diff --git a/images/concordance_sum.pdf b/images/concordance_sum.pdf index 6922a7d..1d88591 100644 Binary files a/images/concordance_sum.pdf and b/images/concordance_sum.pdf differ diff --git a/images/concordance_sum.pdf_tex b/images/concordance_sum.pdf_tex index d856807..c3546ff 100644 --- a/images/concordance_sum.pdf_tex +++ b/images/concordance_sum.pdf_tex @@ -36,7 +36,7 @@ }% \providecommand\rotatebox[2]{#2}% \ifx\svgwidth\undefined% - \setlength{\unitlength}{2270.54270346bp}% + \setlength{\unitlength}{2024.46625477bp}% \ifx\svgscale\undefined% \relax% \else% @@ -48,21 +48,22 @@ \global\let\svgwidth\undefined% \global\let\svgscale\undefined% \makeatother% - \begin{picture}(1,0.35664263)% - \put(0.34523208,0.32026902){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.13180612\unitlength}\raggedright \end{minipage}}}% - \put(0.37403638,0.28673265){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.05553241\unitlength}\raggedright \end{minipage}}}% - \put(-0.24570519,0.33337987){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07663471\unitlength}\raggedright \end{minipage}}}% + \begin{picture}(1,0.39238563)% + \put(0.38719549,0.35919813){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.14782733\unitlength}\raggedright \end{minipage}}}% + \put(0.41950099,0.32158538){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.06228245\unitlength}\raggedright \end{minipage}}}% + \put(-0.27557097,0.37390262){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08594976\unitlength}\raggedright \end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=1]{concordance_sum.pdf}}% - \put(0.00755836,0.35865552){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.03301039\unitlength}\raggedright $K_1$\end{minipage}}}% - \put(0.31573503,0.30921292){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11352441\unitlength}\raggedright $K_1\prime$\end{minipage}}}% - \put(0.11757955,0.35187197){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15898166\unitlength}\raggedright \shortstack{Annulus $A_1$}\end{minipage}}}% - \put(0.1209483,0.44515339){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11151923\unitlength}\raggedright \end{minipage}}}% + \put(0.01288113,0.34323651){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.03702285\unitlength}\raggedright $K_1$\end{minipage}}}% + \put(0.349709,0.29483055){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.12732345\unitlength}\raggedright $K_1\prime$\end{minipage}}}% + \put(0.11161295,0.2810184){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.17830609\unitlength}\raggedright \shortstack{Annulus $A_1$}\end{minipage}}}% + \put(0.13564973,0.49926236){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.12507454\unitlength}\raggedright \end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=2]{concordance_sum.pdf}}% - \put(0.00912905,0.16388952){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.03301039\unitlength}\raggedright $K_2$\end{minipage}}}% - \put(0.30238413,0.11444693){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11352441\unitlength}\raggedright $K_2\prime$\end{minipage}}}% - \put(0.11915025,0.15710597){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.16683513\unitlength}\raggedright \shortstack{Annulus $A_2$}\end{minipage}}}% + \put(0.01288113,0.08427937){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.03702285\unitlength}\raggedright $K_2$\end{minipage}}}% + \put(0.33913931,0.1283581){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.12732345\unitlength}\raggedright $K_2\prime$\end{minipage}}}% + \put(0.11425537,0.11454594){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.18711415\unitlength}\raggedright \shortstack{Annulus $A_2$}\end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=3]{concordance_sum.pdf}}% - \put(0.79479654,0.15057288){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21876087\unitlength}\raggedright $K_1\prime \# K_2\prime$\end{minipage}}}% - \put(0.39316361,0.18038181){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.07306307\unitlength}\raggedright $K_1 \# K_2$\end{minipage}}}% + \put(0.89218057,0.17097614){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.11494283\unitlength}\raggedright $K_1\prime \# K_2\prime$\end{minipage}}}% + \put(0.40836331,0.20054584){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.08194398\unitlength}\raggedright $K_1 \# K_2$\end{minipage}}}% + \put(0,0){\includegraphics[width=\unitlength,page=4]{concordance_sum.pdf}}% \end{picture}% \endgroup% diff --git a/images/concordance_sum.svg b/images/concordance_sum.svg index abb8310..91cbb15 100644 --- a/images/concordance_sum.svg +++ b/images/concordance_sum.svg @@ -11,15 +11,27 @@ xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" - width="800.99701mm" - height="285.66968mm" - viewBox="0 0 800.99698 285.66968" + width="714.18671mm" + height="280.2366mm" + viewBox="0 0 714.18668 280.23661" version="1.1" id="svg8" inkscape:version="0.92.2 5c3e80d, 2017-08-06" sodipodi:docname="concordance_sum.svg"> + + + + @@ -28,7 +40,7 @@ offset="0" id="stop1381" /> @@ -180,22 +192,33 @@ inkscape:collect="always" xlink:href="#linearGradient1385" id="radialGradient1373" - cx="-212.55186" - cy="347.21616" - fx="-212.55186" - fy="347.21616" + cx="-212.71851" + cy="357.13055" + fx="-212.71851" + fy="357.13055" r="41.662697" - gradientTransform="matrix(0.27469349,-1.7655014,-3.3945763,-0.52816046,1439.4435,46.130242)" + gradientTransform="matrix(0.16914137,-1.7787195,-0.31440247,-0.02989704,347.52208,-129.68439)" gradientUnits="userSpaceOnUse" /> + + transform="translate(175.00922,-89.463084)"> $K_1$ $K_2\prime$ + sodipodi:nodetypes="cssccssscssssc" /> - $K_1\prime \# K_2\prime$ $K_1 \# K_2$ + id="flowPara2032">$K_1 \# K_2$ + diff --git a/images/linking_hopf.pdf b/images/linking_hopf.pdf index 6af87f1..153e57e 100644 Binary files a/images/linking_hopf.pdf and b/images/linking_hopf.pdf differ diff --git a/images/linking_hopf.pdf_tex b/images/linking_hopf.pdf_tex index 5a9c752..4bb23f7 100644 --- a/images/linking_hopf.pdf_tex +++ b/images/linking_hopf.pdf_tex @@ -1,4 +1,4 @@ -%% Creator: Inkscape inkscape 0.91, www.inkscape.org +%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org %% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 %% Accompanies image file 'linking_hopf.pdf' (pdf, eps, ps) %% @@ -36,7 +36,7 @@ }% \providecommand\rotatebox[2]{#2}% \ifx\svgwidth\undefined% - \setlength{\unitlength}{366.27626434bp}% + \setlength{\unitlength}{364.49980969bp}% \ifx\svgscale\undefined% \relax% \else% @@ -48,24 +48,12 @@ \global\let\svgwidth\undefined% \global\let\svgscale\undefined% \makeatother% - \begin{picture}(1,0.4253775)% - \put(1.08208561,3.31474966){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.29565154\unitlength}\raggedright \end{minipage}}}% - \put(0.31441988,2.24496068){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26244278\unitlength}\raggedright \end{minipage}}}% - \put(0.52914584,2.21633055){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% - \put(4.36796878,-3.23770874){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.3817351\unitlength}\raggedright \end{minipage}}}% - \put(4.65665595,-3.18760568){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04533111\unitlength}\raggedright \end{minipage}}}% - \put(4.56837943,-3.19714904){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38650652\unitlength}\raggedright \end{minipage}}}% - \put(0.05913462,1.69860243){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% - \put(1.08208561,3.31474966){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.29565154\unitlength}\raggedright \end{minipage}}}% - \put(0.31441988,2.24496068){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26244278\unitlength}\raggedright \end{minipage}}}% - \put(0.52914584,2.21633055){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% - \put(4.36796878,-3.23770874){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.3817351\unitlength}\raggedright \end{minipage}}}% - \put(4.65665595,-3.18760568){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04533111\unitlength}\raggedright \end{minipage}}}% - \put(4.56837943,-3.19714904){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38650652\unitlength}\raggedright \end{minipage}}}% - \put(0.05913462,1.69860243){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% + \begin{picture}(1,0.42290942)% + \put(0.29250579,2.25393507){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26372184\unitlength}\raggedright \end{minipage}}}% + \put(0.29250579,2.25393507){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26372184\unitlength}\raggedright \end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=1]{linking_hopf.pdf}}% - \put(0.70175337,0.25533316){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.31194021\unitlength}\raggedright \shortstack{$lk(\alpha, \beta) = -1$}\end{minipage}}}% - \put(0.02396785,0.29558502){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.20745851\unitlength}\raggedright $\alpha$\\ \end{minipage}}}% - \put(0.50082317,0.11358255){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.20745851\unitlength}\raggedright $\beta$\\ \end{minipage}}}% + \put(0.86572181,0.24480623){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.48025377\unitlength}\raggedright $\Lk(\alpha, \beta) = -1$\\  \end{minipage}}}% + \put(-0.0000008,0.37342144){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.21983917\unitlength}\raggedright $\alpha$\\  \end{minipage}}}% + \put(0.73747224,0.40373095){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.21983917\unitlength}\raggedright $\beta$\\  \end{minipage}}}% \end{picture}% \endgroup% diff --git a/images/linking_hopf.svg b/images/linking_hopf.svg index f35eb1d..23e527b 100644 --- a/images/linking_hopf.svg +++ b/images/linking_hopf.svg @@ -10,13 +10,13 @@ xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" - width="143.05998mm" - height="118.62276mm" - viewBox="0 0 506.90548 420.31686" + width="128.58743mm" + height="54.380836mm" + viewBox="0 0 455.62479 192.68801" id="svg2" version="1.1" - inkscape:version="0.91 r13725" - sodipodi:docname="linking_number.svg" + inkscape:version="0.92.2 5c3e80d, 2017-08-06" + sodipodi:docname="linking_hopf.svg" inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/seifert3d.png" inkscape:export-xdpi="90" inkscape:export-ydpi="90"> @@ -33,8 +33,8 @@ @@ -854,8 +854,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -869,8 +869,8 @@ inkscape:isstock="true"> @@ -884,8 +884,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -899,8 +899,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -929,8 +929,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -944,8 +944,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -959,8 +959,8 @@ inkscape:isstock="true"> @@ -989,9 +989,9 @@ inkscape:isstock="true"> @@ -1020,8 +1020,8 @@ inkscape:collect="always"> @@ -1035,8 +1035,8 @@ inkscape:isstock="true"> @@ -1323,7 +1323,7 @@ id="path8433" style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" - transform="scale(-0.6,-0.6)" + transform="scale(-0.6)" inkscape:connector-curvature="0" /> @@ -1385,8 +1385,8 @@ inkscape:isstock="true"> @@ -1400,8 +1400,8 @@ inkscape:isstock="true"> @@ -1433,8 +1433,8 @@ inkscape:stockid="Arrow1Send"> @@ -1448,8 +1448,8 @@ inkscape:isstock="true"> @@ -1463,8 +1463,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1478,8 +1478,8 @@ inkscape:isstock="true"> @@ -1493,8 +1493,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1508,8 +1508,8 @@ inkscape:isstock="true"> @@ -1523,8 +1523,8 @@ inkscape:isstock="true"> @@ -1538,8 +1538,8 @@ inkscape:isstock="true"> @@ -1553,8 +1553,8 @@ inkscape:isstock="true"> @@ -1568,8 +1568,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1585,7 +1585,7 @@ id="path6497" style="fill:#e30000;fill-opacity:1;fill-rule:evenodd;stroke:#e30000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" - transform="scale(-0.6,-0.6)" + transform="scale(-0.6)" inkscape:connector-curvature="0" /> @@ -1613,8 +1613,8 @@ inkscape:isstock="true"> @@ -1628,8 +1628,8 @@ inkscape:isstock="true"> @@ -1643,8 +1643,8 @@ inkscape:isstock="true"> @@ -1658,8 +1658,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1673,8 +1673,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1688,8 +1688,8 @@ inkscape:isstock="true"> @@ -1705,7 +1705,7 @@ id="path4354" style="fill:#1aa0ed;fill-opacity:1;fill-rule:evenodd;stroke:#1aa0ed;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" - transform="scale(-0.6,-0.6)" + transform="scale(-0.6)" inkscape:connector-curvature="0" /> @@ -1763,8 +1763,8 @@ inkscape:isstock="true"> @@ -1778,8 +1778,8 @@ inkscape:isstock="true"> @@ -1806,16 +1806,16 @@ inkscape:pageopacity="0.0" inkscape:pageshadow="2" inkscape:zoom="0.62698066" - inkscape:cx="354.30539" - inkscape:cy="261.2876" + inkscape:cx="389.39003" + inkscape:cy="-109.45396" inkscape:document-units="px" inkscape:current-layer="layer1" showgrid="false" - inkscape:window-width="1388" + inkscape:window-width="1397" inkscape:window-height="855" - inkscape:window-x="0" - inkscape:window-y="1" - inkscape:window-maximized="1" + inkscape:window-x="10" + inkscape:window-y="3" + inkscape:window-maximized="0" inkscape:snap-global="true" inkscape:snap-nodes="false" fit-margin-top="0" @@ -1826,8 +1826,8 @@ + originx="-401.97735" + originy="83.160629" /> @@ -1845,21 +1845,11 @@ inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1" - transform="translate(-373.56348,-943.15502)"> + transform="translate(-401.97736,-942.83463)"> $\Sigma$ - - $\Sigma$ $\Sigma$ - - $\Sigma$ $lk(\alpha, \beta) = -1$ $\Lk(\alpha, \beta) = -1$  $\alpha$ $\alpha$  $\beta$ + id="flowPara11317" + style="font-size:40.00024796px;line-height:1.25">$\beta$  diff --git a/images/linking_torus_6_2.pdf b/images/linking_torus_6_2.pdf index e19e634..e8aada1 100644 Binary files a/images/linking_torus_6_2.pdf and b/images/linking_torus_6_2.pdf differ diff --git a/images/linking_torus_6_2.pdf_tex b/images/linking_torus_6_2.pdf_tex index d3d64c2..dd80b17 100644 --- a/images/linking_torus_6_2.pdf_tex +++ b/images/linking_torus_6_2.pdf_tex @@ -1,4 +1,4 @@ -%% Creator: Inkscape inkscape 0.91, www.inkscape.org +%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org %% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 %% Accompanies image file 'linking_torus_6_2.pdf' (pdf, eps, ps) %% @@ -36,7 +36,7 @@ }% \providecommand\rotatebox[2]{#2}% \ifx\svgwidth\undefined% - \setlength{\unitlength}{364.39046544bp}% + \setlength{\unitlength}{318.45018282bp}% \ifx\svgscale\undefined% \relax% \else% @@ -48,24 +48,12 @@ \global\let\svgwidth\undefined% \global\let\svgscale\undefined% \makeatother% - \begin{picture}(1,0.42240282)% - \put(1.08838441,3.32395633){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.30235674\unitlength}\raggedright \end{minipage}}}% - \put(0.31674589,2.24863096){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26380097\unitlength}\raggedright \end{minipage}}}% - \put(0.53258309,2.21985267){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% - \put(4.39127254,-3.26241245){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38371064\unitlength}\raggedright \end{minipage}}}% - \put(4.68145371,-3.21205009){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04556571\unitlength}\raggedright \end{minipage}}}% - \put(4.59272034,-3.22164284){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38850675\unitlength}\raggedright \end{minipage}}}% - \put(0.06013949,1.69944519){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% - \put(1.08838441,3.32395633){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.30235674\unitlength}\raggedright \end{minipage}}}% - \put(0.31674589,2.24863096){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26380097\unitlength}\raggedright \end{minipage}}}% - \put(0.53258309,2.21985267){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% - \put(4.39127254,-3.26241245){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38371064\unitlength}\raggedright \end{minipage}}}% - \put(4.68145371,-3.21205009){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.04556571\unitlength}\raggedright \end{minipage}}}% - \put(4.59272034,-3.22164284){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38850675\unitlength}\raggedright \end{minipage}}}% - \put(0.06013949,1.69944519){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}% + \begin{picture}(1,0.48333952)% + \put(0.36244031,2.57302301){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30185744\unitlength}\raggedright \end{minipage}}}% + \put(0.36244031,2.57302301){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.30185744\unitlength}\raggedright \end{minipage}}}% \put(0,0){\includegraphics[width=\unitlength,page=1]{linking_torus_6_2.pdf}}% - \put(0.70608389,0.2487067){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.31355455\unitlength}\raggedright \shortstack{$lk(\alpha, \beta) = 3$}\end{minipage}}}% - \put(0.02479073,0.28916687){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.20853214\unitlength}\raggedright $\alpha$\\ \end{minipage}}}% - \put(0.50411385,0.1062225){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.20853214\unitlength}\raggedright $\beta$\\ \end{minipage}}}% + \put(0.80794467,0.26923855){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.66035143\unitlength}\raggedright \shortstack{$\Lk(\alpha, \beta) = 3$}\end{minipage}}}% + \put(0.02836708,0.33088267){\color[rgb]{1,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.23861542\unitlength}\raggedright $\alpha$\\  \end{minipage}}}% + \put(0.57683835,0.12154638){\color[rgb]{0,0,1}\makebox(0,0)[lt]{\begin{minipage}{0.23861542\unitlength}\raggedright $\beta$\\  \end{minipage}}}% \end{picture}% \endgroup% diff --git a/images/linking_torus_6_2.svg b/images/linking_torus_6_2.svg index 4246f76..b70612b 100644 --- a/images/linking_torus_6_2.svg +++ b/images/linking_torus_6_2.svg @@ -10,13 +10,13 @@ xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" - width="128.54886mm" + width="112.34215mm" height="54.2994mm" - viewBox="0 0 455.4881 192.39945" + viewBox="0 0 398.06274 192.39946" id="svg2" version="1.1" - inkscape:version="0.91 r13725" - sodipodi:docname="linking_torus_4_2.svg" + inkscape:version="0.92.2 5c3e80d, 2017-08-06" + sodipodi:docname="linking_torus_6_2.svg" inkscape:export-filename="/Users/Kasia/lectures_on_knot_theory/images/seifert3d.png" inkscape:export-xdpi="90" inkscape:export-ydpi="90"> @@ -47,9 +47,9 @@ inkscape:isstock="true"> @@ -899,8 +899,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -914,8 +914,8 @@ inkscape:isstock="true"> @@ -929,8 +929,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -944,8 +944,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -974,8 +974,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -989,8 +989,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1004,8 +1004,8 @@ inkscape:isstock="true"> @@ -1034,9 +1034,9 @@ inkscape:isstock="true"> @@ -1064,8 +1064,8 @@ inkscape:isstock="true"> @@ -1352,7 +1352,7 @@ id="path8433" style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" - transform="scale(-0.6,-0.6)" + transform="scale(-0.6)" inkscape:connector-curvature="0" /> @@ -1415,8 +1415,8 @@ inkscape:isstock="true"> @@ -1430,8 +1430,8 @@ inkscape:isstock="true"> @@ -1463,8 +1463,8 @@ inkscape:stockid="Arrow1Send"> @@ -1478,8 +1478,8 @@ inkscape:isstock="true"> @@ -1493,8 +1493,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1508,8 +1508,8 @@ inkscape:isstock="true"> @@ -1523,8 +1523,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1538,8 +1538,8 @@ inkscape:isstock="true"> @@ -1553,8 +1553,8 @@ inkscape:isstock="true"> @@ -1568,8 +1568,8 @@ inkscape:isstock="true"> @@ -1583,8 +1583,8 @@ inkscape:isstock="true"> @@ -1598,8 +1598,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1615,7 +1615,7 @@ id="path6497" style="fill:#e30000;fill-opacity:1;fill-rule:evenodd;stroke:#e30000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" - transform="scale(-0.6,-0.6)" + transform="scale(-0.6)" inkscape:connector-curvature="0" /> @@ -1643,8 +1643,8 @@ inkscape:isstock="true"> @@ -1658,8 +1658,8 @@ inkscape:isstock="true"> @@ -1673,8 +1673,8 @@ inkscape:isstock="true"> @@ -1688,8 +1688,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1703,8 +1703,8 @@ inkscape:stockid="Arrow1Sstart"> @@ -1718,8 +1718,8 @@ inkscape:isstock="true"> @@ -1735,7 +1735,7 @@ id="path4354" style="fill:#0000ff;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1" d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z" - transform="scale(-0.6,-0.6)" + transform="scale(-0.6)" inkscape:connector-curvature="0" /> @@ -1793,8 +1793,8 @@ inkscape:isstock="true"> @@ -1808,8 +1808,8 @@ inkscape:isstock="true"> @@ -1835,13 +1835,13 @@ borderopacity="1.0" inkscape:pageopacity="0.0" inkscape:pageshadow="2" - inkscape:zoom="1.6648843" - inkscape:cx="216.64946" - inkscape:cy="102.11306" + inkscape:zoom="0.14715637" + inkscape:cx="250.88609" + inkscape:cy="270.29308" inkscape:document-units="px" inkscape:current-layer="layer1" showgrid="false" - inkscape:window-width="1388" + inkscape:window-width="1397" inkscape:window-height="855" inkscape:window-x="0" inkscape:window-y="1" @@ -1858,8 +1858,8 @@ + originx="-390.9762" + originy="80.436871" /> @@ -1877,21 +1877,11 @@ inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1" - transform="translate(-390.97626,-940.39914)"> + transform="translate(-390.97626,-940.39913)"> $\Sigma$ - - $\Sigma$ $\Sigma$ - - $\Sigma$ \shortstack{$lk(\alpha, \beta) = 3$} \shortstack{$\Lk(\alpha, \beta) = 3$} $\alpha$ $\alpha$  $\beta$ + id="flowPara11317" + style="font-size:40.00024796px;line-height:1.25">$\beta$  diff --git a/lectures_on_knot_theory.tex b/lectures_on_knot_theory.tex index 2328b94..48b7937 100644 --- a/lectures_on_knot_theory.tex +++ b/lectures_on_knot_theory.tex @@ -48,13 +48,16 @@ {\bfseries}{}% {\newline}{}% \theoremstyle{break} + \newtheorem{lemma}{Lemma}[section] \newtheorem{fact}{Fact}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{example}{Example}[section] +\newtheorem{problem}{Problem}[section] \newtheorem{definition}{Definition}[section] \newtheorem{theorem}{Theorem}[section] + \newcommand{\contradiction}{% \ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}} \newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}} @@ -66,6 +69,10 @@ \newcommand{\sdots}{\smash{\vdots}} + + + + \AtBeginDocument{\renewcommand{\setminus}{% \mathbin{\backslash}}} @@ -73,6 +80,8 @@ \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\Gl}{Gl} +\DeclareMathOperator{\Lk}{lk} + \titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{% Lecture\ \thesection}% @@ -263,12 +272,12 @@ Remark: there are knots that admit non isotopic Seifert surfaces of minimal genu \begin{definition} Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$. -On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$. +On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$. \end{definition} \hfill \\ Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$. -Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$: +Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$: \[ \alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\] @@ -306,7 +315,7 @@ where $b_1$ is first Betti number of $\Sigma$. \subsection{Seifert matrix} Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \dots, \alpha_n$. Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ are don't intersect the surface. -Let $lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix. +Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix. \begin{figure}[h] \fontsize{20}{10}\selectfont @@ -581,19 +590,37 @@ g_{\big| \partial D^2} = f_{\big| \partial D^2.} &F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{ a polynomial} \\ &F(0) = 0 \end{align*} -Fact (Milnor Singular Points of Complex Hypersurfaces): -\end{example} -%\end{comment} -An oriented knot is called negative amphichiral if the mirror image $m(K)$ if $K$ is equivalent the reverse knot of $K$. \\ -\begin{example}[Problem] -Prove that if $K$ is negative amphichiral, then $K \# K$ in -$\mathbf{C}$ +\end{example} +???????????? +\\ +\noindent +as a corollary we see that $K_T^{n, }$ ???? \\ +is not slice unless $m=0$. +\begin{theorem} +The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$ +\end{theorem} + + +\begin{fact}[Milnor Singular Points of Complex Hypersurfaces] +\end{fact} +%\end{comment} +\noindent +An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\ +\begin{problem} +Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in +$\mathscr{C}$. +% +%\\ +%Hint: $ -K = m(K)^r = (K^r)^r = K$ +\end{problem} +\begin{example} +Figure 8 knot is negative amphichiral. \end{example} % % % -\section{\hfill\DTMdate{2019-03-18}} +\section{Concordance group \hfill\DTMdate{2019-03-18}} \begin{definition} A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\ A knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$. @@ -628,7 +655,7 @@ $K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$. \fontsize{10}{10}\selectfont \centering{ \def\svgwidth{\linewidth} -\resizebox{0.8\textwidth}{!}{\input{images/concordance_sum.pdf_tex}} +\resizebox{1\textwidth}{!}{\input{images/concordance_sum.pdf_tex}} } \caption{Sketch for Fakt \ref{fakt:concordance_connected}.} \label{fig:concordance_sum} @@ -639,23 +666,40 @@ $K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$. $K \# m(K) \sim $ the unknot. \end{fact} \noindent -Let $\mathscr{C}$ denote all equivalent classes for knots. $\mathscr{C}$ is a group under taking connected sums, with neutral element (the class defined by) an unknot and inverse element (a class defined by) a mirror image.\\ -The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).\\ -\begin{example}[Problem] -Are there in concordance group torsion elements that are not $2$ torsion elements? (open) -\end{example} +\begin{theorem} +Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot. +$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathscr{C}$ is $-\{K\} = \{mK\}$. +\end{theorem} +\begin{fact} +The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot). +\end{fact} +\begin{problem}[open] +Are there in concordance group torsion elements that are not $2$ torsion elements? +\end{problem} \noindent Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice. - +\\ +\\ +\noindent +Let $\Omega$ be an oriented \\ +???????\\ +Suppose $\Sigma$ is a Seifert matrix with an intersection form ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z}$ (i.e. there are cycles). \\ +??????????????