="csccssssssssssssssssssssssssssssssc" />
|
|
||||||
<path
|
|
||||||
inkscape:export-ydpi="90"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
style="fill:#ffe6d5;fill-opacity:1;stroke:#18e404;stroke-width:7.73064137;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
d="m 461.65113,481.47133 c 0,35.36043 -15.19278,67.37312 -39.75646,90.54563 -24.56346,23.17267 -58.4978,37.50531 -95.98036,37.50531 -37.48277,0 -71.41685,-14.33264 -95.98031,-37.50531 -24.56366,-23.17251 -39.75651,-55.1852 -39.75651,-90.54563 0,-35.36029 15.19285,-67.37299 39.75624,-90.54551 24.56373,-23.17282 58.49781,-37.50531 95.98058,-37.50531 74.96533,0 135.73682,57.33024 135.73682,128.05082 z"
|
|
||||||
id="path6085"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="ssssssss" />
|
|
||||||
<flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot6095"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
transform="matrix(1.0611205,0,0,2.0078961,-891.12895,930.92853)"><flowRegion
|
|
||||||
id="flowRegion6097"><rect
|
|
||||||
id="rect6099"
|
|
||||||
width="485.07117"
|
|
||||||
height="203.91527"
|
|
||||||
x="1078.2792"
|
|
||||||
y="-251.45964"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
|
||||||
id="flowPara3417">$B^4$</flowPara><flowPara
|
|
||||||
id="flowPara3419" /></flowRoot> <flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot6107"
|
|
||||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px"><flowRegion
|
|
||||||
id="flowRegion6109"><rect
|
|
||||||
id="rect6111"
|
|
||||||
width="593.20807"
|
|
||||||
height="435.63715"
|
|
||||||
x="886.72241"
|
|
||||||
y="-381.22391" /></flowRegion><flowPara
|
|
||||||
id="flowPara6113" /></flowRoot> <path
|
|
||||||
style="fill:none;fill-rule:evenodd;stroke:#fc0000;stroke-width:6.95047808;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:0.9807692;marker-start:url(#marker11429);marker-end:url(#marker11429)"
|
|
||||||
d="m 445.07836,421.01646 c 0,0 -12.56624,10.66184 -16.65388,17.46861 -6.03531,10.05009 -10.93094,21.56299 -10.77603,33.09841 0.13013,9.69056 3.92813,19.60767 9.7964,27.58202 6.4631,8.78264 26.45028,20.22679 26.45028,20.22679"
|
|
||||||
id="path5440"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
sodipodi:nodetypes="caaac" />
|
|
||||||
<path
|
|
||||||
sodipodi:nodetypes="ssssssss"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path5442"
|
|
||||||
d="m 459.69184,198.29603 c 0,35.36044 -15.19278,67.37313 -39.75646,90.54564 -24.56345,23.17266 -58.49779,37.5053 -95.98035,37.5053 -37.48277,0 -71.41685,-14.33264 -95.98031,-37.5053 -24.56368,-23.17251 -39.75651,-55.1852 -39.75651,-90.54564 0,-35.36028 15.19283,-67.37299 39.75624,-90.54551 24.56373,-23.172825 58.49781,-37.50531 95.98058,-37.50531 74.96533,0 135.73681,57.33023 135.73681,128.05082 z"
|
|
||||||
style="fill:#ffe6d5;fill-opacity:1;stroke:#18e404;stroke-width:7.73064137;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/3unknots.png"
|
|
||||||
inkscape:export-xdpi="90"
|
|
||||||
inkscape:export-ydpi="90" />
|
|
||||||
<flowRoot
|
|
||||||
transform="matrix(1.0611205,0,0,2.0078961,-893.08819,647.7532)"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
id="flowRoot5444"
|
|
||||||
xml:space="preserve"><flowRegion
|
|
||||||
id="flowRegion5446"><rect
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40.000103px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start"
|
|
||||||
y="-251.45964"
|
|
||||||
x="1078.2792"
|
|
||||||
height="203.91527"
|
|
||||||
width="485.07117"
|
|
||||||
id="rect5448" /></flowRegion><flowPara
|
|
||||||
id="flowPara5450">$B^4$</flowPara><flowPara
|
|
||||||
id="flowPara5452" /></flowRoot> <path
|
|
||||||
sodipodi:nodetypes="czzzc"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
id="path5454"
|
|
||||||
d="m 443.11908,137.84115 c 0,0 9.46524,17.17896 11.75567,27.58203 2.29044,10.40307 4.03258,18.23371 4.8982,26.6626 0.86562,8.42889 -0.49783,17.58666 -0.97963,23.90442 -0.48182,6.31775 -6.85749,20.2268 -6.85749,20.2268"
|
|
||||||
style="fill:none;fill-rule:evenodd;stroke:#fc0000;stroke-width:6.95;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:0.9807692;marker-start:url(#marker10933);marker-end:url(#DotS)" />
|
|
||||||
<flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot5468"
|
|
||||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px;-inkscape-font-specification:'sans-serif, Normal';font-stretch:normal;font-variant:normal;text-anchor:start;text-align:start;writing-mode:lr;"><flowRegion
|
|
||||||
id="flowRegion5470"><rect
|
|
||||||
id="rect5472"
|
|
||||||
width="120.15823"
|
|
||||||
height="41.509205"
|
|
||||||
x="535.25024"
|
|
||||||
y="108.57398"
|
|
||||||
style="-inkscape-font-specification:'sans-serif, Normal';font-family:sans-serif;font-weight:normal;font-style:normal;font-stretch:normal;font-variant:normal;font-size:40px;text-anchor:start;text-align:start;writing-mode:lr;line-height:125%;" /></flowRegion><flowPara
|
|
||||||
id="flowPara5476">$\Sigma$</flowPara></flowRoot> <flowRoot
|
|
||||||
xml:space="preserve"
|
|
||||||
id="flowRoot5478"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
transform="matrix(0.89682057,0,0,0.84167387,-6.5355418,84.152688)"><flowRegion
|
|
||||||
id="flowRegion5480"><rect
|
|
||||||
id="rect5482"
|
|
||||||
width="157.29803"
|
|
||||||
height="85.203102"
|
|
||||||
x="530.88086"
|
|
||||||
y="110.75867"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
|
||||||
id="flowPara5486">$\Sigma$</flowPara></flowRoot> <text
|
|
||||||
xml:space="preserve"
|
|
||||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
x="633.56152"
|
|
||||||
y="121.68215"
|
|
||||||
id="text5488"
|
|
||||||
sodipodi:linespacing="125%"><tspan
|
|
||||||
sodipodi:role="line"
|
|
||||||
id="tspan5490"
|
|
||||||
x="633.56152"
|
|
||||||
y="121.68215" /></text>
|
|
||||||
<flowRoot
|
|
||||||
transform="matrix(0.89682057,0,0,0.84167387,-5.555903,369.16679)"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
|
||||||
id="flowRoot5629"
|
|
||||||
xml:space="preserve"><flowRegion
|
|
||||||
id="flowRegion5631"><rect
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:18.75px;line-height:100%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';text-align:start;writing-mode:lr-tb;text-anchor:start"
|
|
||||||
y="110.75867"
|
|
||||||
x="530.88086"
|
|
||||||
height="85.203102"
|
|
||||||
width="157.29803"
|
|
||||||
id="rect5633" /></flowRegion><flowPara
|
|
||||||
id="flowPara5637">$\widetilde{\Sigma}$</flowPara></flowRoot> </g>
|
|
||||||
</svg>
|
|
Before Width: | Height: | Size: 46 KiB |
@ -1,101 +0,0 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
|
||||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
|
||||||
|
|
||||||
<svg
|
|
||||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
|
||||||
xmlns:cc="http://creativecommons.org/ns#"
|
|
||||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
|
||||||
xmlns:svg="http://www.w3.org/2000/svg"
|
|
||||||
xmlns="http://www.w3.org/2000/svg"
|
|
||||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
|
||||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
|
||||||
width="210mm"
|
|
||||||
height="297mm"
|
|
||||||
viewBox="0 0 744.09448819 1052.3622047"
|
|
||||||
id="svg2"
|
|
||||||
version="1.1"
|
|
||||||
inkscape:version="0.91 r13725"
|
|
||||||
sodipodi:docname="drawing.svg">
|
|
||||||
<defs
|
|
||||||
id="defs4">
|
|
||||||
<inkscape:path-effect
|
|
||||||
effect="knot"
|
|
||||||
id="path-effect4311"
|
|
||||||
is_visible="true"
|
|
||||||
interruption_width="3"
|
|
||||||
prop_to_stroke_width="true"
|
|
||||||
add_stroke_width="true"
|
|
||||||
add_other_stroke_width="true"
|
|
||||||
switcher_size="15"
|
|
||||||
crossing_points_vector="" />
|
|
||||||
<inkscape:path-effect
|
|
||||||
effect="knot"
|
|
||||||
id="path-effect4299"
|
|
||||||
is_visible="true"
|
|
||||||
interruption_width="3"
|
|
||||||
prop_to_stroke_width="true"
|
|
||||||
add_stroke_width="true"
|
|
||||||
add_other_stroke_width="true"
|
|
||||||
switcher_size="5"
|
|
||||||
crossing_points_vector="" />
|
|
||||||
<inkscape:path-effect
|
|
||||||
effect="knot"
|
|
||||||
id="path-effect4269"
|
|
||||||
is_visible="true"
|
|
||||||
interruption_width="3"
|
|
||||||
prop_to_stroke_width="true"
|
|
||||||
add_stroke_width="true"
|
|
||||||
add_other_stroke_width="true"
|
|
||||||
switcher_size="29"
|
|
||||||
crossing_points_vector="" />
|
|
||||||
</defs>
|
|
||||||
<sodipodi:namedview
|
|
||||||
id="base"
|
|
||||||
pagecolor="#ffffff"
|
|
||||||
bordercolor="#666666"
|
|
||||||
borderopacity="1.0"
|
|
||||||
inkscape:pageopacity="0.0"
|
|
||||||
inkscape:pageshadow="2"
|
|
||||||
inkscape:zoom="0.7"
|
|
||||||
inkscape:cx="410.71429"
|
|
