correction of first lecture starts
This commit is contained in:
parent
26f0821ce5
commit
f257b26d0a
Binary file not shown.
@ -20,6 +20,18 @@
|
|||||||
sodipodi:docname="dehn_twist.svg">
|
sodipodi:docname="dehn_twist.svg">
|
||||||
<defs
|
<defs
|
||||||
id="defs2">
|
id="defs2">
|
||||||
|
<linearGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
id="linearGradient1357">
|
||||||
|
<stop
|
||||||
|
style="stop-color:#f80f3f;stop-opacity:0"
|
||||||
|
offset="0"
|
||||||
|
id="stop1353" />
|
||||||
|
<stop
|
||||||
|
style="stop-color:#f80f3f;stop-opacity:0.896"
|
||||||
|
offset="1"
|
||||||
|
id="stop1355" />
|
||||||
|
</linearGradient>
|
||||||
<linearGradient
|
<linearGradient
|
||||||
id="linearGradient3879">
|
id="linearGradient3879">
|
||||||
<stop
|
<stop
|
||||||
@ -964,6 +976,17 @@
|
|||||||
y1="7182.6206"
|
y1="7182.6206"
|
||||||
x2="80.929512"
|
x2="80.929512"
|
||||||
y2="7172.9502" />
|
y2="7172.9502" />
|
||||||
|
<radialGradient
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#linearGradient1357"
|
||||||
|
id="radialGradient1721"
|
||||||
|
cx="83.632454"
|
||||||
|
cy="79.89045"
|
||||||
|
fx="83.632454"
|
||||||
|
fy="79.89045"
|
||||||
|
r="24.523149"
|
||||||
|
gradientTransform="matrix(0.21202246,-0.0475559,0.22257259,0.99231403,49.595457,1.0681206)"
|
||||||
|
gradientUnits="userSpaceOnUse" />
|
||||||
</defs>
|
</defs>
|
||||||
<sodipodi:namedview
|
<sodipodi:namedview
|
||||||
id="base"
|
id="base"
|
||||||
@ -973,12 +996,12 @@
|
|||||||
inkscape:pageopacity="0.0"
|
inkscape:pageopacity="0.0"
|
||||||
inkscape:pageshadow="2"
|
inkscape:pageshadow="2"
|
||||||
inkscape:zoom="1.1991463"
|
inkscape:zoom="1.1991463"
|
||||||
inkscape:cx="465.53376"
|
inkscape:cx="298.74844"
|
||||||
inkscape:cy="-3.6881496"
|
inkscape:cy="-3.6881496"
|
||||||
inkscape:document-units="mm"
|
inkscape:document-units="mm"
|
||||||
inkscape:current-layer="layer1"
|
inkscape:current-layer="g9475"
|
||||||
showgrid="false"
|
showgrid="false"
|
||||||
inkscape:window-width="1395"
|
inkscape:window-width="1397"
|
||||||
inkscape:window-height="855"
|
inkscape:window-height="855"
|
||||||
inkscape:window-x="0"
|
inkscape:window-x="0"
|
||||||
inkscape:window-y="1"
|
inkscape:window-y="1"
|
||||||
@ -1072,8 +1095,8 @@
|
|||||||
sodipodi:nodetypes="cscscssssc"
|
sodipodi:nodetypes="cscscssssc"
|
||||||
inkscape:connector-curvature="0"
|
inkscape:connector-curvature="0"
|
||||||
id="path2600"
|
id="path2600"
|
||||||
d="m 111.74936,64.635353 c -1.50857,8.628051 -9.97194,8.071102 -15.333563,10.057856 -7.832514,2.902346 -6.903247,10.409815 -7.997307,8.795788 -3.588928,2.753658 3.048373,-15.301266 -7.908498,-13.868536 -5.319088,0.695529 -4.702372,5.733514 -9.056976,5.442118 -4.743437,-0.305985 -7.689258,-7.475306 -7.689258,-10.427226 0,-2.95192 2.685486,-5.624383 7.027329,-7.558865 4.341844,-1.934483 10.340044,-3.130985 16.965474,-3.130985 6.625429,0 12.623629,1.196502 16.965469,3.130985 4.34184,1.934482 7.02733,4.606945 7.02733,7.558865 z"
|
d="m 111.74936,64.635353 c -1.50857,8.628051 -9.97194,8.071102 -15.333563,10.057856 -7.832514,2.902346 -6.903247,10.409815 -7.997307,8.795788 -3.588928,2.753658 2.386444,-14.418694 -8.570427,-12.985964 -5.319088,0.695529 -4.040443,4.850942 -8.395047,4.559546 -4.743437,-0.305985 -7.689258,-7.475306 -7.689258,-10.427226 0,-2.95192 2.685486,-5.624383 7.027329,-7.558865 4.341844,-1.934483 10.340044,-3.130985 16.965474,-3.130985 6.625429,0 12.623629,1.196502 16.965469,3.130985 4.34184,1.934482 7.02733,4.606945 7.02733,7.558865 z"
|
||||||
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#f80f3f;stroke-width:1.06069636;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.97073173" />
|
style="opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:url(#radialGradient1721);stroke-width:1.06069636;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:0.97073173" />
|
||||||
</g>
|
</g>
|
||||||
<path
|
<path
|
||||||
id="path9391"
|
id="path9391"
|
||||||
|
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
@ -57,7 +57,7 @@
|
|||||||
