second lecture allmost done
This commit is contained in:
parent
bcf43402a6
commit
d2fdbc4b4c
BIN
images/milnor_singular.pdf
Normal file
BIN
images/milnor_singular.pdf
Normal file
Binary file not shown.
60
images/milnor_singular.pdf_tex
Normal file
60
images/milnor_singular.pdf_tex
Normal file
@ -0,0 +1,60 @@
|
||||
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'milnor_singular.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{595.27559055bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,1.41428571)%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{milnor_singular.pdf}}%
|
||||
\put(0.65155898,1.03673474){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.41757364\unitlength}\raggedright $F^{-1}(0)$\\ \end{minipage}}}%
|
||||
\put(0.59036283,1.14112815){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.26998302\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.04886191,0.32141521){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.19914935\unitlength}\raggedright $L = F^{-1}(0) \cap S^3$\\ \end{minipage}}}%
|
||||
\put(0.63715987,1.05113382){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.98633784\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.86754533,0.91794223){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.80274954\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.86394559,0.92514175){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.81714843\unitlength}\raggedright \end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
140
images/milnor_singular.svg
Normal file
140
images/milnor_singular.svg
Normal file
@ -0,0 +1,140 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg4463"
|
||||
inkscape:version="0.92.2 5c3e80d, 2017-08-06"
|
||||
sodipodi:docname="milnor_singular.svg">
|
||||
<defs
|
||||
id="defs4457" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.35"
|
||||
inkscape:cx="628.57143"
|
||||
inkscape:cy="-125.71429"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1388"
|
||||
inkscape:window-height="855"
|
||||
inkscape:window-x="214"
|
||||
inkscape:window-y="410"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata4460">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<ellipse
|
||||
style="opacity:0.89899998;fill:#eae415;fill-opacity:1;fill-rule:evenodd;stroke:#000023;stroke-width:1.82838094;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="path4465"
|
||||
cx="66.955421"
|
||||
cy="133.71429"
|
||||
rx="40.082893"
|
||||
ry="36.627476" />
|
||||
<circle
|
||||
style="opacity:0.89899998;fill:#040404;fill-opacity:1;fill-rule:evenodd;stroke:#000023;stroke-width:0.52611941;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
id="path4467"
|
||||
cx="66.955421"
|
||||
cy="133.71429"
|
||||
r="4.7726545" />
|
||||
<path
|
||||
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 157.23809,38.464278 v 0 l -88.446424,95.250002 75.595234,80.8869"
|
||||
id="path4469"
|
||||
inkscape:connector-curvature="0" />
|
||||
<flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4471"
|
||||
style="font-style:normal;font-weight:normal;font-size:40px;line-height:125%;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
transform="scale(0.26458333)"><flowRegion
|
||||
id="flowRegion4473"><rect
|
||||
id="rect4475"
|
||||
width="331.42856"
|
||||
height="54.285721"
|
||||
x="517.14288"
|
||||
y="299.66251" /></flowRegion><flowPara
|
||||
id="flowPara4477">$F^{-1}(0)$</flowPara><flowPara
|
||||
id="flowPara4479" /></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4481"
|
||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px"><flowRegion
|
||||
id="flowRegion4483"><rect
|
||||
id="rect4485"
|
||||
width="214.28572"
|
||||
height="257.14285"
|
||||
x="468.57144"
|
||||
y="216.80537" /></flowRegion><flowPara
|
||||
id="flowPara4487"></flowPara></flowRoot> <flowRoot
|
||||
transform="matrix(0.36167291,0,0,0.30807183,-176.77557,137.18523)"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;line-height:125%;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
id="flowRoot4497"
|
||||
xml:space="preserve"><flowRegion
|
||||
id="flowRegion4491"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start"><rect
|
||||
y="299.66251"
|
||||
x="517.14288"
|
||||
height="64.368828"
|
||||
width="696.26825"
|
||||
id="rect4489"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:40px;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;writing-mode:lr-tb;text-anchor:start" /></flowRegion><flowPara
|
||||
id="flowPara4499">$L = F^{-1}(0) \cap S^3$</flowPara><flowPara
|
||||
id="flowPara4501"></flowPara></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4503"
|
||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px"><flowRegion
|
||||
id="flowRegion4505"><rect
|
||||
id="rect4507"
|
||||
width="782.85712"
|
||||
height="128.57143"
|
||||
x="505.71429"
|
||||
y="288.23395" /></flowRegion><flowPara
|
||||
id="flowPara4509"></flowPara></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4511"
|
||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px"><flowRegion
|
||||
id="flowRegion4513"><rect
|
||||
id="rect4515"
|
||||
width="637.14288"
|
||||
height="48.57143"
|
||||
x="688.57141"
|
||||
y="393.94821" /></flowRegion><flowPara
|
||||
id="flowPara4517"></flowPara></flowRoot> <flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4519"
|
||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:sans-serif;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px"><flowRegion
|
||||
id="flowRegion4521"><rect
|
||||
id="rect4523"
|
||||
width="648.57141"
|
||||
height="80"
|
||||
x="685.71429"
|
||||
y="388.23395" /></flowRegion><flowPara
|
||||
id="flowPara4525"></flowPara></flowRoot> </g>
|
||||
</svg>
|
After Width: | Height: | Size: 7.1 KiB |
BIN
images/torus_lambda.pdf
Normal file
BIN
images/torus_lambda.pdf
Normal file
Binary file not shown.