||||||
inkscape:cy="252.98621"
|
|
||||||
inkscape:document-units="px"
|
|
||||||
inkscape:current-layer="layer1"
|
|
||||||
showgrid="false"
|
|
||||||
inkscape:window-width="1386"
|
|
||||||
inkscape:window-height="855"
|
|
||||||
inkscape:window-x="0"
|
|
||||||
inkscape:window-y="1"
|
|
||||||
inkscape:window-maximized="1" />
|
|
||||||
<metadata
|
|
||||||
id="metadata7">
|
|
||||||
<rdf:RDF>
|
|
||||||
<cc:Work
|
|
||||||
rdf:about="">
|
|
||||||
<dc:format>image/svg+xml</dc:format>
|
|
||||||
<dc:type
|
|
||||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
|
||||||
<dc:title></dc:title>
|
|
||||||
</cc:Work>
|
|
||||||
</rdf:RDF>
|
|
||||||
</metadata>
|
|
||||||
<g
|
|
||||||
inkscape:label="Layer 1"
|
|
||||||
inkscape:groupmode="layer"
|
|
||||||
id="layer1">
|
|
||||||
<path
|
|
||||||
style="fill:none;fill-opacity:0.03276714;stroke:#ff16f9;stroke-width:3.75;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
inkscape:path-effect="#path-effect4269"
|
|
||||||
inkscape:original-d="m 222.85715,292.3622 c 13.10491,-64.83967 38.87735,-132.22835 94.96721,-171.76341 31.94661,-25.998563 74.38484,-36.28618 114.83828,-29.20936 65.2786,10.50751 130.55172,42.77925 169.36854,97.69721 26.53011,42.64704 26.83886,105.72192 -11.69468,141.64598 -29.76678,26.83339 -63.3026,49.60518 -97.70526,70.0824 -67.21156,34.71522 -145.24731,33.53569 -218.94449,34.08072 C 213.72016,433.02376 150.94766,431.64334 95.803844,405.26669 61.967927,386.66521 59.540389,340.18817 72.327709,307.78743 89.76424,260.12265 117.41176,214.82968 156.17474,181.64269 c 50.41768,-36.94842 114.09395,-50.12387 175.3915,-53.9419 40.5403,-3.0868 78.71086,18.9364 101.7525,51.4221 43.17579,57.34682 76.55154,124.10752 87.75391,195.47631 8.8709,59.95582 -15.38632,127.19928 -70.39646,157.2924 -65.58276,41.6583 -163.79676,26.29139 -208.12604,-39.12044 -38.40049,-59.47898 -35.10746,-134.1369 -19.693,-200.40896 z"
|
|
||||||
id="path3336"
|
|
||||||
d="m 215.78303,423.0343 c -7.63847,-42.90328 -2.73795,-88.48664 7.07412,-130.6721 13.10491,-64.83967 38.87735,-132.22835 94.96721,-171.76341 31.94661,-25.998563 74.38484,-36.28618 114.83828,-29.20936 65.2786,10.50751 130.55172,42.77925 169.36854,97.69721 26.53011,42.64704 26.83886,105.72192 -11.69468,141.64598 -18.58172,16.75057 -38.63216,31.91841 -59.44534,45.93337 m -17.70184,11.54556 c -6.80229,4.30282 -13.66277,8.49923 -20.55808,12.60347 -67.21156,34.71522 -145.24731,33.53569 -218.94449,34.08072 C 213.72016,433.02376 150.94766,431.64334 95.803844,405.26669 61.967927,386.66521 59.540389,340.18817 72.327709,307.78743 89.76424,260.12265 117.41176,214.82968 156.17474,181.64269 c 38.70427,-28.36429 85.2221,-42.71866 132.47909,-49.5848 m 33.49532,-3.69629 c 3.14385,-0.246 6.28358,-0.46563 9.41709,-0.66081 40.5403,-3.0868 78.71086,18.9364 101.7525,51.4221 43.17579,57.34682 76.55154,124.10752 87.75391,195.47631 8.8709,59.95582 -15.38632,127.19928 -70.39646,157.2924 -65.58276,41.6583 -163.79676,26.29139 -208.12604,-39.12044 -10.29623,-15.94795 -17.59501,-32.98715 -22.46638,-50.66335"
|
|
||||||
inkscape:connector-curvature="0" />
|
|
||||||
<path
|
|
||||||
style="color:#000000;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:medium;line-height:normal;font-family:sans-serif;text-indent:0;text-align:start;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:normal;word-spacing:normal;text-transform:none;direction:ltr;block-progression:tb;writing-mode:lr-tb;baseline-shift:baseline;text-anchor:start;white-space:normal;clip-rule:nonzero;display:inline;overflow:visible;visibility:visible;opacity:1;isolation:auto;mix-blend-mode:normal;color-interpolation:sRGB;color-interpolation-filters:linearRGB;solid-color:#000000;solid-opacity:1;fill:#ff3516;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;color-rendering:auto;image-rendering:auto;shape-rendering:auto;text-rendering:auto;enable-background:accumulate"
|
|
||||||
d="m 384.28516,650.48633 c -79.09146,0 -143.30274,62.23263 -143.30274,139.01953 0,49.8238 27.12282,93.39221 67.71485,117.93555 10.99611,66.19414 70.02165,116.79489 141.30273,116.79489 65.81538,0 121.18502,-43.14784 137.9668,-101.8613 48.67302,-22.21201 82.48047,-70.07754 82.48047,-125.72656 0,-76.7869 -64.21323,-139.01758 -143.30469,-139.01758 -23.43271,0 -45.49366,5.57069 -65.03125,15.25586 -22.42828,-14.11802 -49.11797,-22.40039 -77.82617,-22.40039 z m 0,3.75 c 27.15088,0 52.39478,7.62876 73.82031,20.61523 -33.37906,17.8496 -58.53055,48.25775 -68.92969,84.64063 -48.67302,22.21201 -82.47851,70.07754 -82.47851,125.72656 0,5.9258 0.50784,11.72652 1.25,17.45703 -38.05258,-24.16072 -63.21485,-65.79013 -63.21485,-113.16992 0,-74.69691 62.42651,-135.26953 139.55274,-135.26953 z m 142.85742,7.14453 c 77.12622,0 139.55469,60.57066 139.55469,135.26758 0,53.06565 -31.58427,98.87225 -77.48438,121.02734 2.57763,-10.42992 4.08984,-21.26031 4.08984,-32.45703 0,-49.82416 -27.12232,-93.39231 -67.71484,-117.93555 -6.32132,-38.05272 -28.44623,-70.93292 -59.76367,-92.01367 18.52417,-8.80721 39.28051,-13.88867 61.31836,-13.88867 z m -65.22852,15.71484 c 30.61875,19.90218 52.55528,51.25932 59.49805,87.72657 -21.04534,-11.77741 -45.38709,-18.6211 -71.41211,-18.6211 -20.02873,0 -39.08702,4.01929 -56.40625,11.22656 10.85283,-34.77857 35.74704,-63.60472 68.32031,-80.33203 z M 450,749.95117 c 26.45542,0 51.08991,7.25775 72.16016,19.63672 0.99436,6.51704 1.67968,13.13303 1.67968,19.91797 0,51.85711 -30.12078,96.85211 -74.32617,119.55273 -37.34722,-24.27567 -61.92383,-65.5544 -61.92383,-112.41015 0,-11.95279 1.75641,-23.48241 4.75782,-34.52149 17.58595,-7.74932 37.06347,-12.17578 57.65234,-12.17578 z m -62.07031,14.24024 c -2.57763,10.42992 -4.08985,21.26031 -4.08985,32.45703 0,47.36645 24.47819,89.13563 61.76563,114.23437 -18.52451,8.80761 -39.28193,13.89063 -61.32031,13.89063 -26.45586,0 -51.09164,-7.25737 -72.16211,-19.63672 -0.99433,-6.51694 -1.67578,-13.13313 -1.67578,-19.91797 0,-53.06565 31.58231,-98.87225 77.48242,-121.02734 z m 138.41015,7.85742 c 38.05139,24.16092 63.21289,65.79101 63.21289,113.16992 0,11.95279 -1.7564,23.4824 -4.75781,34.52148 -17.58595,7.74933 -37.06347,12.17579 -57.65234,12.17579 -27.15076,0 -52.39485,-7.62693 -73.82031,-20.61329 44.24521,-23.65993 74.26757,-69.31192 74.26757,-121.79687 0,-5.92578 -0.50784,-11.72654 -1.25,-17.45703 z M 312.87305,909.90234 c 21.04542,11.77755 45.38693,18.6211 71.41211,18.6211 23.43271,0 45.49366,-5.57264 65.03125,-15.25782 22.42827,14.11802 49.11796,22.4004 77.82617,22.4004 20.02873,0 39.08702,-4.01929 56.40625,-11.22657 -17.33981,55.56651 -70.51182,96.04685 -133.54883,96.04685 -68.41017,0 -125.15232,-47.68664 -137.12695,-110.58396 z"
|
|
||||||
id="ellipse4282"
|
|
||||||
inkscape:connector-curvature="0"
|
|
||||||
inkscape:path-effect="#path-effect4311"
|
|
||||||
inkscape:original-d="m 384.28516,650.48633 c -79.09146,0 -143.30274,62.23263 -143.30274,139.01953 0,49.8238 27.12282,93.39221 67.71485,117.93555 10.99611,66.19414 70.02165,116.79489 141.30273,116.79489 65.81538,0 121.18502,-43.14784 137.9668,-101.8613 48.67302,-22.21201 82.48047,-70.07754 82.48047,-125.72656 0,-76.7869 -64.21323,-139.01758 -143.30469,-139.01758 -23.43271,0 -45.49366,5.57069 -65.03125,15.25586 -22.42828,-14.11802 -49.11797,-22.40039 -77.82617,-22.40039 z m 0,3.75 c 27.15088,0 52.39478,7.62876 73.82031,20.61523 -33.37906,17.8496 -58.53055,48.25775 -68.92969,84.64063 -48.67302,22.21201 -82.47851,70.07754 -82.47851,125.72656 0,5.9258 0.50784,11.72652 1.25,17.45703 -38.05258,-24.16072 -63.21485,-65.79013 -63.21485,-113.16992 0,-74.69691 62.42651,-135.26953 139.55274,-135.26953 z m 142.85742,7.14453 c 77.12622,0 139.55469,60.57066 139.55469,135.26758 0,53.06565 -31.58427,98.87225 -77.48438,121.02734 2.57763,-10.42992 4.08984,-21.26031 4.08984,-32.45703 0,-49.82416 -27.12232,-93.39231 -67.71484,-117.93555 -6.32132,-38.05272 -28.44623,-70.93292 -59.76367,-92.01367 18.52417,-8.80721 39.28051,-13.88867 61.31836,-13.88867 z m -65.22852,15.71484 c 30.61875,19.90218 52.55528,51.25932 59.49805,87.72657 -21.04534,-11.77741 -45.38709,-18.6211 -71.41211,-18.6211 -20.02873,0 -39.08702,4.01929 -56.40625,11.22656 10.85283,-34.77857 35.74704,-63.60472 68.32031,-80.33203 z M 450,749.95117 c 26.45542,0 51.08991,7.25775 72.16016,19.63672 0.99436,6.51704 1.67968,13.13303 1.67968,19.91797 0,51.85711 -30.12078,96.85211 -74.32617,119.55273 -37.34722,-24.27567 -61.92383,-65.5544 -61.92383,-112.41015 0,-11.95279 1.75641,-23.48241 4.75782,-34.52149 17.58595,-7.74932 37.06347,-12.17578 57.65234,-12.17578 z m -62.07031,14.24024 c -2.57763,10.42992 -4.08985,21.26031 -4.08985,32.45703 0,47.36645 24.47819,89.13563 61.76563,114.23437 -18.52451,8.80761 -39.28193,13.89063 -61.32031,13.89063 -26.45586,0 -51.09164,-7.25737 -72.16211,-19.63672 -0.99433,-6.51694 -1.67578,-13.13313 -1.67578,-19.91797 0,-53.06565 31.58231,-98.87225 77.48242,-121.02734 z m 138.41015,7.85742 c 38.05139,24.16092 63.21289,65.79101 63.21289,113.16992 0,11.95279 -1.7564,23.4824 -4.75781,34.52148 -17.58595,7.74933 -37.06347,12.17579 -57.65234,12.17579 -27.15076,0 -52.39485,-7.62693 -73.82031,-20.61329 44.24521,-23.65993 74.26757,-69.31192 74.26757,-121.79687 0,-5.92578 -0.50784,-11.72654 -1.25,-17.45703 z M 312.87305,909.90234 c 21.04542,11.77755 45.38693,18.6211 71.41211,18.6211 23.43271,0 45.49366,-5.57264 65.03125,-15.25782 22.42827,14.11802 49.11796,22.4004 77.82617,22.4004 20.02873,0 39.08702,-4.01929 56.40625,-11.22657 -17.33981,55.56651 -70.51182,96.04685 -133.54883,96.04685 -68.41017,0 -125.15232,-47.68664 -137.12695,-110.58396 z" />
