\begin{definition} Let $X$ be a knot complement. Then $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism $\pi_1(X) \overset{\phi}\twoheadrightarrow \mathbb{Z}$.\\ The infinite cyclic cover of a knot complement $X$ is the cover associated with the epimorphism $\phi$. \[ \widetilde{X} \longtwoheadrightarrow X \] \end{definition} %Rolfsen, bachalor thesis of Kamila \begin{figure}[h] \fontsize{10}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{\input{images/covering.pdf_tex}} \caption{Infinite cyclic cover of a knot complement.} \label{fig:covering} } \end{figure} \noindent \subsection{Double branched cover.} Let $K \subset S^3$ be a knot and $\Sigma$ its Seifert surface. Let us consider a knot complement $S^3 \setminus N(K)$. \begin{figure}[h] \fontsize{10}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}} \caption{The double cover of the $3$-sphere branched over a knot $K$.} \label{fig:complement} } \end{figure} \noindent Formal sums $\sum \phi_i(t) a_i + \sum \phi_j(t)\alpha_j$ \\ finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module. \\ Let $v_{ij} = \Lk(a_i, a_j^+)$. Then $V = \{ v_ij\}_{i, j = 1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+ = \sum_{j} v_{jk} \alpha_j$. Then $\Lk(a_i, a_k^+)= \Lk(a_k^+, a_i) = \sum_j v_{jk} \Lk(\alpha_j, a_i) = v_{ik}$. We also notice that $\Lk(a_i, a_j^-) = \Lk(a_i^+, a_j)= v_{ij}$ and $a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$. \\ \noindent The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations. Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\ Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c = 0 \in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$. \[ \frac{1}{\Delta} \sum_{j\in \mathbb{Z} t^{-j}}(F \cdot t^j d) \in \quot{\mathbb{Q}[t, t^{-1}]}{\mathbb{Z}[t, t^{-1}]} \] \\ ?????????????\\ There is at least one paper where the structure of (Alexander module?) is calculated from a specific knot (?minimal number of generators?) \\ C. Kearton, S. M. J. Wilson \\ \begin{fact} Let $A$ be a matrix over principal ideal domain $R$. Than there exist matrices $C$, $D$ and $E$ such that $A = CDE$, \[D = \begin{bmatrix} d_1 & 0 & \cdots & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ \sdots & & \ddots & & \sdots & \\ 0 & \cdots & 0 & d_{n-1} & 0\\ 0 & \cdots & \cdots & 0 & d_n \end{bmatrix},\] where $d_{i + 1} | d_i$, and matrices $C$ and $E$ are invertible over $R$.\\ $D$ is called a Smith normal form of the matrix $A$. \end{fact} \begin{definition} The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of a knot $K$. \end{definition} \noindent Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider \[ R^k \overset{A} \longrightarrow R^n \longtwoheadrightarrow M, \] where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M = \det A$. \begin{theorem} Order of $M$ doesn't depend on $A$. \end{theorem} \noindent For knots the order of the Alexander module is the Alexander polynomial. \begin{theorem} \[ \forall x \in M: (\ord M) x = 0. \] \end{theorem} \noindent $M$ is well defined up to a unit in $R$. \\ ??????????????????\\ General picture : $K$, $X$ knot complement... \begin{eqnarray*} H_1( X, \mathbb{Z}) = \mathbb{Z} \\ H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \\ \pi_1(X) \end{eqnarray*} \begin{definition} The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$. \end{definition} %see Maciej page \noindent Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$. \\ ????????????????????? \\ \noindent $\Sigma_?(K) \rightarrow S^3$ ?????\\ $H_1(\Sigma_?(K), \mathbb{Z}) = h$\\ $H \times H \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}$\\ ...\\ \begin{figure}[h] \fontsize{10}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{\input{images/covering_pairing.pdf_tex}} \caption{$c, d \in H_1(\widetilde{X})$.} \label{fig:covering_pairing} } \end{figure} \subsection*{Blanchfield pairing}