59
images/torus_lambda.pdf_tex
Normal file
59
images/torus_lambda.pdf_tex
Normal file
@ -0,0 +1,59 @@
|
||||
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'torus_lambda.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{185.50670233bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.62539361)%
|
||||
\put(1.05585685,2.21258294){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.51818377\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{torus_lambda.pdf}}%
|
||||
\put(0.89358894,0.61469018){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10667827\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
||||
\put(0.01954926,0.16801593){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15987467\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{torus_lambda.pdf}}%
|
||||
\put(0.8126573,0.13034845){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.24978585\unitlength}\raggedright $K$\end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
1096
images/torus_lambda.svg
Normal file
1096
images/torus_lambda.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 42 KiB |
@ -70,7 +70,7 @@ Borromean link:
|
||||
A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that:
|
||||
\begin{enumerate}[label={(\arabic*)}]
|
||||
\item
|
||||
${D_{\pi}}_{\big|L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
||||
$D_{\pi |_L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
||||
\item the double points are not degenerate: \includegraphics[width=0.03\textwidth]{LinkDiagram2.png},
|
||||
\item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
|
||||
\end{enumerate}
|
||||
@ -139,6 +139,7 @@ Note: the obtained surface isn't unique and in general doesn't need to be connec
|
||||
\end{figure}
|
||||
|
||||
\begin{theorem}[Seifert]
|
||||
\label{theo:Seifert}
|
||||
Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface.
|
||||
\end{theorem}
|
||||
%
|
||||
@ -168,13 +169,13 @@ Remark: there are knots that admit non isotopic Seifert surfaces of minimal genu
|
||||
Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$.
|
||||
On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$.
|
||||
\end{definition}
|
||||
\hfill
|
||||
\\
|
||||
\begin{definition}
|
||||
\label{def:lk_via_homo}
|
||||
Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$.
|
||||
Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$:
|
||||
\[
|
||||
\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\]
|
||||
|
||||
\end{definition}
|
||||
|
||||
\begin{example}
|
||||
\begin{itemize}
|
||||
|
269
lec_2.tex
Normal file
269
lec_2.tex
Normal file
@ -0,0 +1,269 @@
|
||||
\subsection{Existence of Seifert surface - second proof}
|
||||
%\begin{theorem}
|
||||
%For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
|
||||
%\end{theorem}
|
||||
\begin{proof}(Theorem \ref{theo:Seifert})\\
|
||||
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
|
||||
\begin{align*}
|
||||
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
|
||||
\end{align*}
|
||||
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzcd}
|
||||
[
|
||||
column sep=0cm, fill=none,
|
||||
row sep=small,
|
||||
ar symbol/.style =%
|
||||
{draw=none,"\textstyle#1" description,sloped},
|
||||
isomorphic/.style = {ar symbol={\cong}},
|
||||
]
|
||||
&\mathbb{Z}
|
||||
\\
|
||||
|
||||
& H^0(S^3) \ar[u,isomorphic] \to
|
||||
&H^0(S^3 \setminus N) \to
|
||||
\\
|
||||
\to H^1(S^3, S^3 \setminus N) \to
|
||||
& H^1(S^3) \to
|
||||
& H^1(S^3\setminus N) \to
|
||||
\\
|
||||
& 0 \ar[u,isomorphic]&
|
||||
\\
|
||||
\to H^2(S^3, S^3 \setminus N) \to
|
||||
& H^2(S^3) \ar[u,isomorphic] \to
|
||||
& H^2(S^3\setminus N) \to
|
||||
\\
|
||||
\to H^3(S^3, S^3\setminus N)\to
|
||||
& H^3(S) \to
|
||||
& 0
|
||||
\\
|
||||
& \mathbb{Z} \ar[u,isomorphic] &\\
|
||||
\end{tikzcd}
|
||||
\end{center}
|
||||
\begin{align*}
|
||||
N \cong & D^2 \times S^1\\
|
||||
\partial N \cong & S^1 \times S^1\\
|
||||
H^1(N, \partial N) \cong & \mathbb{Z} \oplus \mathbb{Z}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
H^* (S^3, S^3 \setminus N) &\cong H^* (N, \partial N)\\
|
||||
\\
|
||||
H^ 1 (S^3\setminus N) &\cong H^1(S^3\setminus K) \cong \mathbb{Z}
|
||||
\end{align*}
|
||||
\begin{equation*}
|
||||
\begin{tikzcd}[row sep=huge]
|
||||
H^1(S^3 \setminus K) \arrow[r,] \arrow[d,"\widetilde{\Theta}"] &
|
||||
H^1(N \setminus K) \arrow[d,"\Theta"] \\
|
||||
{[S^3 \setminus K, S^1]} \arrow[r,]&
|
||||
{[N \setminus K, S^1]}
|
||||
\end{tikzcd}
|
||||
\end{equation*}
|
||||
\noindent
|
||||
$\Sigma = \widetilde{\Theta}^{-1}(X)$ is a surface, such that $\partial \Sigma = K$, so it is a Seifert surface.