\put(0.07921146,0.74557055){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
\put(0.07921146,0.74557055){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$6$}}}%
|
||||||
\put(0.04514942,0.79803255){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
\put(0.04514942,0.79803255){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$4$}}}%
|
||||||
\put(0.11029759,0.78858067){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
\put(0.11029759,0.78858067){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$5$}}}%
|
||||||
\put(0.19910739,0.92723042){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{ }}}%
|
\put(0.19910739,0.92723042){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{ }}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{seifert_alg.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{seifert_alg.pdf}}%
|
||||||
\put(0.33550977,0.86127805){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
\put(0.33550977,0.86127805){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$1$}}}%
|
||||||
\put(0.40603997,0.85957807){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
\put(0.40603997,0.85957807){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$2$}}}%
|
||||||
|
Binary file not shown.
@ -52,7 +52,7 @@
|
|||||||
\put(1.05585685,2.21258294){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.51818377\unitlength}\raggedright \end{minipage}}}%
|
\put(1.05585685,2.21258294){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.51818377\unitlength}\raggedright \end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{torus_lambda.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{torus_lambda.pdf}}%
|
||||||
\put(0.89358894,0.61469018){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10667827\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
\put(0.89358894,0.61469018){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10667827\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
||||||
\put(0.01954926,0.16801593){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15987467\unitlength}\raggedright $\mu$\end{minipage}}}%
|
\put(0.01370736,0.19722543){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15987467\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||||
\put(0,0){\includegraphics[width=\unitlength,page=2]{torus_lambda.pdf}}%
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{torus_lambda.pdf}}%
|
||||||
\put(0.8126573,0.13034845){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.24978585\unitlength}\raggedright $K$\end{minipage}}}%
|
\put(0.8126573,0.13034845){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.24978585\unitlength}\raggedright $K$\end{minipage}}}%
|
||||||
\end{picture}%
|
\end{picture}%
|
||||||
|
@ -973,13 +973,13 @@
|
|||||||
borderopacity="1.0"
|
borderopacity="1.0"
|
||||||
inkscape:pageopacity="0.0"
|
inkscape:pageopacity="0.0"
|
||||||
inkscape:pageshadow="2"
|
inkscape:pageshadow="2"
|
||||||
inkscape:zoom="1.1991463"
|
inkscape:zoom="3.4603295"
|
||||||
inkscape:cx="-17.7267"
|
inkscape:cx="100.13497"
|
||||||
inkscape:cy="141.3249"
|
inkscape:cy="77.445122"
|
||||||
inkscape:document-units="mm"
|
inkscape:document-units="mm"
|
||||||
inkscape:current-layer="layer1"
|
inkscape:current-layer="layer1"
|
||||||
showgrid="false"
|
showgrid="false"
|
||||||
inkscape:window-width="1388"
|
inkscape:window-width="1397"
|
||||||
inkscape:window-height="855"
|
inkscape:window-height="855"
|
||||||
inkscape:window-x="0"
|
inkscape:window-x="0"
|
||||||
inkscape:window-y="1"
|
inkscape:window-y="1"
|
||||||
@ -996,7 +996,7 @@
|
|||||||
<dc:format>image/svg+xml</dc:format>
|
<dc:format>image/svg+xml</dc:format>
|
||||||
<dc:type
|
<dc:type
|
||||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
<dc:title></dc:title>
|
<dc:title />
|
||||||
</cc:Work>
|
</cc:Work>
|
||||||
</rdf:RDF>
|
</rdf:RDF>
|
||||||
</metadata>
|
</metadata>
|
||||||
|
Before Width: | Height: | Size: 42 KiB After Width: | Height: | Size: 42 KiB |
BIN
images/torus_mu_lambda.pdf
Normal file
BIN
images/torus_mu_lambda.pdf
Normal file
Binary file not shown.