|
|
||||||
</g>
|
|
||||||
</svg>
|
|
Before Width: | Height: | Size: 11 KiB |
BIN
images/linking_hopf.pdf
Normal file
71
images/linking_hopf.pdf_tex
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.91, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'linking_hopf.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{366.27626434bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.4253775)%
|
||||||
|
\put(1.08208561,3.31474966){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.29565154\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.31441988,2.24496068){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26244278\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.52914584,2.21633055){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(4.36796878,-3.23770874){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.3817351\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.65665595,-3.18760568){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04533111\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.56837943,-3.19714904){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38650652\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.05913462,1.69860243){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(1.08208561,3.31474966){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.29565154\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.31441988,2.24496068){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26244278\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.52914584,2.21633055){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(4.36796878,-3.23770874){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.3817351\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.65665595,-3.18760568){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04533111\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.56837943,-3.19714904){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38650652\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.05913462,1.69860243){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{linking_hopf.pdf}}%
|
||||||
|
\put(0.70175337,0.25533316){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.31194021\unitlength}\raggedright \shortstack{$lk(\alpha, \beta) = -1$}\end{minipage}}}%
|
||||||
|
\put(0.02396785,0.29558502){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.20745851\unitlength}\raggedright $\alpha$\\ \end{minipage}}}%
|
||||||
|
\put(0.50082317,0.11358255){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.20745851\unitlength}\raggedright $\beta$\\ \end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
2048
images/linking_hopf.svg
Normal file
After Width: | Height: | Size: 75 KiB |
2049
images/linking_number.svg
Normal file
After Width: | Height: | Size: 75 KiB |
2082
images/linking_torus_4_2.svg
Normal file
After Width: | Height: | Size: 76 KiB |
BIN
images/linking_torus_6_2.pdf
Normal file
71
images/linking_torus_6_2.pdf_tex
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.91, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'linking_torus_6_2.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{364.39046544bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.42240282)%
|
||||||
|
\put(1.08838441,3.32395633){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.30235674\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.31674589,2.24863096){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26380097\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.53258309,2.21985267){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(4.39127254,-3.26241245){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38371064\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.68145371,-3.21205009){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04556571\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.59272034,-3.22164284){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38850675\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.06013949,1.69944519){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(1.08838441,3.32395633){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.30235674\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.31674589,2.24863096){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26380097\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.53258309,2.21985267){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(4.39127254,-3.26241245){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38371064\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.68145371,-3.21205009){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04556571\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(4.59272034,-3.22164284){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38850675\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.06013949,1.69944519){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{linking_torus_6_2.pdf}}%
|
||||||
|
\put(0.70608389,0.2487067){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.31355455\unitlength}\raggedright \shortstack{$lk(\alpha, \beta) = 3$}\end{minipage}}}%
|
||||||
|
\put(0.02479073,0.28916687){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.20853214\unitlength}\raggedright $\alpha$\\ \end{minipage}}}%
|
||||||
|
\put(0.50411385,0.1062225){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.20853214\unitlength}\raggedright $\beta$\\ \end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
BIN
images/moves.png
Before Width: | Height: | Size: 119 KiB |
BIN
images/seifert_2_pices.png
Normal file
After Width: | Height: | Size: 97 KiB |
BIN
images/seifert_alg.pdf
Normal file
97
images/seifert_alg.pdf_tex
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.91, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'seifert_alg.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{1838.84333092bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.57731679)%
|
||||||
|
\put(0.37269165,0.86248794){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.25807876\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.21978154,0.64939839){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.05227556\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.26255246,0.6436956){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(1.02720147,-0.44268577){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07603721\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(1.0847046,-0.43270583){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.00902943\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(1.06712094,-0.43460675){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07698762\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{seifert_alg.pdf}}%
|
||||||
|
\put(0.02172265,0.48469275){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
||||||
|
\put(0.07295515,0.48266847){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
||||||
|
\put(0.11434827,0.48098158){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$3$}}}%
|
||||||
|
\put(0.06175861,0.39360062){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
||||||
|
\put(0.03520154,0.43475716){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
||||||
|
\put(0.08599546,0.42734214){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
||||||
|
\put(0.16893167,0.54057016){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{seifert_alg.pdf}}%
|
||||||
|
\put(0.39473932,0.47823138){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
||||||
|
\put(0.44854349,0.47685002){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
||||||
|
\put(0.49057952,0.48416396){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$3$}}}%
|
||||||
|
\put(0.4114328,0.43536786){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
||||||
|