|
||||
%
|
||||
%
|
||||
% Thom isomorphism,
|
||||
\end{proof}
|
||||
\subsection{Alexander polynomial}
|
||||
\begin{definition}
|
||||
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
|
||||
\[
|
||||
\Delta_K(t) := \det (tS - S^T) \in
|
||||
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
|
||||
\begin{enumerate}[label={(\arabic*)}]
|
||||
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
|
||||
\begin{align*}
|
||||
&\det(tS\prime - S\prime^T) =
|
||||
\det(tCSC^T - (CSC^T)^T) =\\
|
||||
&\det(tCSC^T - CS^TC^T) =
|
||||
\det C(tS - S^T)C^T =
|
||||
\det(tS - S^T)
|
||||
\end{align*}
|
||||
\item
|
||||
Let \\
|
||||
$ A := t
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
S &
|
||||
\begin{matrix}
|
||||
\ast & 0 \\
|
||||
\sdots & \sdots\\
|
||||
\ast & 0
|
||||
\end{matrix} \\
|
||||
\hline
|
||||
\begin{matrix}
|
||||
\ast & \dots & \ast\\
|
||||
0 & \dots & 0
|
||||
\end{matrix}
|
||||
&
|
||||
\begin{matrix}
|
||||
0 & 0\\
|
||||
1 & 0
|
||||
\end{matrix}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
-
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
S^T &
|
||||
\begin{matrix}
|
||||
\ast & 0 \\
|
||||
\sdots & \sdots\\
|
||||
\ast & 0
|
||||
\end{matrix} \\
|
||||
\hline
|
||||
\begin{matrix}
|
||||
\ast & \dots & \ast\\
|
||||
0 & \dots & 0
|
||||
\end{matrix}
|
||||
&
|
||||
\begin{matrix}
|
||||
0 & 1\\
|
||||
0 & 0
|
||||
\end{matrix}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
tS - S^T &
|
||||
\begin{matrix}
|
||||
\ast & 0 \\
|
||||
\sdots & \sdots\\
|
||||
\ast & 0
|
||||
\end{matrix} \\
|
||||
\hline
|
||||
\begin{matrix}
|
||||
\ast & \dots & \ast\\
|
||||
0 & \dots & 0
|
||||
\end{matrix}
|
||||
&
|
||||
\begin{matrix}
|
||||
0 & -1\\
|
||||
t & 0
|
||||
\end{matrix}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
$
|
||||
\\
|
||||
\\
|
||||
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{example}
|
||||
If $K$ is a trefoil then we can take
|
||||
$S = \begin{pmatrix}
|
||||
-1 & -1 \\
|
||||
0 & -1
|
||||
\end{pmatrix}$. Then
|
||||
\[
|
||||
\Delta_K(t) = \det
|
||||
\begin{pmatrix}
|
||||
-t + 1 & -t\\
|
||||
1 & -t +1
|
||||
\end{pmatrix}
|
||||
= (t -1)^2 + t = t^2 - t +1 \ne 1
|
||||
\Rightarrow \text{trefoil is not trivial.}
|
||||
\]
|
||||
\end{example}
|
||||
\begin{fact}
|
||||
$\Delta_K(t)$ is symmetric.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Let $S$ be an $n \times n$ matrix.
|
||||
\begin{align*}
|
||||
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
|
||||
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
|
||||
\end{align*}
|
||||
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
|
||||
\end{proof}
|
||||
\begin{lemma}
|
||||
\begin{align*}
|
||||
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
|
||||
\text{ where } deg (a_n t^n + \dots + a_1 t^l )= k - l.