61
images/torus_mu_lambda.pdf_tex
Normal file
61
images/torus_mu_lambda.pdf_tex
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
|
||||||
|
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||||
|
%% Accompanies image file 'torus_mu_lambda.pdf' (pdf, eps, ps)
|
||||||
|
%%
|
||||||
|
%% To include the image in your LaTeX document, write
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics{<filename>.pdf}
|
||||||
|
%% To scale the image, write
|
||||||
|
%% \def\svgwidth{<desired width>}
|
||||||
|
%% \input{<filename>.pdf_tex}
|
||||||
|
%% instead of
|
||||||
|
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||||
|
%%
|
||||||
|
%% Images with a different path to the parent latex file can
|
||||||
|
%% be accessed with the `import' package (which may need to be
|
||||||
|
%% installed) using
|
||||||
|
%% \usepackage{import}
|
||||||
|
%% in the preamble, and then including the image with
|
||||||
|
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||||
|
%% Alternatively, one can specify
|
||||||
|
%% \graphicspath{{<path to file>/}}
|
||||||
|
%%
|
||||||
|
%% For more information, please see info/svg-inkscape on CTAN:
|
||||||
|
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||||
|
%%
|
||||||
|
\begingroup%
|
||||||
|
\makeatletter%
|
||||||
|
\providecommand\color[2][]{%
|
||||||
|
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||||
|
\renewcommand\color[2][]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\transparent[1]{%
|
||||||
|
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||||
|
\renewcommand\transparent[1]{}%
|
||||||
|
}%
|
||||||
|
\providecommand\rotatebox[2]{#2}%
|
||||||
|
\ifx\svgwidth\undefined%
|
||||||
|
\setlength{\unitlength}{185.50670233bp}%
|
||||||
|
\ifx\svgscale\undefined%
|
||||||
|
\relax%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||||
|
\fi%
|
||||||
|
\else%
|
||||||
|
\setlength{\unitlength}{\svgwidth}%
|
||||||
|
\fi%
|
||||||
|
\global\let\svgwidth\undefined%
|
||||||
|
\global\let\svgscale\undefined%
|
||||||
|
\makeatother%
|
||||||
|
\begin{picture}(1,0.62539361)%
|
||||||
|
\put(1.05585685,2.21258294){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.51818377\unitlength}\raggedright \end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=1]{torus_mu_lambda.pdf}}%
|
||||||
|
\put(0.89358894,0.61469018){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.10667827\unitlength}\raggedright $\lambda$\end{minipage}}}%
|
||||||
|
\put(0.01370736,0.19722543){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15987467\unitlength}\raggedright $\mu$\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=2]{torus_mu_lambda.pdf}}%
|
||||||
|
\put(0.80750641,0.20322471){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.14685617\unitlength}\raggedright $K$\end{minipage}}}%
|
||||||
|
\put(0,0){\includegraphics[width=\unitlength,page=3]{torus_mu_lambda.pdf}}%
|
||||||
|
\put(0.66285955,0.08408629){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.38612036\unitlength}\raggedright $N(K) = D^2 \times S^1$\end{minipage}}}%
|
||||||
|
\end{picture}%
|
||||||
|
\endgroup%
|
1109
images/torus_mu_lambda.svg
Normal file
1109
images/torus_mu_lambda.svg
Normal file
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 44 KiB |
@ -69,5 +69,31 @@ S^1 \times \pt &\longrightarrow \pt \times S^1 \\
|
|||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{proof}[Sketch of proof]
|
||||||
|
We will show that each diffeomorphism is isotopic to $\begin{pmatrix}
|
||||||
|
p & q\\
|
||||||
|
r & s
|
||||||
|
\end{pmatrix}$.