\put(0.47122755,0.42152369){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
||||||
|
\put(0.44184737,0.38456759){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{seifert_alg.pdf}}%
|
||||||
|
\put(0.80742466,0.46640881){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
||||||
|
\put(0.86122887,0.46502745){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
||||||
|
\put(0.90326492,0.47234139){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$3$}}}%
|
||||||
|
\put(0.82411818,0.42354529){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
||||||
|
\put(0.88391295,0.40970112){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
||||||
|
\put(0.85453275,0.37274502){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=4]{seifert_alg.pdf}}%
|
||||||
|
\put(0.74658045,0.11472518){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
||||||
|
\put(0.8240646,0.12097414){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
||||||
|
\put(0.84314389,0.14705272){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$3$}}}%
|
||||||
|
\put(0.76727265,0.073879){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
||||||
|
\put(0.84629684,0.0803729){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
||||||
|
\put(0.79162411,0.03166806){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=5]{seifert_alg.pdf}}%
|
||||||
|
\put(0.44858815,0.02567885){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=6]{seifert_alg.pdf}}%
|
||||||
|
\put(0.56082463,0.14984746){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$3$}}}%
|
||||||
|
\put(0.53722612,0.06644802){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
||||||
|
\put(0.4539719,0.10881382){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
||||||
|
\put(0.48949647,0.10077938){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
||||||
|
\put(0.57785537,0.06079626){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=7]{seifert_alg.pdf}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
2899
images/seifert_alg.svg
Normal file
After Width: | Height: | Size: 134 KiB |
BIN
images/seifert_connect.png
Normal file
After Width: | Height: | Size: 143 KiB |
BIN
images/seifert_matrix.pdf
Normal file
68
images/seifert_matrix.pdf_tex
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.91, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'seifert_matrix.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{1574.73650114bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.36122373)%
|
||||||
|
\put(0.76646668,0.87323963){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30136242\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.58791127,0.62441177){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.06104295\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.63785551,0.61775254){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(1.53074758,-0.65083121){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08878978\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(1.59789485,-0.63917748){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.0105438\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(1.57736215,-0.64139722){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08989959\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.52853312,0.49733142){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{seifert_matrix.pdf}}%
|
||||||
|
\put(0.62239545,0.32756023){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15393011\unitlength}\raggedright $\alpha_1^+$\end{minipage}}}%
|
||||||
|
\put(0.69294518,0.43731309){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.14012473\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.68037809,0.26129435){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.12493878\unitlength}\raggedright $\alpha_1$\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{seifert_matrix.pdf}}%
|
||||||
|
\put(0.13859342,0.26031816){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.12493878\unitlength}\raggedright $\alpha_1$\end{minipage}}}%
|
||||||
|
\put(0.15714098,0.12950888){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.12493878\unitlength}\raggedright $\alpha_2$\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{seifert_matrix.pdf}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
2393
images/seifert_matrix.svg
Normal file
After Width: | Height: | Size: 100 KiB |
@ -23,6 +23,145 @@
|
|||||||
inkscape:export-ydpi="90">
|
inkscape:export-ydpi="90">
|
||||||
<defs
|
<defs
|
||||||
id="defs4">
|
id="defs4">
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient5983"
|
||||||
|
osb:paint="solid">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#000000;stop-opacity:1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop5985" />
|
||||||
|
</linearGradient>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient5977"
|
||||||
|
osb:paint="solid">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#ffffff;stop-opacity:1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop5979" />
|
||||||
|
</linearGradient>
|
||||||
|
<inkscape:path-effect
|
||||||
|
effect="knot"
|
||||||
|
id="path-effect5961"
|
||||||
|
is_visible="true"
|
||||||
|
interruption_width="3"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
switcher_size="15"
|
||||||
|
crossing_points_vector="" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector="1108.4555 | 1500.7089 | 0 | 0 | 0 | 1 | 0.45779341 | 2.6639382 | 1"
|
||||||
|
switcher_size="6.3"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="10"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5945"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector="1609.9683 | 597.75232 | 0 | 0 | 0 | 1 | 0.20609226 | 2.6208948 | -1"
|
||||||
|
switcher_size="15"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="3"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5941"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector="974.84319 | 1273.969 | 0 | 0 | 0 | 1 | 1.49141 | 3.3826738 | 1"
|
||||||
|
switcher_size="6.3"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="10"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5937"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
effect="knot"
|
||||||
|
id="path-effect5933"
|
||||||
|
is_visible="true"
|
||||||
|
interruption_width="10"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
switcher_size="6.3"
|
||||||
|
crossing_points_vector="1164.6283 | 1400.3355 | 0 | 0 | 0 | 1 | 1.5702692 | 3.8892648 | -1" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector=""
|
||||||
|
switcher_size="15"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="3"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5929"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
effect="knot"
|
||||||
|
id="path-effect5925"
|
||||||
|
is_visible="true"
|
||||||
|
interruption_width="10"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
switcher_size="6.3"
|
||||||
|
crossing_points_vector="848.25061 | 1160.1746 | 0 | 0 | 0 | 1 | 1.5839465 | 3.8840407 | 1" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector="1203.0381 | 1263.2335 | 0 | 0 | 0 | 1 | 1.556462 | 3.9559219 | 1"
|
||||||
|
switcher_size="6.3"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="10"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5921"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector=""
|
||||||
|
switcher_size="15"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="3"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5917"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
crossing_points_vector=""
|
||||||
|
switcher_size="15"
|
||||||
|
add_other_stroke_width="true"
|
||||||
|
add_stroke_width="true"
|
||||||
|
prop_to_stroke_width="true"
|
||||||
|
interruption_width="3"
|
||||||
|
is_visible="true"
|
||||||
|
id="path-effect5913"
|
||||||
|
effect="knot" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
effect="spiro"
|
||||||
|
id="path-effect5797"
|
||||||
|
is_visible="true" />
|
||||||
|
<inkscape:path-effect
|
||||||
|
effect="spiro"
|
||||||
|
id="path-effect5793"
|
||||||
|
is_visible="true" />
|
||||||
|
<inkscape:perspective
|
||||||
|
sodipodi:type="inkscape:persp3d"
|
||||||
|
inkscape:vp_x="-511.1644 : -343.29586 : 1"
|
||||||
|
inkscape:vp_y="-295.66613 : 82.942186 : 0"
|
||||||
|
inkscape:vp_z="2308.1635 : 744.37604 : 1"
|
||||||
|
inkscape:persp3d-origin="964.63204 : 181.98815 : 1"
|
||||||
|
id="perspective5719" />
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient4984"
|
||||||
|
osb:paint="solid">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#9ccdfd;stop-opacity:1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop4986" />
|
||||||
|
</linearGradient>
|
||||||