|
||||
\end{align*}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so $S$ is an $2g \times 2g$ matrix. Therefore $\det (tS - S^T)$ is a polynomial of degree at most $2g$.
|
||||
\end{proof}
|
||||
\begin{example}
|
||||
There are not trivial knots with Alexander polynomial equal $1$, for example:
|
||||
\includegraphics[width=0.3\textwidth]{11n34.png}
|
||||
$\Delta_{11n34} \equiv 1$.
|
||||
\end{example}
|
||||
|
||||
\subsection{Decomposition of $3$-sphere}
|
||||
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
||||
$S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2)$. So the complement of solid torus in $S^3$ is another solid torus.\\
|
||||
Analytically it can be describes as follow.
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that $max(\mid z_1 \mid, \mid z_2\mid) = 1
|
||||
$. Define following sets: $S_1 = \{ (z_1, z_2) \in S^3: \mid z_1 \mid = 0\} \cong S^1 \times D^2 $ and $S_2 = \{(z_1, z_2) \in S ^3: \mid z_2 \mid = 1 \} \cong D^2 \times S^1$. The intersection $S_1 \cap S_2 = \{(z_1, z_2): \mid z_1 \mid = \mid z_2 \mid = 1 \} \cong S^1 \times S^1$
|
||||
\begin{figure}[h]
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.3\textwidth}{!}{\includegraphics[width=0.3\textwidth]{sphere_as_torus.png}}
|
||||
\caption{The complement of solid torus in $S^3$ is another solid torus.}
|
||||
\label{fig:sphere_as_tori}
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Dehn lemma and sphere theorem}
|
||||
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{lemma}[Dehn]
|
||||
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f\big|_{\partial D^2}$ is an embedding. Then there exists an embedding
|
||||
${D^2 \overset{g}\longhookrightarrow M}$ such that:
|
||||
\[
|
||||
g\big|_{\partial D^2} = f\big|_{\partial D^2.}
|
||||
\]
|
||||
\end{lemma}
|
||||
\noindent
|
||||
Remark: Dehn lemma doesn't hold for dimension four.\\
|
||||
Let $M$ be connected, compact three manifold with boundary.
|
||||
Suppose $\pi_1(\partial M) \longrightarrow \pi_1(M)$ has non-trivial kernel. Then there exists a map $f: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $f\big|_{\partial D^2}$ is non-trivial loop in $\partial M$.
|
||||
\begin{theorem}[Sphere theorem]
|
||||
Suppose $\pi_1(M) \ne 0$. Then there exists an embedding $f: S^2 \hookrightarrow M$ that is homotopy non-trivial.
|
||||
\end{theorem}
|
||||
\begin{problem}
|
||||
Prove that $S^3 \ K$ is Eilenberg–MacLane space of type $K(\pi, 1)$.
|
||||
\end{problem}
|
||||
\begin{corollary}
|
||||
Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathbb{Z})$. Then $K$ is trivial.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Let $N$ be a tubular neighbourhood of a knot $K$ and $M = S^3 \setminus N$ its complement. Then $\partial M = S^1 \times S^1$. Let $f : \pi_1(\partial M ) \longrightarrow \pi_1(M)$.
|
||||
If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)}$. There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$. By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that
|
||||
$h\big|_{\partial D^2} = f \big|_{\partial D^2}$ and $h(\partial D^2) = \lambda$.
|
||||
Let $\Sigma$ be a union of the annulus and the image of $\partial D^2$.
|
||||
\\???? $g_3$?\\
|
||||
If $g(\Sigma) = 0$, then $K$ is trivial. \\
|
||||
Now we should proof that:
|
||||
\[
|
||||
H_1(M) \cong \mathbb{Z} \Longrightarrow \lambda \in \ker ( \pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)).
|
||||
\]
|
||||
\begin{figure}[h]
|
||||
\fontsize{40}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.4\textwidth}{!}{\input{images/torus_lambda.pdf_tex}}
|
||||
}
|
||||
\caption{$\mu$ is a meridian and $\lambda$ is a longitude.}
|
||||
\label{fig:meridian_and_longitude}
|
||||
\end{figure}
|
||||
Choose a meridian $\mu$ such that $\Lk (\mu, K) = 1$. Recall the definition of linking number via homology group (Definition \ref{def:lk_via_homo}).
|
||||
$[\mu]$ represents the generator of $H_1(S^3\setminus K, \mathbb{X})$. From definition of $\lambda$ we know that $\lambda$ is trivial in $H_1(M)$ ($\Lk(\lambda, K) =0$, therefore $[\lambda]$ was trivial in $pi_1(M)$). If $K$ is non-trivial then $\lambda$ is non-trivial in $\pi_1(M)$, but it is trivial in $H_1(M)$.
|
||||
\end{proof}
|
116
lec_4.tex
Normal file
116
lec_4.tex
Normal file
@ -0,0 +1,116 @@
|
||||
\begin{definition}
|
||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
|
||||
\[
|
||||
\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}.
