some inkspace pictures
This commit is contained in:
parent
0583159f09
commit
dfd306f753
@ -1,22 +1,39 @@
|
||||
\documentclass[12pt, twoside]{article}
|
||||
\usepackage[pdf]{pstricks}
|
||||
|
||||
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{xfrac}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{csquotes}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{float}
|
||||
\usepackage{titlesec}
|
||||
\usepackage{comment}
|
||||
\usepackage{pict2e}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{advdate}
|
||||
\usepackage{amsthm}
|
||||
|
||||
\usepackage[english]{babel}
|
||||
|
||||
\usepackage{comment}
|
||||
\usepackage{csquotes}
|
||||
|
||||
\usepackage[useregional]{datetime2}
|
||||
|
||||
\usepackage{enumitem}
|
||||
\usepackage{fontspec}
|
||||
\usepackage{float}
|
||||
|
||||
\usepackage{graphicx}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\usepackage{mathtools}
|
||||
|
||||
\usepackage{pict2e}
|
||||
\usepackage[pdf]{pstricks}
|
||||
|
||||
\usepackage{tikz}
|
||||
\usepackage{titlesec}
|
||||
|
||||
\usepackage{xfrac}
|
||||
|
||||
\usepackage{unicode-math}
|
||||
|
||||
\usetikzlibrary{cd}
|
||||
|
||||
\hypersetup{
|
||||
colorlinks,
|
||||
citecolor=black,
|
||||
@ -24,40 +41,45 @@
|
||||
linkcolor=black,
|
||||
urlcolor=black
|
||||
}
|
||||
\usepackage{fontspec}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{unicode-math}
|
||||
\graphicspath{ {images/} }
|
||||
|
||||
\newtheoremstyle{break}
|
||||
{\topsep}{\topsep}%
|
||||
{\itshape}{}%
|
||||
{\bfseries}{}%
|
||||
{\newline}{}%
|
||||
\theoremstyle{break}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{fact}{Fact}
|
||||
\newtheorem{example}{Example}
|
||||
%\theoremstyle{definition}
|
||||
\newtheorem{definition}{Definition}
|
||||
%\theoremstyle{plain}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{proposition}{Proposition}
|
||||
\newcommand{\contradiction}{%
|
||||
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}%
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%% For quotient groups / modding equiv relations
|
||||
%%%% Use: \quot{A}{B} --> A/B
|
||||
\newcommand{\contradiction}{%
|
||||
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
|
||||
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\overbar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu}
|
||||
\newcommand{\overbar}[1]{%
|
||||
\mkern 1.5mu=\overline{%
|
||||
\mkern-1.5mu#1\mkern-1.5mu}%
|
||||
\mkern 1.5mu}
|
||||
|
||||
\AtBeginDocument{\renewcommand{\setminus}{%
|
||||
\mathbin{\backslash}}}
|
||||
|
||||
|
||||
\DeclareMathOperator{\Hom}{Hom}
|
||||
\DeclareMathOperator{\rank}{rank}
|
||||
\AtBeginDocument{\renewcommand{\setminus}{\mathbin{\backslash}}}
|
||||
|
||||
|
||||
\titleformat{\section}{\normalfont \large \bfseries}{%
|
||||
Lecture\ \thesection}{2.3ex plus .2ex}{}
|
||||
|
||||
%\setlist[itemize]{topsep=0pt,before=%\leavevmode\vspace{0.5em}}
|
||||
|
||||
|
||||
\input{knots_macros}
|
||||
\graphicspath{ {images/} }
|
||||
|
||||
\titleformat{\section}{\normalfont \large \bfseries}
|
||||
{Lecture\ \thesection}{2.3ex plus .2ex}{}
|
||||
\titlespacing{\subsection}{2em}{*1}{*1}
|
||||
\usepackage{enumitem}
|
||||
\setlist[itemize]{topsep=0pt,before=\leavevmode\vspace{0.5em}}
|
||||
|
||||
\begin{document}
|
||||
\tableofcontents
|
||||
@ -74,8 +96,18 @@ A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^
|
||||
\noindent
|
||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
||||
\begin{example}
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
knot and not a knot (not inection), not smooth,
|
||||
\begin{itemize}
|
||||
\item
|
||||
Knots:
|
||||
\includegraphics[width=0.08\textwidth]{unknot.png},
|
||||
\includegraphics[width=0.08\textwidth]{trefoil.png}.
|
||||
\item
|
||||
Not knots:
|
||||
\includegraphics[width=0.12\textwidth]{not_injective_knot.png}
|
||||
(it is not an injection),
|
||||
\includegraphics[width=0.08\textwidth]{not_smooth_knot.png}
|
||||
(it is not smooth).