\\ +$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$. +Let $B^+$ be a push off of $B$ in the positive normal direction such that +$\partial B^+ = \beta^+$. +Then +$\Lk(\alpha, \beta^+) = A \cdot B^+$ % % +\\ \section{\hfill\DTMdate{2019-04-08}} % % $X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$. $H_2$ is free (exercise). \begin{align*} -H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincaré duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z}) +H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z}) \end{align*} Intersection form: $H_2(X, \mathbb{Z}) \times @@ -749,7 +793,7 @@ In general \section{\hfill\DTMdate{2019-05-20}} -Let $M$ be compact, oriented, connected four-dimensional manifold. If $H_1(M, \mathbb{Z}) = 0$ then there exists a +Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a bilinear form - the intersection form on $M$: \begin{center} @@ -1006,22 +1050,95 @@ field of fractions \section{balagan} -\begin{comment} -\setlength{\arraycolsep}{2em} -\newcommand{\lbrce}{\smash{\left.\rule{0pt}{25pt}\right\}}} -\newcommand{\rbrce}{\smash{\left\{\rule{0pt}{25pt}\right.}} +\noindent +\begin{proof} +By Poincar\'e duality we know that: +\begin{align*} +H_3(\Omega, Y) &\cong H^0(\Omega),\\ +H_2(Y) &\cong H^0(Y),\\ +H_2(\Omega) &\cong H^1(\Omega, Y),\\ +H_2(\Omega, Y) &\cong H^1(\Omega). +\end{align*} +Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V} += \dim_{\mathbb{Q}} V +$. +\end{proof} +\noindent +Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on 4\\ +?????\\ +has a subspace of dimension $g_{\Sigma}$ on which it is zero: \[ - \begin{pmatrix} - 0 & 0 & 0 \\ - \sdots & \sdots\makebox[0pt][l]{$\lbrce\left\lceil\frac i2\right\rceil$} & \sdots \\ - 0 & 0 & \\ - \hline - - & & 0 \\ - & & \makebox[0pt][r]{$\left\lfloor\frac i2\right\rfloor\rbrce$}\sdots \\ - 0 & & 0 - \end{pmatrix} +V = +\begin{pmatrix} + \begin{array}{c|c} + 0 & * \\ + \hline + * & * + \end{array} +\end{pmatrix} \] +\begin{align*} + \newcommand*{\AddLeft}[1]{% + \vadjust{% + \vbox to 0pt{% + \vss + \llap{$% + {#1}\left\{ + \vphantom{ + \begin{matrix}1\\\vdots\\0\end{matrix} + } + \right.\kern-\nulldelimiterspace + \kern0.5em + $}% + \kern0pt + }% + }% + } +V = \qquad +\begin{pmatrix} + 0 & \cdots & 0 & * & \cdots & * \\ + \vdots & & \vdots & \vdots & &\vdots \\ + 0 & \cdots & 0 & * & \cdots & * + \AddLeft{g_{\Sigma}}\\ + * & \cdots & * & * & \cdots & * \\ + \vdots & & \vdots & \vdots & &\vdots \\ + * & \cdots & * & * & \cdots & * + \end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}} +\end{align*} + +\begin{align*} +\newcommand\coolover[2]{\mathrlap{\smash{\overbrace{\phantom{% + \begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2} +\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{% + \begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2} +\newcommand\coolleftbrace[2]{% + #1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.} +\newcommand\coolrightbrace[2]{% + \left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2} + \vphantom{% phantom stuff for correct box dimensions + \begin{matrix} + \overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\ + \underbrace{pqr}_{\mbox{$S$}} + \end{matrix}}% +\begin{matrix}% matrix for left braces +\vphantom{a}\\ + \coolleftbrace{A}{e \\ y\\ y}\\ + \coolleftbrace{B}{y \\i \\ m} +\end{matrix}% +\begin{bmatrix} +a & \coolover{R}{b & c & d} & x & \coolover{Z}{x & x}\\ + e & f & g & h & x & x & x \\ + y & y & y & y & y & y & y \\ + y & y & y & y & y & y & y \\ + y & y & y & y & y & y & y \\ + i & j & k & l & x & x & x \\ + m & \coolunder{S}{n & o} & \coolunder{W}{p & x & x} & x +\end{bmatrix}% +\begin{matrix}% matrix for right braces + \coolrightbrace{x \\ x \\ y\\ y}{T}\\ + \coolrightbrace{y \\ y \\ x }{U} +\end{matrix} +\end{align*} + -\end{comment} \end{document}