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
|
||||
}
|
||||
\end{figure}
|
||||
\begin{definition}
|
||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||
Put differently: a knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
||||
\end{definition}
|
||||
|
||||
|
||||
|
||||
\noindent
|
||||
Let $m(K)$ denote a mirror image of a knot $K$.
|
||||
\begin{fact}
|
||||
For any $K$, $K \# m(K)$ is slice.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
Concordance is an equivalence relation.
|
||||
\end{fact}
|
||||
\begin{fact}\label{fact:concordance_connected}
|
||||
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
||||
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{10}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{1\textwidth}{!}{\input{images/concordance_sum.pdf_tex}}
|
||||
}
|
||||
\caption{Sketch for Fact \ref{fact:concordance_connected}.}
|
||||
\label{fig:concordance_sum}
|
||||
\end{figure}
|
||||
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
$K \# m(K) \sim $ the unknot.
|
||||
\end{fact}
|
||||
\noindent
|
||||
\begin{theorem}
|
||||
Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot.
|
||||
$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathscr{C}$ is $-\{K\} = \{mK\}$.
|
||||
\end{theorem}
|
||||
\begin{fact}
|
||||
The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).
|
||||
\end{fact}
|
||||
\begin{problem}[open]
|
||||
Are there in concordance group torsion elements that are not $2$ torsion elements?
|
||||
\end{problem}
|
||||
\noindent
|
||||
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
||||
\\
|
||||
\begin{figure}[h]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_seifert.pdf_tex}}
|
||||
}
|
||||
\caption{$Y = F \cup \Sigma$ is a smooth close surface.}
|
||||
\label{fig:closed_surface}
|
||||
\end{figure}
|
||||
\noindent
|
||||
\\
|
||||
Pontryagin-Thom construction tells us that there exists a compact three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$.
|
||||
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$, i.e. there are cycles and
|
||||
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
||||
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
||||
$\partial B^+ = \beta^+$.
|
||||
Then
|
||||
$\Lk(\alpha, \beta^+) = A \cdot B^+$. But $A$ and $B$ are disjoint, so $\Lk(\alpha, \beta^+) = 0$. Then the Seifert form is zero.
|
||||
\\
|
||||
?????????????????
|
||||
\\
|
||||
Let us consider following maps:
|
||||
\[
|
||||
\Sigma \overset{\phi} \longhookrightarrow Y \overset{\psi} \longhookrightarrow \Omega.
|
||||
\]
|
||||
Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $\gamma \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$.
|
||||
%
|
||||
\\
|
||||
????????????\\
|
||||
%
|
||||
%
|
||||
\begin{proposition}
|
||||
\[
|
||||
\dim \ker (H_1(Y, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z})) = \frac{1}{2} b_1(Y),
|
||||
\]
|
||||
where $b_1$ is first Betti number.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
\begin{align*}
|
||||
& 0 \to H_3(\Omega) \to H_3(\Omega, Y) \to
|
||||
\\
|
||||
\to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega, Y) \to \\
|
||||
\to & H_1(Y) \to \H_1(\Omega) \to H_1(\Omega, Y) \to \\
|
||||
\to & H_0(Y) \to H_0(\Omega) \to 0
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{10}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
|
||||
}
|
||||
%\caption{Sketch for Fact %%\label{fig:concordance_m}
|
||||
\end{figure}
|
Binary file not shown.