<inkscape:path-effect
|
<inkscape:path-effect
|
||||||
effect="knot"
|
effect="knot"
|
||||||
id="path-effect4955"
|
id="path-effect4955"
|
||||||
@ -1885,6 +2024,36 @@
|
|||||||
y1="241.97745"
|
y1="241.97745"
|
||||||
x2="1415.182"
|
x2="1415.182"
|
||||||
y2="359.51749" />
|
y2="359.51749" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient8720"
|
||||||
|
id="linearGradient5947"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.74236478,0.41413834,-2.1353722,0.79079734,583.64253,1777.5698)"
|
||||||
|
x1="1325.3929"
|
||||||
|
y1="249.24767"
|
||||||
|
x2="1462.3616"
|
||||||
|
y2="368.71417" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient8720"
|
||||||
|
id="linearGradient5953"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.22570292,-0.29939453,0.14000213,0.48266564,453.52634,2878.9833)"
|
||||||
|
x1="1381.6266"
|
||||||
|
y1="264.20789"
|
||||||
|
x2="1364.567"
|
||||||
|
y2="393.39078" />
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient8720"
|
||||||
|
id="linearGradient5957"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
gradientTransform="matrix(0.26842961,-0.90216679,-0.87428491,-0.09668554,872.00837,4034.8377)"
|
||||||
|
x1="1387.6932"
|
||||||
|
y1="241.97745"
|
||||||
|
x2="1415.182"
|
||||||
|
y2="359.51749" />
|
||||||
</defs>
|
</defs>
|
||||||
<sodipodi:namedview
|
<sodipodi:namedview
|
||||||
id="base"
|
id="base"
|
||||||
@ -1893,9 +2062,9 @@
|
|||||||
borderopacity="1.0"
|
borderopacity="1.0"
|
||||||
inkscape:pageopacity="0.0"
|
inkscape:pageopacity="0.0"
|
||||||
inkscape:pageshadow="2"
|
inkscape:pageshadow="2"
|
||||||
inkscape:zoom="0.7359755"
|
inkscape:zoom="0.36798775"
|
||||||
inkscape:cx="1720.5836"
|
inkscape:cx="403.79277"
|
||||||
inkscape:cy="1078.2177"
|
inkscape:cy="-966.48739"
|
||||||
inkscape:document-units="px"
|
inkscape:document-units="px"
|
||||||
inkscape:current-layer="layer1"
|
inkscape:current-layer="layer1"
|
||||||
showgrid="false"
|
showgrid="false"
|
||||||
@ -1933,6 +2102,14 @@
|
|||||||
inkscape:groupmode="layer"
|
inkscape:groupmode="layer"
|
||||||
id="layer1"
|
id="layer1"
|
||||||
transform="translate(5.3063341,-384.86695)">
|
transform="translate(5.3063341,-384.86695)">
|
||||||
|
<path
|
||||||
|
style="opacity:0.6;fill:#9ccdfe;fill-opacity:0.84705882;fill-rule:evenodd;stroke:#1aa0ed;stroke-width:1;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
d="m 818.56385,2792.0264 c -165.58011,-56.9264 -358.98448,14.0622 -546.46133,-44.3388 -39.44381,-11.4699 -44.86708,-46.7957 2.77141,-53.054 13.62987,-1.8645 98.98588,21.3531 122.50773,21.2372 134.30681,-0.6615 261.29904,-1.8424 388.55452,11.7697 23.95552,2.5624 58.06252,-7.3377 73.73071,9.1637 43.8935,46.2277 -17.80814,63.231 -41.10304,55.2222 z"
|
||||||
|
id="path5999"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="sccssss"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90" />
|
||||||
<flowRoot
|
<flowRoot
|
||||||
xml:space="preserve"
|
xml:space="preserve"
|
||||||
id="flowRoot6107"
|
id="flowRoot6107"
|
||||||
@ -2603,5 +2780,92 @@
|
|||||||
inkscape:transform-center-y="-5.8130151"
|
inkscape:transform-center-y="-5.8130151"
|
||||||
inkscape:export-xdpi="90"
|
inkscape:export-xdpi="90"
|
||||||
inkscape:export-ydpi="90" />
|
inkscape:export-ydpi="90" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="ccssssssssc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
inkscape:original-d="m 1082.209,2590.7889 c 23.9005,30.4842 -1.3029,45.5857 -15.936,69.6658 -14.0858,26.9412 -15.7516,21.0042 -24.8953,32.1345 -27.7832,33.8194 -59.51988,28.8182 -97.52948,28.5794 -37.79774,-0.2375 -88.29658,5.6704 -113.06716,-15.2754 -24.77065,-20.9457 -40.0915,-49.882 -40.0915,-81.8442 0,-31.9622 31.59863,-79.5242 56.36921,-100.4699 24.77057,-20.9458 45.67268,-54.5223 83.47131,-54.5223 37.79861,0 85.33702,33.5765 110.10772,54.5223 12.3852,10.4728 22.4081,22.9433 29.3346,36.7909 6.9266,13.8476 2.0491,17.3228 12.2366,30.4189 z"
|
||||||
|
inkscape:path-effect="#path-effect5913"
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
id="path5911"
|
||||||
|
d="m 1082.209,2590.7889 c 23.9005,30.4842 -1.3029,45.5857 -15.936,69.6658 -14.0858,26.9412 -15.7516,21.0042 -24.8953,32.1345 -27.7832,33.8194 -59.51988,28.8182 -97.52948,28.5794 -37.79774,-0.2375 -88.29658,5.6704 -113.06716,-15.2754 -24.77065,-20.9457 -40.0915,-49.882 -40.0915,-81.8442 0,-31.9622 31.59863,-79.5242 56.36921,-100.4699 24.77057,-20.9458 45.67268,-54.5223 83.47131,-54.5223 37.79861,0 85.33702,33.5765 110.10772,54.5223 12.3852,10.4728 22.4081,22.9433 29.3346,36.7909 6.9266,13.8476 2.0491,17.3228 12.2366,30.4189 z"
|
||||||
|
style="fill:#9ccdfd;fill-opacity:0.84705882;stroke:#1aa0ed;stroke-width:1.82549679;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
style="opacity:1;fill:#ffffff;fill-opacity:0.96825406;fill-rule:evenodd;stroke:none;stroke-width:1;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="path5973"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
cx="832.96979"
|
||||||
|
cy="2762.1394"
|
||||||
|
rx="38.911385"
|
||||||
|
ry="33.146732" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="sccscccss"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
inkscape:original-d="m 927.89247,2754.7449 c 0,11.8533 -2.73849,23.0985 -7.32962,33.4164 -9.55192,58.6662 -69.57203,65.1919 -122.24473,45.6865 -11.15859,-4.3442 -21.20753,-10.6304 -29.6468,-18.3983 -8.43919,-7.7678 -15.26871,-17.0173 -19.98845,-27.2882 -21.16656,-46.8921 6.15521,-94.9836 49.63525,-112.5193 39.176,-10.6403 75.55002,-5.828 102.25635,18.3982 8.43919,7.7678 15.26871,17.0174 19.98838,27.2883 4.71974,10.2708 7.32962,21.563 7.32962,33.4164 z"
|
||||||
|
inkscape:path-effect="#path-effect5917"
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
id="path5915"
|
||||||
|
d="m 927.89247,2754.7449 c 0,11.8533 -2.73849,23.0985 -7.32962,33.4164 -9.55192,58.6662 -69.57203,65.1919 -122.24473,45.6865 -11.15859,-4.3442 -21.20753,-10.6304 -29.6468,-18.3983 -8.43919,-7.7678 -15.26871,-17.0173 -19.98845,-27.2882 -21.16656,-46.8921 6.15521,-94.9836 49.63525,-112.5193 39.176,-10.6403 75.55002,-5.828 102.25635,18.3982 8.43919,7.7678 15.26871,17.0174 19.98838,27.2883 4.71974,10.2708 7.32962,21.563 7.32962,33.4164 z"
|
||||||
|
style="fill:#9ccdfd;fill-opacity:0.84705882;stroke:#1aa0ed;stroke-width:1.82549679;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
style="fill:url(#linearGradient5947);fill-opacity:1;fill-rule:evenodd;stroke:#1aa0ed;stroke-width:2.66061521;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
inkscape:path-effect="#path-effect5921"
|
||||||
|
inkscape:original-d="m 906.24116,2699.3233 c 15.41021,3.9413 -2.6614,-65.6868 7.85817,-88.43 14.35362,-31.0322 32.24618,-60.9683 55.07016,-87.607 10.29939,-12.0208 28.32253,-20.9126 45.30321,-15.4127 23.3288,7.556 38.6296,27.0262 50.0782,45.7736 7.6093,12.4605 28.8364,31.7027 15.9419,40.307 -43.988,29.3527 -111.35758,-2.2581 -156.93971,9.1905 -29.9226,7.5155 -117.99996,42.4265 -51.0083,73.298 36.25701,16.7082 20.48083,19.5006 33.69637,22.8806 z"
|
||||||
|
id="path5919"
|
||||||
|
d="m 926.91953,2585.316 c 11.8619,-21.8432 25.77051,-42.7959 42.24996,-62.0297 10.29939,-12.0208 28.32253,-20.9126 45.30321,-15.4127 23.3288,7.556 38.6296,27.0262 50.0782,45.7736 7.6093,12.4605 28.8364,31.7027 15.9419,40.307 -43.988,29.3527 -111.35758,-2.2581 -156.93971,9.1905 -29.9226,7.5155 -117.99996,42.4265 -51.0083,73.298 36.25701,16.7082 20.48083,19.5006 33.69637,22.8806 13.17401,3.3694 1.87835,-47.0283 4.89513,-75.9354"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="sssssssss"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90" />
|
||||||
|
<path
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:original-d="m 827.93189,2667.1517 c 11.73782,-17.2132 -42.62422,-24.1687 -46.17908,-44.1046 -6.68422,-24.0016 62.13105,-109.819 69.24957,-99.5909 -21.98611,50.9569 -74.74578,163.4988 -64.06281,156.5041 6.9237,-4.5335 32.14228,-12.4275 40.99232,-12.8086 z"
|
||||||
|
inkscape:path-effect="#path-effect5937"
|
||||||
|
sodipodi:nodetypes="cccsc"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path5935"
|
||||||
|
d="m 790.07568,2634.4489 c -4.37509,-3.3462 -7.54994,-7.0672 -8.32287,-11.4018 -6.68422,-24.0016 62.13105,-109.819 69.24957,-99.5909 -21.98611,50.9569 -74.74578,163.4988 -64.06281,156.5041 6.9237,-4.5335 32.14228,-12.4275 40.99232,-12.8086 6.07931,-8.9151 -5.57241,-15.0787 -18.71311,-21.7192"
|
||||||
|
style="fill:url(#linearGradient5953);fill-opacity:1;fill-rule:evenodd;stroke:#1aa0ed;stroke-width:1.82549679;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:transform-center-y="-14.219881"
|
||||||
|
inkscape:transform-center-x="4.9003858"
|
||||||
|