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
\begin{definition}
|
||||
%\hfill\\
|
||||
@ -89,9 +121,10 @@ $\Phi_1 = \varphi_1$.
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi$ such that:
|
||||
Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that:
|
||||
\begin{align*}
|
||||
&\Psi: S^3 \hookrightarrow S^3,\\
|
||||
&\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$}\\
|
||||
&\psi_t: S^3 \hookrightarrow S^3,\\
|
||||
& \psi_0 = id ,\\
|
||||
& \psi_1(K_0) = K_1.
|
||||
\end{align*}
|
||||
@ -100,7 +133,7 @@ Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic,
|
||||
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
||||
\end{definition}
|
||||
\begin{definition}
|
||||
A link with k - components is a (smooth) embedding of\\ $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
||||
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$
|
||||
\end{definition}
|
||||
\begin{example}
|
||||
Links:
|
||||
@ -118,24 +151,23 @@ Borromean link:
|
||||
\includegraphics[width=0.1\textwidth]{BorromeanRings.png},
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
|
||||
%
|
||||
%
|
||||
%
|
||||
\begin{definition}
|
||||
A link diagram is a picture over projection of a link is $S^3$($\mathbb{R}^3$) such that:
|
||||
\begin{enumerate}
|
||||
\begin{enumerate}[label={(\arabic*)}]
|
||||
\item
|
||||
${D_{\pi}}_{\big|L}$ is non degenerate
|
||||
\includegraphics[width=0.02\textwidth]{LinkDiagram1.png},
|
||||
\item the double points are not degenerate
|
||||
\includegraphics[width=0.02\textwidth]{LinkDiagram2.png},
|
||||
\item there are no triple point
|
||||
\includegraphics[width=0.03\textwidth]{LinkDiagram3.png}.
|
||||
${D_{\pi}}_{\big|L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png},
|
||||
\item the double points are not degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram2.png},
|
||||
\item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
|
||||
Every link admits a link diagram.
|
||||
%\begin{comment}
|
||||
|
||||
\subsection{Reidemeister moves}
|
||||
\section*{Reidemeister moves}
|
||||
A Reidemeister move is one of the three types of operation on a link diagram as shown in Figure~\ref{fig: reidemeister}.
|
||||
%
|
||||
The first Reidemeister move inserts or removes a coil.
|
||||
@ -211,7 +243,12 @@ Are there in concordance group torsion elements that are not $2$ torsion element
|
||||
\end{example}
|
||||
\noindent
|
||||
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
|
||||
|
||||
%
|
||||
%
|
||||
\section{\hfill\DTMdate{2019-04-08}}
|
||||
%
|
||||
%
|
||||
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
|
||||
$H_2$ is free (exercise).
|
||||
\begin{align*}
|
||||
@ -262,7 +299,7 @@ Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Se
|
||||
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
|
||||
$A = V \times V^T$, where $n = \rank V$.
|
||||
%\input{ink_diag}
|
||||
\begin{figure}[h]
|
||||
\begin{figure}[H]
|
||||
\fontsize{40}{10}\selectfont
|
||||
\centering{
|
||||
\def\svgwidth{\linewidth}
|
||||
@ -294,7 +331,7 @@ In general
|
||||
|
||||
\section{\hfill\DTMdate{2019-05-20}}
|
||||
|
||||
Let $M$ be closed, oriented, compact four-dimensional manifold.\\
|
||||
Let $M$ be compact, oriented, connected four-dimensional manifold.\\
|
||||
??????????????????????????????????\\
|
||||
If $H_1(M, \mathbb{Z}) = 0$ then there exists a
|
||||
bilinear form - the intersection form on $M$:
|
||||
@ -327,9 +364,9 @@ Then: $H_2(M, \mathbb{Z})
|
||||
H_2(M, \mathbb{Z}) \longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
|
||||
(a, b) \mapsto \mathbb{Z}\\
|
||||
a \mapsto (a, \_) H_2(M, \mathbb{Z})
|
||||
\end{align*} has coker
|
||||
|
||||
|
||||
\end{align*}
|
||||
has coker precisely $H_1(Y, \mathbb{Z})$.
|
||||
\\???????????????\\
|
||||
Let $K \subset S^3$ be a knot, \\
|
||||
$X = S^3 \setminus K$ - a knot complement, \\
|
||||
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ - an infinite cyclic cover (universal abelian cover).
|
||||
@ -551,4 +588,8 @@ A square hermitian matrix $A$ of size $n$.
|
||||
\end{definition}
|
||||
|
||||
field of fractions
|
||||
|
||||
|
||||
\section{balagan}
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user