@ -90,8 +90,11 @@
|
||||
\DeclareMathOperator{\Lk}{lk}
|
||||
\DeclareMathOperator{\pt}{\{pt\}}
|
||||
|
||||
|
||||
\titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{%
|
||||
\titleformat{\subsection}{%
|
||||
\normalfont \fontsize{12}{15}\bfseries}{%
|
||||
}{.0ex plus .2ex}{}
|
||||
\titleformat{\section}{%
|
||||
\normalfont \fontsize{13}{15} \bfseries}{%
|
||||
Lecture\ \thesection}%
|
||||
{2.3ex plus .2ex}{}
|
||||
\titlespacing*{\section}
|
||||
@ -114,249 +117,12 @@
|
||||
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
|
||||
\input{lec_1.tex}
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-04}}
|
||||
\begin{theorem}
|
||||
For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
|
||||
\end{theorem}
|
||||
\begin{proof}("joke")\\
|
||||
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
|
||||
\begin{align*}
|
||||
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
|
||||
\end{align*}
|
||||
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzcd}
|
||||
[
|
||||
column sep=0cm, fill=none,
|
||||
row sep=small,
|
||||
ar symbol/.style =%
|
||||
{draw=none,"\textstyle#1" description,sloped},
|
||||
isomorphic/.style = {ar symbol={\cong}},
|
||||
]
|
||||
&\mathbb{Z}
|
||||
\\
|
||||
|
||||
& H^0(S^3) \ar[u,isomorphic] \to
|
||||
&H^0(S^3 \setminus N) \to
|
||||
\\
|
||||
\to H^1(S^3, S^3 \setminus N) \to
|
||||
& H^1(S^3) \to
|
||||
& H^1(S^3\setminus N) \to
|
||||
\\
|
||||
& 0 \ar[u,isomorphic]&
|
||||
\\
|
||||
\to H^2(S^3, S^3 \setminus N) \to
|
||||
& H^2(S^3) \ar[u,isomorphic] \to
|
||||
& H^2(S^3\setminus N) \to
|
||||
\\
|
||||
\to H^3(S^3, S^3\setminus N)\to
|
||||
& H^3(S) \to
|
||||
& 0
|
||||
\\
|
||||
& \mathbb{Z} \ar[u,isomorphic] &\\
|
||||
\end{tikzcd}
|
||||
\end{center}
|
||||
\begin{align*}
|
||||
N \cong & D^2 \times S^1\\
|
||||
\partial N \cong & S^1 \times S^1\\
|
||||
H^1(N, \partial N) \cong & \mathbb{Z} \oplus \mathbb{Z}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
H^* (S^3, S^3 \setminus N) &\cong H^* (N, \partial N)\\
|
||||
\\
|
||||
H^ 1 (S^3\setminus N) &\cong H^1(S^3\setminus K) \cong \mathbb{Z}
|
||||
\end{align*}
|
||||
\begin{equation*}
|
||||
\begin{tikzcd}[row sep=huge]
|
||||
H^1(S^3 \setminus K) \arrow[r,] \arrow[d,"\widetilde{\Theta}"] &
|
||||
H^1(N \setminus K) \arrow[d,"\Theta"] \\
|
||||
{[S^3 \setminus K, S^1]} \arrow[r,]&
|
||||
{[N \setminus K, S^1]}
|
||||
\end{tikzcd}
|
||||
\end{equation*}
|
||||
\noindent
|
||||
$\Sigma = \widetilde{\Theta}^{-1}(X)$ is a surface, such that $\partial \Sigma = K$, so it is a Seifert surface.
|
||||
%
|
||||
%
|
||||
% Thom isomorphism,
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
|
||||
\[
|
||||
\Delta_K(t) := \det (tS - S^T) \in
|
||||
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
|
||||
\begin{enumerate}[label={(\arabic*)}]
|
||||
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
|
||||
\begin{align*}
|
||||
&\det(tS\prime - S\prime^T) =
|
||||
\det(tCSC^T - (CSC^T)^T) =\\
|
||||
&\det(tCSC^T - CS^TC^T) =
|
||||
\det C(tS - S^T)C^T =
|
||||
\det(tS - S^T)
|
||||
\end{align*}
|
||||
\item
|
||||
Let \\
|
||||
$ A := t
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
S &
|
||||
\begin{matrix}
|
||||
\ast & 0 \\
|
||||
\sdots & \sdots\\
|
||||
\ast & 0
|
||||
\end{matrix} \\
|
||||
\hline
|
||||
\begin{matrix}
|
||||
\ast & \dots & \ast\\
|
||||
0 & \dots & 0
|
||||
\end{matrix}
|
||||
&
|
||||
\begin{matrix}
|
||||
0 & 0\\
|
||||
1 & 0
|
||||
\end{matrix}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
-
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
S^T &
|
||||
\begin{matrix}
|
||||
\ast & 0 \\
|
||||
\sdots & \sdots\\
|
||||
\ast & 0
|
||||
\end{matrix} \\
|
||||
\hline
|
||||
\begin{matrix}
|
||||
\ast & \dots & \ast\\
|
||||
0 & \dots & 0
|
||||
\end{matrix}
|
||||
&
|
||||
\begin{matrix}
|
||||
0 & 1\\
|
||||
0 & 0
|
||||
\end{matrix}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\begin{array}{c|c}
|
||||
tS - S^T &
|
||||
\begin{matrix}
|
||||
\ast & 0 \\
|
||||
\sdots & \sdots\\
|
||||
\ast & 0
|
||||
\end{matrix} \\
|
||||
\hline
|
||||
\begin{matrix}
|
||||
\ast & \dots & \ast\\
|
||||
0 & \dots & 0
|
||||
\end{matrix}
|
||||
&
|
||||
\begin{matrix}
|
||||
0 & -1\\
|
||||
t & 0
|
||||
\end{matrix}
|
||||
\end{array}
|
||||
\end{pmatrix}
|
||||
$
|
||||
\\
|
||||
\\
|
||||
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{example}
|
||||
If $K$ is a trefoil then we can take
|
||||
$S = \begin{pmatrix}
|
||||
-1 & -1 \\
|
||||
0 & -1
|
||||
\end{pmatrix}$. Then
|
||||
\[
|
||||
\Delta_K(t) = \det
|
||||
\begin{pmatrix}
|
||||
-t + 1 & -t\\
|
||||
1 & -t +1
|
||||
\end{pmatrix}
|
||||
= (t -1)^2 + t = t^2 - t +1 \ne 1
|
||||
\Rightarrow \text{trefoil is not trivial.}
|
||||
\]
|
||||
\end{example}
|
||||
\begin{fact}
|
||||
$\Delta_K(t)$ is symmetric.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Let $S$ be an $n \times n$ matrix.