|
||||||
|
\begin{equation*}
|
||||||
|
\quot{\Diff_+(S^1 \times S^1)}{\Iso(S^1 \times S^1)} = \mcg(S^1 \times S^1) = \Sl(2, \mathbb{Z})
|
||||||
|
\end{equation*}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\fontsize{20}{10}\selectfont
|
||||||
|
\centering{
|
||||||
|
\def\svgwidth{\linewidth}
|
||||||
|
\resizebox{0.4\textwidth}{!}{\input{images/torus_mu_lambda.pdf_tex}}
|
||||||
|
\caption{Choice of meridian and longitude.}
|
||||||
|
\label{fig:torus_twist}
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
\end{proof}
|
||||||
|
Let $N = D^2 \times S$ be a tubular neighbourhood of a knot $K$. Consider its boundary $\partial N = S^1 \times S^1$. There exists a simple closed curve $\mu \subset \partial N$ (a meridian) that bounds a disk in $N$. We choose another simple closed curve $\lambda$ (a longitude) so that $\Lk(\lambda, K) = 0$. \\
|
||||||
|
????????
|
||||||
|
\\
|
||||||
|
$\lambda \mu = 1 $ intersection\\
|
||||||
|
$\pi_0 (\Gl(2, \mathbb{R})$\\
|
||||||
|
???????????
|
||||||
|
\\
|
||||||
|
In other words a homotopy class: $[\lambda] = 0$ in $H_1(S^3 \setminus N, \mathbb{Z})$.
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
\subsection{Existence of Seifert surface - second proof}
|
\subsection{Existence of a Seifert surface - second proof}
|
||||||
%\begin{theorem}
|
%\begin{theorem}
|
||||||
%For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
|
%For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
|
||||||
%\end{theorem}
|
%\end{theorem}
|
||||||
@ -209,7 +209,8 @@ There are not trivial knots with Alexander polynomial equal $1$, for example:
|
|||||||
$\Delta_{11n34} \equiv 1$.
|
$\Delta_{11n34} \equiv 1$.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
\subsection{Decomposition of $3$-sphere}
|
\subsection{Decomposition of \texorpdfstring{
|
||||||
|
$3$-sphere}{3-sphere}}
|
||||||
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
We know that $3$ - sphere can be obtained by gluing two solid tori:
|
||||||
\[
|
\[
|
||||||
S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2).
|
S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2).
|
||||||
|
@ -17,12 +17,17 @@ The infinite cyclic cover of a knot complement $X$ is the cover associated with
|
|||||||
\label{fig:covering}
|
\label{fig:covering}
|
||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
\noindent
|
||||||
|
\subsection{Double branched cover.}
|
||||||
|
Let $K \subset S^3$ be a knot and $\Sigma$
|
||||||
|
its Seifert surface.
|
||||||
|
Let us consider a knot complement $S^3 \setminus N(K)$.
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\fontsize{10}{10}\selectfont
|
\fontsize{10}{10}\selectfont
|
||||||
\centering{
|
\centering{
|
||||||
\def\svgwidth{\linewidth}
|
\def\svgwidth{\linewidth}
|
||||||
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
|
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
|
||||||
\caption{A knot complement.}
|
\caption{The double cover of the $3$-sphere branched over a knot $K$.}
|
||||||
\label{fig:complement}
|
\label{fig:complement}
|
||||||
}
|
}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
@ -1,9 +1,9 @@
|
|||||||
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
|
$X$ is a closed orientable four-manifold. For simplicity assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
|
||||||
$H_2$ is free (exercise).
|
$H_2$ is free (exercise).
|
||||||
|
|
||||||
\begin{align*}
|
\[
|
||||||
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z})
|
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z}).
|
||||||
\end{align*}
|
\]
|
||||||
\noindent
|
\noindent
|
||||||
Intersection form:
|
Intersection form:
|
||||||
$H_2(X, \mathbb{Z}) \times
|
$H_2(X, \mathbb{Z}) \times
|
||||||
@ -18,7 +18,7 @@ Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
|||||||
\resizebox{0.5\textwidth}{!}{\input{images/intersection_form_A_B.pdf_tex}}
|
\resizebox{0.5\textwidth}{!}{\input{images/intersection_form_A_B.pdf_tex}}
|
||||||
}
|
}
|
||||||
\caption{$T_X A + T_X B = T_X X$
|
\caption{$T_X A + T_X B = T_X X$
|
||||||
}\label{fig:torus_alpha_beta}
|
}\label{fig:intersection}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
???????????????????????
|
???????????????????????
