\begin{theorem} Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then: \[ u(K) \geq g_4(K) \] \begin{proof} Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points. \\ ??????????????? \\ \begin{eqnarray*} \chi (D^2) = 1 \\ \chi (\Delta) = 1 - u\\ \gamma = 0 \in \pi_1(B^4 \setminus S) \end{eqnarray*} ?????????????? \\ \noindent Remove from $\Delta$ the two self intersecting disks and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$. \end{proof} %Tim D. Cochran and Peter Teichner \begin{example} The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$. \end{example} %ref Structure in the classical knot concordance group %Tim D. Cochran, Kent E. Orr, Peter Teichner %Journal-ref: Comment. Math. Helv. 79 (2004) 105-123 \subsection*{Surgery} %Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^2$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism. Consider an induced map on the homology group: \begin{align*} H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\ \phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\ \phi_* &= \begin{pmatrix} p & q\\ r & s \end{pmatrix}. \end{align*} As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$. \end{theorem} \vspace{10cm} \begin{theorem} Every such a matrix can be realized as a torus. \end{theorem} \begin{proof} \begin{enumerate}[label={(\Roman*)}] \item Geometric reason \begin{align*} \phi_t: S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\ S^1 \times \pt &\longrightarrow \pt \times S^1 \\ \pt \times S^1 &\longrightarrow S^1 \times \pt \\ (x, y) & \mapsto (-y, x) \end{align*} \item \end{enumerate} \end{proof} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.5\textwidth}{!}{\input{images/dehn_twist.pdf_tex}} \caption{Dehn twist.} \label{fig:dehn_twist} } \end{figure} \begin{proof}[Sketch of proof] We will show that each diffeomorphism is isotopic to $\begin{pmatrix} p & q\\ r & s \end{pmatrix}$. \begin{equation*} \quot{\Diff_+(S^1 \times S^1)}{\Iso(S^1 \times S^1)} = \mcg(S^1 \times S^1) = \Sl(2, \mathbb{Z}) \end{equation*} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.4\textwidth}{!}{\input{images/torus_mu_lambda.pdf_tex}} \caption{Choice of meridian and longitude.} \label{fig:torus_twist} } \end{figure} \end{proof} Let $N = D^2 \times S$ be a tubular neighbourhood of a knot $K$. Consider its boundary $\partial N = S^1 \times S^1$. There exists a simple closed curve $\mu \subset \partial N$ (a meridian) that bounds a disk in $N$. We choose another simple closed curve $\lambda$ (a longitude) so that $\Lk(\lambda, K) = 0$. \\ ???????? \\ $\lambda \mu = 1 $ intersection\\ $\pi_0 (\Gl(2, \mathbb{R})$\\ ??????????? \\ In other words a homotopy class: $[\lambda] = 0$ in $H_1(S^3 \setminus N, \mathbb{Z})$.