|
||||
\begin{align*}
|
||||
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
|
||||
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
|
||||
\end{align*}
|
||||
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
|
||||
\end{proof}
|
||||
\begin{lemma}
|
||||
\begin{align*}
|
||||
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
|
||||
\text{ where } deg (a_n t^n + \dots + a_1 t^l )= k - l.
|
||||
\end{align*}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so $S$ is an $2g \times 2g$ matrix. Therefore $\det (tS - S^T)$ is a polynomial of degree at most $2g$.
|
||||
\end{proof}
|
||||
\begin{example}
|
||||
There are not trivial knots with Alexander polynomial equal $1$, for example:
|
||||
\includegraphics[width=0.3\textwidth]{11n34.png}
|
||||
$\Delta_{11n34} \equiv 1$.
|
||||
\end{example}
|
||||
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{lemma}[Dehn]
|
||||
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f_{\big|\partial D^2}$ is an embedding. Then there exists an embedding
|
||||
${D^2 \overset{g}\longhookrightarrow M}$ such that:
|
||||
\[
|
||||
g_{\big| \partial D^2} = f_{\big| \partial D^2.}
|
||||
\]
|
||||
\end{lemma}
|
||||
\noindent
|
||||
Remark: Dehn lemma doesn't hold for dimension four.\\
|
||||
Let $M$ be connected, compact three manifold with boundary.
|
||||
Suppose $\pi_1(\partial M) \longrightarrow \pi_1(M)$ has non-trivial kernel. Then there exists a map $f: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $f\big| \partial D^2$ is non-trivial loop in $\partial M$
|
||||
\begin{theorem}[Sphere theorem]
|
||||
Suppose $\pi_1(M) \ne 0$. Then there exists an embedding $f: S^2 \hookrightarrow M$ that is homotopy non-trivial.
|
||||
\end{theorem}
|
||||
\begin{problem}
|
||||
Prove that $S^3 \ K$ is Eilenberg–MacLane space of type $K(\pi, 1)$.
|
||||
\end{problem}
|
||||
\begin{corollary}
|
||||
Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathbb{Z})$. Then $K$ is trivial.
|
||||
\end{corollary}
|
||||
\subsection*{Construction}
|
||||
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
||||
$S^3 = (D^2 \times S^1) \cup (S^1 \times D^2)$. So the complement of solid torus in $S^3$ is another solid torus.\\
|
||||
Take $(z_1, z_2) \in \mathbb{C}$ such that $max(\mid z_1 \mid, \mid z_2, \mid) = 1
|
||||
$
|
||||
\begin{figure}[h]
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.3\textwidth}{!}{\includegraphics[width=0.3\textwidth]{sphere_as_torus.png}}
|
||||
\caption{The complement of solid torus in $S^3$ is another solid torus.}
|
||||
\label{fig:sphere_as_tori}
|
||||
}
|
||||
\end{figure}
|
||||
\section{Alexander polynomial \hfill\DTMdate{2019-03-04}}
|
||||
\input{lec_2.tex}
|
||||
%add Hurewicz theorem?
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-11}}
|
||||
\input{lec_3.tex}
|
||||
|
||||
\begin{example}
|
||||
\begin{align*}
|
||||
@ -364,6 +130,15 @@ $
|
||||
&F(0) = 0
|
||||
\end{align*}
|
||||
\end{example}
|
||||
\begin{figure}[h]
|
||||
\fontsize{40}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.2\textwidth}{!}{\input{images/milnor_singular.pdf_tex}}
|
||||
}
|
||||
%\caption{$\mu$ is a meridian and $\lambda$ is a longitude.}
|
||||
\label{fig:milnor_singular}
|
||||
\end{figure}
|
||||
????????????
|
||||
\\
|
||||
\noindent
|
||||
@ -392,125 +167,16 @@ Figure 8 knot is negative amphichiral.