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
@ -1,48 +1 @@
|
|||||||
|
Consider a surgery
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
|
|
||||||
\end{fact}
|
|
||||||
%\end{comment}
|
|
||||||
\noindent
|
|
||||||
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
|
|
||||||
\begin{problem}
|
|
||||||
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
|
|
||||||
$\mathscr{C}$.
|
|
||||||
%
|
|
||||||
%\\
|
|
||||||
%Hint: $ -K = m(K)^r = (K^r)^r = K$
|
|
||||||
\end{problem}
|
|
||||||
\begin{example}
|
|
||||||
Figure 8 knot is negative amphichiral.
|
|
||||||
\end{example}
|
|
||||||
%
|
|
||||||
%
|
|
||||||
\begin{theorem}
|
|
||||||
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
|
|
||||||
\[
|
|
||||||
H_p = H_{p, 1} \oplus \dots \oplus H_{p, r_p}.
|
|
||||||
\]
|
|
||||||
$H_{p, i}$ is a cyclic module:
|
|
||||||
\[
|
|
||||||
H_{p, i} = \quot{\mathbb{Z}[t, t^{-1}]}{p^{k_i} \mathbb{Z} [t, t^{-1}]}
|
|
||||||
\]
|
|
||||||
\end{theorem}
|
|
||||||
\noindent
|
|
||||||
The proof is the same as over $\mathbb{Z}$.
|
|
||||||
\noindent
|
|
||||||
%Add NotePrintSaveCiteYour opinionEmailShare
|
|
||||||
%Saveliev, Nikolai
|
|
||||||
|
|
||||||
%Lectures on the Topology of 3-Manifolds
|
|
||||||
%An Introduction to the Casson Invariant
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\fontsize{10}{10}\selectfont
|
|
||||||
\centering{
|
|
||||||
\def\svgwidth{\linewidth}
|
|
||||||
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
|
|
||||||
}
|
|
||||||
%\caption{Sketch for Fact %%\label{fig:concordance_m}
|
|
||||||
\end{figure}
|
|
||||||
|
@ -60,7 +60,7 @@ H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mat
|
|||||||
\begin{align*}
|
\begin{align*}
|
||||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
|
||||||
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
|
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
|
||||||
(\alpha, \beta) \quad &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta
|
(\alpha, \beta) \quad &\mapsto \alpha^{-1}{(t -1)(tV - V^T)}^{-1}\beta
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\noindent
|
\noindent
|
||||||
|
@ -6,8 +6,24 @@ A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^
|
|||||||
\end{definition}
|
\end{definition}
|
||||||
\noindent
|
\noindent
|
||||||
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.
|
||||||
|
Some basic examples and counterexamples are shown respectively in \autoref{fig:unknot} and \autoref{fig:notknot}.
|
||||||
\begin{example}
|
\begin{example}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\includegraphics[width=0.08\textwidth]
|
||||||
|
{unknot.png}
|
||||||
|
\caption{Knots examples: unknot (left) and trefoil (right).}
|
||||||
|
\label{fig:unknot}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\includegraphics[width=0.08\textwidth]
|
||||||
|
{unknot.png}
|
||||||
|
\caption{Knots examples: unknot (left) and trefoil (right).}
|
||||||
|
\label{fig:notknot}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item
|
\item
|
||||||
Knots:
|
Knots:
|
||||||
@ -41,12 +57,15 @@ Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic,
|
|||||||
& \psi_1(K_0) = K_1.
|
& \psi_1(K_0) = K_1.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$.
|
A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
Links:
|
Links:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
@ -62,7 +62,80 @@ H_1(\Sigma(K), \mathbb{Z})
|
|||||||
(a, b) \mapsto a{(V + V^T)}^{-1} b
|
(a, b) \mapsto a{(V + V^T)}^{-1} b
|
||||||
\end{eqnarray*}
|
\end{eqnarray*}
|
||||||
???????????????????\\
|
???????????????????\\
|
||||||
|
???????????????????\\
|
||||||
\begin{eqnarray*}
|
\begin{eqnarray*}
|
||||||
y \mapsto y + Az \\
|
y \mapsto y + Az \\
|
||||||
\overline{x^T} A^{-1}(y + Az) = \overline{x^T} A^{-1} + \overline{x^T} \mathbb{1} z
|
\overline{x^T} A^{-1}(y + Az) = \overline{x^T} A^{-1} y + \overline{x^T} \mathbb{1} z = \overline{x^T} A^{-1}y \in \quot{\Omega}{\Lambda} \\
|
||||||
|
\overline{x^T} \mathbb{1} z \in \Lambda \\
|
||||||
|
H_1(\widetilde{X}, \Lambda) =
|
||||||
|
\quot{ \Lambda^n }{(Vt - V) \Lambda^n}
|
||||||
|
\\
|
||||||
|
(a, b) \mapsto \overline{a^T}(Vt - V^T)^{-1} (t -1)b
|
||||||
\end{eqnarray*}
|
\end{eqnarray*}
|
||||||
|
(Blanchfield '59)
|
||||||
|
\begin{theorem}[Kearton '75, Friedl, Powell '15]
|
||||||
|
There exits a matrix $A$ representing the Blanchfield paring over $\mathbb{Z}[t, t^{-1}]$. The size of $A$ is a size of Seifert form.