inkscape:original-d="m 920.81594,2717.2351 c -15.384,-88.2131 89.24846,-29.3534 106.22716,-17.4949 16.9787,11.8588 16.9167,-74.4103 59.4865,-91.415 42.5699,-17.0046 -146.74988,214.0387 -167.06944,211.7891 -20.31955,-2.2495 16.73979,-14.6662 1.35578,-102.8792 z"
|
||||||
|
inkscape:path-effect="#path-effect5945"
|
||||||
|
sodipodi:nodetypes="zzzzz"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path5943"
|
||||||
|
d="m 920.81594,2717.2351 c -15.384,-88.2131 89.24846,-29.3534 106.22716,-17.4949 16.9787,11.8588 16.9167,-74.4103 59.4865,-91.415 42.5699,-17.0046 -146.74988,214.0387 -167.06944,211.7891 -20.31955,-2.2495 16.73979,-14.6662 1.35578,-102.8792 z"
|
||||||
|
style="fill:url(#linearGradient5957);fill-opacity:1;fill-rule:evenodd;stroke:#1aa0ed;stroke-width:4.26992035;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
style="fill:#9ccdfd;fill-opacity:0.84705882;stroke:#1aa0ed;stroke-width:1.90726244;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
d="m 440.00706,2766.7401 c 18.75128,20.487 56.79193,30.9525 68.44324,55.0697 9.04867,18.7299 -22.89152,28.6835 -43.1479,32.6538 -64.30867,12.6044 -128.80971,-6.2563 -190.40995,-20.7025 -33.55672,-7.8696 -69.74785,18.5309 -103.90238,6.8664 -20.01209,-6.8345 -30.72714,-21.7071 -48.33531,-31.2859 -43.952286,-23.9099 -97.362527,-44.8967 -118.4506641,-84.2692 -7.8688,-14.6914 5.76733,-31.313 20.4439601,-41.0091 38.921729,-25.7137 94.869584,-27.3343 144.323244,-33.5926 19.92921,-2.5219 40.79229,-0.4517 60.04989,-6.8065 48.5175,-16.0104 82.5432,-45.9178 120.96094,-71.674 29.83708,-20.0034 81.14389,-27.3461 103.65575,-0.7909 13.55886,15.9942 0.83791,34.1061 -9.92896,48.8867 -16.48382,22.6288 3.02219,47.7898 22.01725,66.5879 13.72381,13.5815 33.9347,26.0828 37.14481,43.0953 3.42915,18.1734 -29.48426,19.5931 -46.43614,25.984 -6.65985,2.5108 -20.72202,6.2952 -16.42778,10.9869 z"
|
||||||
|
id="path5959"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="sssssssssssssssss"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90" />
|
||||||
|
<ellipse
|
||||||
|
style="opacity:0.6;fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="path5975"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
cx="277.16147"
|
||||||
|
cy="2719.8652"
|
||||||
|
rx="35.548672"
|
||||||
|
ry="25.460535" />
|
||||||
|
<ellipse
|
||||||
|
style="opacity:0.6;fill:none;fill-opacity:0.84705882;fill-rule:evenodd;stroke:#1aa0ed;stroke-width:0.824;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:0.824, 0.824;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="path6006"
|
||||||
|
cx="540.24469"
|
||||||
|
cy="2743.5823"
|
||||||
|
rx="17.751429"
|
||||||
|
ry="27.602304"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90" />
|
||||||
</g>
|
</g>
|
||||||
</svg>
|
</svg>
|
||||||
|
Before Width: | Height: | Size: 124 KiB After Width: | Height: | Size: 138 KiB |
2871
images/seifert_surface.svg.2019_06_02_17_48_53.0.svg
Normal file
After Width: | Height: | Size: 138 KiB |
Before Width: | Height: | Size: 149 KiB After Width: | Height: | Size: 149 KiB |
3128
images/seifert_surface_v2.svg.2019_06_02_17_48_53.1.svg
Normal file
After Width: | Height: | Size: 154 KiB |
BIN
images/torus_1_2_3.pdf
Normal file
65
images/torus_1_2_3.pdf_tex
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.91, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'torus_1_2_3.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{593.4355536bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.29448915)%
|
||||||
|
\put(0.96512686,1.74474085){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.7996932\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.49131346,1.084453){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.16198314\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.62384515,1.06678211){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(2.99321725,-2.2995228){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.23561194\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(3.17139877,-2.26859853){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.02797896\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(3.11691334,-2.27448882){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.23855692\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0.33374803,0.74723349){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{torus_1_2_3.pdf}}%
|
||||||
|
\put(0.2866221,0.2343449){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.16212197\unitlength}\raggedright genus $0$\\ \end{minipage}}}%
|
||||||
|
\put(0.87444349,0.23989663){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.1438923\unitlength}\raggedright genus $2$\\ \end{minipage}}}%
|
||||||
|
\put(0.2866221,0.08627117){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.16212197\unitlength}\raggedright genus $1$\\ \end{minipage}}}%
|
||||||
|
\put(0.87444349,0.06347455){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.1438923\unitlength}\raggedright genus $3$\\ \end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
2101
images/torus_1_2_3.svg
Normal file
After Width: | Height: | Size: 78 KiB |
@ -48,34 +48,41 @@
|
|||||||
{\bfseries}{}%
|
{\bfseries}{}%
|
||||||
{\newline}{}%
|
{\newline}{}%
|
||||||
\theoremstyle{break}
|
\theoremstyle{break}
|
||||||
\newtheorem{lemma}{Lemma}
|
\newtheorem{lemma}{Lemma}[section]
|
||||||
\newtheorem{fact}{Fact}
|
\newtheorem{fact}{Fact}[section]
|
||||||
\newtheorem{corollary}{Corollary}
|
\newtheorem{corollary}{Corollary}[section]
|
||||||
\newtheorem{example}{Example}
|
\newtheorem{proposition}{Proposition}[section]
|
||||||
\newtheorem{definition}{Definition}
|
\newtheorem{example}{Example}[section]
|
||||||
\newtheorem{theorem}{Theorem}
|
\newtheorem{definition}{Definition}[section]
|
||||||
\newtheorem{proposition}{Proposition}
|
\newtheorem{theorem}{Theorem}[section]
|
||||||
|
|
||||||
\newcommand{\contradiction}{%
|
\newcommand{\contradiction}{%
|
||||||
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
|
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
|
||||||
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
|
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
|
||||||
|
|
||||||
\newcommand{\overbar}[1]{%
|
\newcommand{\overbar}[1]{%
|
||||||
\mkern 1.5mu=\overline{%
|
\mkern 1.5mu=\overline{%
|
||||||
\mkern-1.5mu#1\mkern-1.5mu}%
|
\mkern-1.5mu#1\mkern-1.5mu}%
|
||||||
\mkern 1.5mu}
|
\mkern 1.5mu}
|
||||||
|
|
||||||
|
\newcommand{\sdots}{\smash{\vdots}}
|
||||||
|
|
||||||
\AtBeginDocument{\renewcommand{\setminus}{%
|
\AtBeginDocument{\renewcommand{\setminus}{%
|
||||||
\mathbin{\backslash}}}
|
\mathbin{\backslash}}}
|
||||||
|
|
||||||
|
|
||||||
\DeclareMathOperator{\Hom}{Hom}
|
\DeclareMathOperator{\Hom}{Hom}
|
||||||
\DeclareMathOperator{\rank}{rank}
|
\DeclareMathOperator{\rank}{rank}
|
||||||
|
\DeclareMathOperator{\Gl}{Gl}
|
||||||
|
|
||||||
|
\titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{%
|
||||||
|
Lecture\ \thesection}%
|
||||||
|
{2.3ex plus .2ex}{}
|
||||||
|
\titlespacing*{\section}
|
||||||
|
{0pt}{16.5ex plus 1ex minus .2ex}{4.3ex plus .2ex}
|
||||||
|
|
||||||
|
|
||||||
\titleformat{\section}{\normalfont \large \bfseries}{%
|
\setlist[itemize]{topsep=0pt,before=%
|
||||||
Lecture\ \thesection}{2.3ex plus .2ex}{}
|
\leavevmode\vspace{0.5em}}
|
||||||
|
|
||||||
%\setlist[itemize]{topsep=0pt,before=%\leavevmode\vspace{0.5em}}
|
|
||||||
|
|
||||||
|
|
||||||
\input{knots_macros}
|
\input{knots_macros}
|
||||||
@ -87,7 +94,7 @@
|
|||||||
%\newpage
|
%\newpage
|
||||||
%\input{myNotes}
|
%\input{myNotes}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-02-25}}
|
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -96,12 +103,13 @@ A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^
|
|||||||
\end{definition}
|
\end{definition}
|
||||||
\noindent
|
\noindent
|
||||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item
|
\item
|
||||||
Knots:
|
Knots:
|
||||||
\includegraphics[width=0.08\textwidth]{unknot.png},
|
\includegraphics[width=0.08\textwidth]{unknot.png} (unknot),
|
||||||
\includegraphics[width=0.08\textwidth]{trefoil.png}.
|
\includegraphics[width=0.08\textwidth]{trefoil.png} (trefoil).
|
||||||
\item
|
\item
|
||||||
Not knots:
|
Not knots:
|
||||||
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
|
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
|
||||||
@ -172,7 +180,7 @@ Let $D$ be a diagram of an oriented link (to each component of a link we add an
|
|||||||
We can distinguish two types of crossings: right-handed
|
We can distinguish two types of crossings: right-handed
|
||||||
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
$\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing.