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{definition}
|
||||
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarrow S^1}$ which is locally trivial fibration.
|
||||
\end{definition}
|
||||
|
||||
|
||||
\section{Concordance group \hfill\DTMdate{2019-03-18}}
|
||||
\begin{definition}
|
||||
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
|
||||
\[
|
||||
\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}.
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
|
||||
}
|
||||
\end{figure}
|
||||
\begin{definition}
|
||||
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
|
||||
Put differently: a knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
|
||||
\end{definition}
|
||||
\input{lec_4.tex}
|
||||
|
||||
|
||||
|
||||
\noindent
|
||||
Let $m(K)$ denote a mirror image of a knot $K$.
|
||||
\begin{fact}
|
||||
For any $K$, $K \# m(K)$ is slice.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
Concordance is an equivalence relation.
|
||||
\end{fact}
|
||||
\begin{fact}\label{fakt:concordance_connected}
|
||||
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
|
||||
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{10}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{1\textwidth}{!}{\input{images/concordance_sum.pdf_tex}}
|
||||
}
|
||||
\caption{Sketch for Fakt \ref{fakt:concordance_connected}.}
|
||||
\label{fig:concordance_sum}
|
||||
\end{figure}
|
||||
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
$K \# m(K) \sim $ the unknot.
|
||||
\end{fact}
|
||||
\noindent
|
||||
\begin{theorem}
|
||||
Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot.
|
||||
$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathscr{C}$ is $-\{K\} = \{mK\}$.
|
||||
\end{theorem}
|
||||
\begin{fact}
|
||||
The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).
|
||||
\end{fact}
|
||||
\begin{problem}[open]
|
||||
Are there in concordance group torsion elements that are not $2$ torsion elements?
|
||||
\end{problem}
|
||||
\noindent
|
||||
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
||||
\\
|
||||
\begin{figure}[h]
|
||||
\fontsize{20}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_seifert.pdf_tex}}
|
||||
}
|
||||
\caption{$Y = F \cup \Sigma$ is a smooth close surface.}
|
||||
\label{fig:closed_surface}
|
||||
\end{figure}
|
||||
\noindent
|
||||
\\
|
||||
Pontryagin-Thom construction tells us that there exists a compact three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$.
|
||||
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$, i.e. there are cycles and
|
||||
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
|
||||
Let $B^+$ be a push off of $B$ in the positive normal direction such that
|
||||
$\partial B^+ = \beta^+$.
|
||||
Then
|
||||
$\Lk(\alpha, \beta^+) = A \cdot B^+$. But $A$ and $B$ are disjoint, so $\Lk(\alpha, \beta^+) = 0$. Then the Seifert form is zero.
|
||||
\\
|
||||
?????????????????
|
||||
\\
|
||||
Let us consider following maps:
|
||||
\[
|
||||
\Sigma \overset{\phi} \longhookrightarrow Y \overset{\psi} \longhookrightarrow \Omega.
|
||||
\]
|
||||
Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $\gamma \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$.
|
||||
%
|
||||
\\
|
||||
????????????\\
|
||||
%
|
||||
%
|
||||
\begin{proposition}
|
||||
\[
|
||||
\dim \ker (H_1(Y, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z})) = \frac{1}{2} b_1(Y),
|
||||
\]
|
||||
where $b_1$ is first Betti number.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
\begin{align*}
|
||||
& 0 \to H_3(\Omega) \to H_3(\Omega, Y) \to
|
||||
\\
|
||||
\to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega, Y) \to \\
|
||||
\to & H_1(Y) \to \H_1(\Omega) \to H_1(\Omega, Y) \to \\
|
||||
\to & H_0(Y) \to H_0(\Omega) \to 0
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
|
||||
\begin{figure}[h]
|
||||
\fontsize{10}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
|
||||
}
|
||||
%\caption{Sketch for Fakt %%\label{fig:concordance_m}
|
||||
\end{figure}
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-25}}
|
||||
\begin{definition}
|
||||
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
|
||||
@ -587,10 +253,6 @@ has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
||||
|
||||
|
||||
|
||||
\section{\hfill\DTMdate{2019-03-11}}
|
||||
\begin{definition}
|
||||
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarrow S^1}$ which is locally trivial fibration.
|
||||
\end{definition}
|
||||
|
||||
|
||||
\section{\hfill\DTMdate{2019-04-15}}
|
||||
|
Loading…
Reference in New Issue
Block a user