|
||||||
|
\end{theorem}
|
||||||
|
Remark:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item
|
||||||
|
Over $\mathbb{R}$ we can take $A$ to be diagonal.
|
||||||
|
\item
|
||||||
|
The jump of signature function at $\xi$ is
|
||||||
|
equal to
|
||||||
|
\[
|
||||||
|
\lim_{t \rightarrow 0^+} \sign A (e^{it} \xi) - \sign A(e^{-it} \xi).
|
||||||
|
\]
|
||||||
|
\item
|
||||||
|
The minimal size of a matrix $A$ that presents a Blanchfield paring (over $\mathbb{Z}[t, t^{-1}]$) for a knot $K$ is a knot invariant.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\subsection{The unknotting number}
|
||||||
|
Let $K$ be a knot and $D$ a knot diagram. A crossing change is a modification of a knot diagram by one of following changes
|
||||||
|
\begin{align*}
|
||||||
|
\PICorientpluscross \mapsto \PICorientminuscross ,\\
|
||||||
|
\PICorientminuscross \mapsto\PICorientminuscross.
|
||||||
|
\end{align*}
|
||||||
|
The unknotting number $u(K)$ is a number of crossing changes needed to turn a knot into an unknot, where the minimum is taken over all diagrams of a given knot.
|
||||||
|
\begin{definition}
|
||||||
|
A Gordian distance $G(K, K^\prime)$ between knots $K$ and $K^\prime$ is the minimal number of crossing changes required to turn $K$ into $K^\prime$.
|
||||||
|
\end{definition}
|
||||||
|
\begin{problem}
|
||||||
|
Prove that:
|
||||||
|
\[
|
||||||
|
G(K, K^{\prime\prime})
|
||||||
|
\leq
|
||||||
|
G(K, K^{\prime})
|
||||||
|
+
|
||||||
|
G(K^\prime, K^{\prime\prime}).
|
||||||
|
\]
|
||||||
|
Open problem:
|
||||||
|
\[
|
||||||
|
u(K\# K^\prime) = u(K) + u(K^\prime).
|
||||||
|
\]
|
||||||
|
\end{problem}
|
||||||
|
\begin{lemma}[Scharlemann '84]
|
||||||
|
Unknotting number one knots are prime.
|
||||||
|
\end{lemma}
|
||||||
|
\subsection*{Tools to bound unknotting number}
|
||||||
|
\begin{theorem}
|
||||||
|
For any symmetric polynomial $\Delta \in \mathbb{Z}[t, t^{-1}]$ such that $\Delta(1) = 1$, there exists a knot $K$ such that:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item
|
||||||
|
$K$ has unknotting number $1$,
|
||||||
|
\item
|
||||||
|
$\Delta_K = \Delta$.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{theorem}
|
||||||
|
Let us consider a knot $K$ and its Seifert surface $\Sigma$.