|
||||||
|
|
||||||
\section*{Reidemeister moves}
|
\subsection{Reidemeister moves}
|
||||||
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
|
||||||
\begin{enumerate}[label=\Roman*]
|
\begin{enumerate}[label=\Roman*]
|
||||||
\item\hfill\\
|
\item\hfill\\
|
||||||
@ -197,7 +205,7 @@ deformed into each other by a finite sequence of Reidemeister moves (and isotopy
|
|||||||
%Singularities of Differentiable Maps
|
%Singularities of Differentiable Maps
|
||||||
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
|
||||||
|
|
||||||
\subsection*{Seifert surface}
|
\subsection{Seifert surface}
|
||||||
\noindent
|
\noindent
|
||||||
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -221,7 +229,7 @@ Note: in general the obtained surface doesn't need to be connected, but by takin
|
|||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[width=0.6\textwidth]{seifert_connect.png}
|
\includegraphics[width=0.4\textwidth]{seifert_connect.png}
|
||||||
\end{center}
|
\end{center}
|
||||||
\caption{Connecting two surfaces.}
|
\caption{Connecting two surfaces.}
|
||||||
\label{fig:SeifertConnect}
|
\label{fig:SeifertConnect}
|
||||||
@ -259,13 +267,16 @@ On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$
|
|||||||
\end{definition}
|
\end{definition}
|
||||||
\hfill
|
\hfill
|
||||||
\\
|
\\
|
||||||
Let $\nu(\beta)$ be a tubular neighbourhood of a closed simple curve $\beta$. The linking number can be interpreted via first homology group, where $lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group in complement of $\beta$ in $S^3$:
|
Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$.
|
||||||
|
Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$:
|
||||||
\[
|
\[
|
||||||
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
||||||
|
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\begin{itemize}\hfill
|
\begin{itemize}
|
||||||
\item
|
\item
|
||||||
Hopf link\hfill
|
Hopf link
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\fontsize{20}{10}\selectfont
|
\fontsize{20}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
@ -274,7 +285,7 @@ Hopf link\hfill
|
|||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\item
|
\item
|
||||||
$T(6, 2)$ link\hfill
|
$T(6, 2)$ link
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\fontsize{20}{10}\selectfont
|
\fontsize{20}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
@ -285,94 +296,263 @@ $T(6, 2)$ link\hfill
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
Let $L$ be a link and $\Sigma$ be a Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
\subsection{Seifert matrix}
|
||||||
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface. Let $lk(\alpha_i, \alpha_i^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$.
|
Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$.
|
||||||
|
Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface.
|
||||||
|
Let $lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix.
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.8\textwidth}{!}{\input{images/seifert_matrix.pdf_tex}}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
|
The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves:
|
||||||
\begin{enumerate}[label={(\arabic*)}]
|
\begin{enumerate}[label={(\arabic*)}]
|
||||||
|
|
||||||
\item
|
\item
|
||||||
$V \rightarrow AVA^T$ for $A \in $
|
$V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients,
|
||||||
|
|
||||||
\item
|
\item
|
||||||
|
|
||||||
$V \rightarrow
|
$V \rightarrow
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
\alpha & * \\
|
|
||||||
\gamma^{*} & \delta
|
|
||||||
\end{pmatrix}
|
|
||||||
$\\
|
|
||||||
\[
|
|
||||||
\begin{pmatrix}
|
|
||||||
\begin{array}{c|c}
|
\begin{array}{c|c}
|
||||||
\epsilon' [T|_A]\epsilon & \ast \\
|
V &
|
||||||
\hline
|
\begin{matrix}
|
||||||
0 & _{\overline{B}'} [\overline{T}]
|
\ast & 0 \\
|
||||||
_{\overline{B}\vphantom{\overline{B}'}}
|
\sdots & \sdots\\
|
||||||
|
\ast & 0
|
||||||
|
\end{matrix} \\
|
||||||
|
\hline
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & \dots & \ast\\
|
||||||
|
0 & \dots & 0
|
||||||
|
\end{matrix}
|
||||||
|
&
|
||||||
|
\begin{matrix}
|
||||||
|
0 & 0\\
|
||||||
|
1 & 0
|
||||||
|
\end{matrix}
|
||||||
\end{array}
|
\end{array}
|
||||||
\end{pmatrix}
|
\end{pmatrix} \quad$
|
||||||
\]\\
|
or
|
||||||
\[\left|
|
$\quad
|
||||||
\begin{array}{cr}
|
V \rightarrow
|
||||||
Q & \begin{matrix} 0 \\ 0 \end{matrix} \\
|
\begin{pmatrix}
|
||||||
\begin{matrix} 2 & 3 \end{matrix} & -1
|
\begin{array}{c|c}
|
||||||
\end{array}
|
V &
|
||||||
\right|\]
|
\begin{matrix}
|
||||||
\\
|
\ast & 0 \\
|
||||||
\[
|
\sdots & \sdots\\
|
||||||
\left[
|
\ast & 0
|
||||||
\begin{array}{c@{}c@{}c}
|
\end{matrix} \\
|
||||||
\left[\begin{array}{cc}
|
\hline
|
||||||
a_{11} & a_{12} \\
|
\begin{matrix}
|
||||||
a_{21} & a_{22} \\
|
\ast & \dots & \ast\\
|
||||||
\end{array}\right] & \mathbf{0} & \mathbf{0} \\
|
0 & \dots & 0
|
||||||
\mathbf{0} & \left[\begin{array}{ccc}
|
\end{matrix}
|
||||||
b_{11} & b_{12} & b_{13}\\
|
&
|
||||||
b_{21} & b_{22} & b_{23}\\
|
\begin{matrix}
|
||||||
b_{31} & b_{32} & b_{33}\\
|
0 & 1\\
|
||||||
\end{array}\right] & \mathbf{0}\\
|
0 & 0
|
||||||
\mathbf{0} & \mathbf{0} & \left[ \begin{array}{cc}
|
\end{matrix}
|
||||||
c_{11} & c_{12} \\
|
\end{array}
|
||||||
c_{21} & c_{22} \\
|
\end{pmatrix}$
|
||||||
\end{array}\right] \\
|
|
||||||
\end{array}\right]
|
|
||||||
\] \\
|
|
||||||
\[
|
|
||||||
\begin{bmatrix}
|
|
||||||
\begin{bmatrix}
|
|
||||||
a_{11} & a_{12}\\
|
|
||||||
a_{21} & a_{22}\\
|
|
||||||
\end{bmatrix} & \mathbf{0} & \mathbf{0} \\
|
|
||||||
\mathbf{0} & \begin{bmatrix}
|
|
||||||
b_{11} & b_{12} & b_{13}\\
|
|
||||||
b_{21} & b_{22} & b_{23}\\
|
|
||||||
b_{31} & b_{32} & b_{33}\\
|
|
||||||
\end{bmatrix} & \mathbf{0} \\
|
|
||||||
\mathbf{0} & \mathbf{0} & \begin{bmatrix}
|
|
||||||
c_{11} & c_{12}\\
|
|
||||||
c_{21} & c_{22}\\
|
|
||||||
\end{bmatrix} \\
|
|
||||||
\end{bmatrix}
|
|
||||||
\]\\
|
|
||||||
\setlength{\arraycolsep}{2em}
|
|
||||||
\newcommand{\lbrce}{\smash{\left.\rule{0pt}{25pt}\right\}}}
|
|
||||||
\newcommand{\rbrce}{\smash{\left\{\rule{0pt}{25pt}\right.}}
|
|
||||||
\newcommand{\sdots}{\smash{\vdots}}
|
|
||||||
\[
|
|
||||||
\begin{pmatrix}
|
|
||||||
0 & 0 & 0 \\
|
|
||||||
\sdots & \sdots\makebox[0pt][l]{$\lbrce\left\lceil\frac i2\right\rceil$} & \sdots \\
|
|
||||||
0 & 0 & \\
|
|
||||||
& & 0 \\
|
|
||||||
& & \makebox[0pt][r]{$\left\lfloor\frac i2\right\rfloor\rbrce$}\sdots \\
|
|
||||||
0 & & 0
|
|
||||||
\end{pmatrix}
|
|
||||||
\]
|
|
||||||
|
|
||||||
\item
|
\item
|
||||||
inverse of (2)
|
inverse of (2)
|
||||||
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\section{\hfill\DTMdate{2019-03-04}}
|
||||||
|
\begin{theorem}
|
||||||
|
For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}("joke")\\
|
||||||
|
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
|
||||||
|
\begin{align*}
|
||||||
|
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
|
||||||
|
\end{align*}
|
||||||
|
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzcd}
|
||||||
|
[
|
||||||
|
column sep=0cm, fill=none,
|
||||||
|
row sep=small,
|
||||||
|
ar symbol/.style =%
|
||||||
|
{draw=none,"\textstyle#1" description,sloped},
|
||||||
|
isomorphic/.style = {ar symbol={\cong}},
|
||||||
|
]
|
||||||
|
&\mathbb{Z}
|
||||||
|
\\
|
||||||
|
|
||||||
|
& H^0(S^3) \ar[u,isomorphic] \to
|
||||||
|
&H^0(S^3 \setminus N) \to
|
||||||
|
\\
|
||||||
|
\to H^1(S^3, S^3 \setminus N) \to
|
||||||
|
& H^1(S^3) \to
|
||||||
|
& H^1(S^3\setminus N) \to
|
||||||
|
\\
|
||||||
|
& 0 \ar[u,isomorphic]&
|
||||||
|
\\
|
||||||
|
\to H^2(S^3, S^3 \setminus N) \to
|
||||||
|
& H^2(S^3) \ar[u,isomorphic] \to
|
||||||
|
& H^2(S^3\setminus N) \to
|
||||||
|
\\
|
||||||
|
\to H^3(S^3, S^3\setminus N)\to
|
||||||
|
& H^3(S) \to
|
||||||
|
& 0
|
||||||
|
\\
|
||||||
|
& \mathbb{Z} \ar[u,isomorphic] &\\
|
||||||
|
\end{tikzcd}
|
||||||
|
\end{center}
|
||||||
|
\[
|
||||||
|
H^* (S^3, S^3 \setminus N) \cong H^* (N, \partial N)
|
||||||
|
\]
|
||||||
|
\\
|
||||||
|
??????????????
|
||||||
|
\\
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
|
||||||
|
\[
|
||||||
|
\Delta_K(t) := \det (tS - S^T) \in
|
||||||
|
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
|
||||||
|
\]
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
|
||||||
|
\end{theorem}
|
||||||
|
\begin{proof}
|
||||||
|
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
|
||||||
|
\begin{enumerate}[label={(\arabic*)}]
|
||||||
|
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
|
||||||
|
\begin{align*}
|
||||||
|
&\det(tS\prime - S\prime^T) =
|
||||||
|
\det(tCSC^T - (CSC^T)^T) =\\
|
||||||
|
&\det(tCSC^T - CS^TC^T) =
|
||||||
|
\det C(tS - S^T)C^T =
|
||||||
|
\det(tS - S^T)
|
||||||
|
\end{align*}
|
||||||
|
\item
|
||||||
|
Let \\
|
||||||
|
$ A := t
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{array}{c|c}
|
||||||
|
S &
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & 0 \\
|
||||||
|
\sdots & \sdots\\
|
||||||
|
\ast & 0
|
||||||
|
\end{matrix} \\
|
||||||
|
\hline
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & \dots & \ast\\
|
||||||
|
0 & \dots & 0
|
||||||
|
\end{matrix}
|
||||||
|
&
|
||||||
|
\begin{matrix}
|
||||||
|
0 & 0\\
|
||||||
|
1 & 0
|
||||||
|
\end{matrix}
|
||||||
|
\end{array}
|
||||||
|
\end{pmatrix}
|
||||||
|
-
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{array}{c|c}
|
||||||
|
S^T &
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & 0 \\
|
||||||
|
\sdots & \sdots\\
|
||||||
|
\ast & 0
|
||||||
|
\end{matrix} \\
|
||||||
|
\hline
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & \dots & \ast\\
|
||||||
|
0 & \dots & 0
|
||||||
|
\end{matrix}
|
||||||
|
&
|
||||||
|
\begin{matrix}
|
||||||
|
0 & 1\\
|
||||||
|
0 & 0
|
||||||
|
\end{matrix}
|
||||||
|
\end{array}
|
||||||
|
\end{pmatrix}
|
||||||
|
=
|
||||||
|
\begin{pmatrix}
|
||||||
|
\begin{array}{c|c}
|
||||||
|
tS - S^T &
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & 0 \\
|
||||||
|
\sdots & \sdots\\
|
||||||
|
\ast & 0
|
||||||
|
\end{matrix} \\
|
||||||
|
\hline
|
||||||
|
\begin{matrix}
|
||||||
|
\ast & \dots & \ast\\
|
||||||
|
0 & \dots & 0
|
||||||
|
\end{matrix}
|
||||||
|
&
|
||||||
|
\begin{matrix}
|
||||||
|
0 & -1\\
|
||||||
|
t & 0
|
||||||
|
\end{matrix}
|
||||||
|
\end{array}
|
||||||
|
\end{pmatrix}
|
||||||
|
$
|
||||||
|
\\
|
||||||
|
\\
|
||||||
|
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{proof}
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
\begin{example}
|
||||||
|
If $K$ is a trefoil then we can take
|
||||||
|
$S = \begin{pmatrix}
|
||||||
|
-1 & -1 \\
|
||||||
|
0 & -1
|
||||||
|
\end{pmatrix}$.
|
||||||
|
\[
|
||||||
|
\Delta_K(t) = \det
|
||||||
|
\begin{pmatrix}
|
||||||
|
-t + 1 & -t\\
|
||||||
|
1 & -t +1
|
||||||
|
\end{pmatrix}
|
||||||
|
= (t -1)^2 + t = t^2 - t +1 \ne 1
|
||||||
|
\Rightarrow \text{trefoil is not trivial}
|
||||||
|
\]
|
||||||
|
\end{example}
|
||||||
|
\begin{fact}
|
||||||
|
$\Delta_K(t)$ is symmetric.
|
||||||
|
\end{fact}
|
||||||
|
\begin{proof}
|
||||||
|
Let $S$ be an $n \times n$ matrix.
|
||||||
|
\begin{align*}
|
||||||
|
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
|
||||||
|
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
|
||||||
|
\end{align*}
|
||||||
|
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
|
||||||
|
\end{proof}
|
||||||
|
\begin{lemma}
|
||||||
|
\begin{align*}
|
||||||
|
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
|
||||||
|
\text{ where } deg (a_n t^n + \cdots + a_1 t^l )= k - l.
|
||||||
|
\end{align*}
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
||||||
\section{}
|
\section{}
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -389,17 +569,6 @@ Prove that if $K$ is negative amphichiral, then $K \# K$ in
|
|||||||
$\mathbf{C}$
|
$\mathbf{C}$
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-03-04}}
|
|
||||||
\begin{proof}("joke")\\
|
|
||||||
Let $K \in S^3$ be a knot and $N$ be its tubular neighbourhood.
|
|
||||||
\begin{align*}
|
|
||||||
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K)
|
|
||||||
\end{align*}
|
|
||||||
For a pair $(S^3, S^3 \setminus N)$ we have:
|
|
||||||
\begin{align*}
|
|
||||||
H^0(S^3)
|
|
||||||
\end{align*}
|
|
||||||
\end{proof}
|
|
||||||
\section{\hfill\DTMdate{2019-03-18}}
|
\section{\hfill\DTMdate{2019-03-18}}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||||
@ -447,7 +616,11 @@ $H_2(X, \mathbb{Z}) \times
|
|||||||
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
|
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
|
||||||
\\
|
\\
|
||||||
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
||||||
|
\begin{proposition}
|
||||||
|
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes.
|
||||||
|
%$A \cdot B$ gives the pairing as ??
|
||||||
|
|
||||||
|
\end{proposition}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-04-15}}
|
\section{\hfill\DTMdate{2019-04-15}}
|
||||||
In other words:\\
|
In other words:\\
|
||||||
@ -459,27 +632,28 @@ of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z}$.\\
|
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z}$.\\
|
||||||
That means - what is happening on boundary is a measure of degeneracy.
|
That means - what is happening on boundary is a measure of degeneracy.
|
||||||
\\
|
|
||||||
\vspace{1cm}
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzcd}
|
\begin{tikzcd}
|
||||||
[
|
[
|
||||||
column sep=tiny,
|
column sep=tiny,
|
||||||
row sep=small,
|
row sep=small,
|
||||||
ar symbol/.style = {draw=none,"\textstyle#1" description,sloped},
|
ar symbol/.style =%
|
||||||
isomorphic/.style = {ar symbol={\cong}},
|
{draw=none,"\textstyle#1" description,sloped},
|
||||||
|
isomorphic/.style = {ar symbol={\cong}},
|
||||||
]
|
]
|
||||||
H_1(Y, \mathbb{Z})&
|
H_1(Y, \mathbb{Z}) &
|
||||||
\times \quad H_1(Y, \mathbb{Z})&
|
\times \quad H_1(Y, \mathbb{Z})&
|
||||||
\longrightarrow &
|
\longrightarrow &
|
||||||
\quot{\mathbb{Q}}{\mathbb{Z}}
|
\quot{\mathbb{Q}}{\mathbb{Z}}
|
||||||
\text{ - a linking form}
|
\text{ - a linking form}
|
||||||
\\
|
\\
|
||||||
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &
|
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &
|
||||||
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\
|
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\
|
||||||
\end{tikzcd}
|
\end{tikzcd}
|
||||||
$(a, b) \mapsto aA^{-1}b^T$
|
$(a, b) \mapsto aA^{-1}b^T$
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
The intersection form on a four-manifold determines the linking on the boundary. \\
|
The intersection form on a four-manifold determines the linking on the boundary. \\
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
@ -780,4 +954,22 @@ field of fractions
|
|||||||
|
|
||||||
\section{balagan}
|
\section{balagan}
|
||||||
|
|
||||||
|
\begin{comment}
|
||||||
|
\setlength{\arraycolsep}{2em}
|
||||||
|
\newcommand{\lbrce}{\smash{\left.\rule{0pt}{25pt}\right\}}}
|
||||||
|
\newcommand{\rbrce}{\smash{\left\{\rule{0pt}{25pt}\right.}}
|
||||||
|
\[
|
||||||
|
\begin{pmatrix}
|
||||||
|
0 & 0 & 0 \\
|
||||||
|
\sdots & \sdots\makebox[0pt][l]{$\lbrce\left\lceil\frac i2\right\rceil$} & \sdots \\
|
||||||
|
0 & 0 & \\
|
||||||
|
\hline
|
||||||
|
|
||||||
|
& & 0 \\
|
||||||
|
& & \makebox[0pt][r]{$\left\lfloor\frac i2\right\rfloor\rbrce$}\sdots \\
|
||||||
|
0 & & 0
|
||||||
|
\end{pmatrix}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end{comment}
|
||||||
\end{document}
|
\end{document}
|
||||||
|