|
||||||
|
|
||||||
|
the Seifert form for $K_-$
|
||||||
|
\\
|
||||||
|
the Seifert form for $K_+$
|
||||||
|
\\
|
||||||
|
$S_- + S_+$ differs from
|
||||||
|
by a term in the bottom right corner
|
||||||
|
|
||||||
|
Let $A$ be a symmetric $n \times n$ matrix over $\mathbb{R}$. Let $A_1, \dots, A_n$ be minors of $A$. \\
|
||||||
|
Let $\epsilon_0 = 1$
|
||||||
|
If
|
@ -98,6 +98,10 @@
|
|||||||
\DeclareMathOperator{\sign}{sign}
|
\DeclareMathOperator{\sign}{sign}
|
||||||
\DeclareMathOperator{\odd}{odd}
|
\DeclareMathOperator{\odd}{odd}
|
||||||
\DeclareMathOperator{\even}{even}
|
\DeclareMathOperator{\even}{even}
|
||||||
|
\DeclareMathOperator{\Diff}{Diff}
|
||||||
|
\DeclareMathOperator{\Iso}{Iso}
|
||||||
|
\DeclareMathOperator{\mcg}{MCG}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -126,45 +130,92 @@
|
|||||||
%\newpage
|
%\newpage
|
||||||
%\input{myNotes}
|
%\input{myNotes}
|
||||||
|
|
||||||
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
|
\section{Basic definitions
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill \DTMdate{2019-02-25}}
|
||||||
|
{}}
|
||||||
\input{lec_25_02.tex}
|
\input{lec_25_02.tex}
|
||||||
|
|
||||||
\section{Alexander polynomial \hfill\DTMdate{2019-03-04}}
|
\section{Alexander polynomial
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-03-04}}
|
||||||
|
{}}
|
||||||
\input{lec_04_03.tex}
|
\input{lec_04_03.tex}
|
||||||
%add Hurewicz theorem?
|
%add Hurewicz theorem?
|
||||||
|
|
||||||
|
|
||||||
\section{Examples of knot classes
|
\section{Examples of knot classes
|
||||||
|
\texorpdfstring{
|
||||||
\hfill\DTMdate{2019-03-11}}
|
\hfill\DTMdate{2019-03-11}}
|
||||||
|
{}}
|
||||||
\input{lec_11_03.tex}
|
\input{lec_11_03.tex}
|
||||||
|
|
||||||
\section{Concordance group \hfill\DTMdate{2019-03-18}}
|
\section{Concordance group
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-03-18}}
|
||||||
|
{}}
|
||||||
\input{lec_18_03.tex}
|
\input{lec_18_03.tex}
|
||||||
|
|
||||||
\section{Genus $g$ cobordism \hfill\DTMdate{2019-03-25}}
|
\section{Genus
|
||||||
|
\texorpdfstring{$g$}{g}
|
||||||
|
cobordism
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-03-25}}
|
||||||
|
{}}
|
||||||
\input{lec_25_03.tex}
|
\input{lec_25_03.tex}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-04-08}}
|
\section{
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-04-08}}
|
||||||
|
{}}
|
||||||
\input{lec_08_04.tex}
|
\input{lec_08_04.tex}
|
||||||
|
|
||||||
\section{Linking form\hfill\DTMdate{2019-04-15}}
|
\section{Linking form
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-04-15}}
|
||||||
|
{}}
|
||||||
\input{lec_15_04.tex}
|
\input{lec_15_04.tex}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-05-06}}
|
\section{
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-05-06}}
|
||||||
|
{}}
|
||||||
\input{lec_06_05.tex}
|
\input{lec_06_05.tex}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-05-20}}
|
% no lecture at 13.05
|
||||||
|
%\section{\hfill\DTMdate{2019-05-20}}
|
||||||
|
%\input{lec_13_05.tex}
|
||||||
|
|
||||||
|
\section{
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-05-20}}
|
||||||
|
{}}
|
||||||
\input{lec_20_05.tex}
|
\input{lec_20_05.tex}
|
||||||
|
|
||||||
\section{\hfill\DTMdate{2019-05-27}}
|
\section{
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-05-27}}
|
||||||
|
{}}
|
||||||
\input{lec_27_05.tex}
|
\input{lec_27_05.tex}
|
||||||
|
|
||||||
\section{Surgery \hfill\DTMdate{2019-06-03}}
|
\section{
|
||||||
|
\texorpdfstring{
|
||||||
|
Surgery \hfill\DTMdate{2019-06-03}}
|
||||||
|
{}}
|
||||||
\input{lec_03_06.tex}
|
\input{lec_03_06.tex}
|
||||||
|
|
||||||
\section{Surgery\hfill\DTMdate{2019-06-03}}
|
\section{Surgery
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-06-10}}
|
||||||
|
{}}
|
||||||
\input{lec_10_06.tex}
|
\input{lec_10_06.tex}
|
||||||
|
|
||||||
|
\section{Mess
|
||||||
|
\texorpdfstring{
|
||||||
|
\hfill\DTMdate{2019-06-17}}
|
||||||
|
{}}
|
||||||
|
\input{mess.tex}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user