$X$ is a closed orientable four-manifold. For simplicity assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$. $H_2$ is free (exercise). \[ H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z}). \] \noindent Intersection form: $H_2(X, \mathbb{Z}) \times H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ is symmetric and non singular. \\ Let $A$ and $B$ be closed, oriented surfaces in $X$. \\ \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.5\textwidth}{!}{\input{images/intersection_form_A_B.pdf_tex}} } \caption{$T_X A + T_X B = T_X X$ }\label{fig:intersection} \end{figure} ??????????????????????? \begin{align*} x \in A \cap B\\ T_XA \oplus T_X B = T_X X\\ \{\epsilon_1, \dots , \epsilon_n \} = A \cap C\\ A \cdot B = \sum^n_{i=1} \epsilon_i \end{align*} \begin{proposition} Intersection form $A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes: \[ [A], [B] \in H_2(X, \mathbb{Z}). \] \end{proposition} \noindent \\ \subsection{Fundamental cycle} If $M$ is an $m$ - dimensional close, connected and orientable manifold, then $H_m(M, \mathbb{Z})$ and the orientation of $M$ determined a cycle $[M] \in H_m(M, \mathbb{Z})$, called the fundamental cycle. \begin{example} If $\omega$ is an $m$ - form then: \[ \int_M \omega = [\omega]([M]), \quad [\omega] \in H^m_\Omega(M), \ [M] \in H_m(M). \] \end{example} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.8\textwidth}{!}{\input{images/torus_alpha_beta.pdf_tex}} } \caption{$\beta$ cross $3$ times the disk bounded by $\alpha$. $T_X \alpha + T_X \beta = T_X \Sigma$ }\label{fig:torus_alpha_beta} \end{figure} \begin{example} K{\"u}nneth ?????????????????????????\\ Let $X = S^2 \times S^2$. We know that: \begin{align*} &H_2(S^2, \mathbb{Z}) =\mathbb{Z}\\ &H_1(S^2, \mathbb{Z}) = 0\\ &H_0(S^2, \mathbb{Z}) =\mathbb{Z} \end{align*} We can construct a long exact sequence for a pair: \begin{align*} &H_2(\partial X) \to H_2(X) \to H_2(X, \partial X) \to \\ \to &H_1(\partial X) \to H_1(X) \to H_1(X, \partial X) \to \end{align*} ????????????????????\\ Simple case $H_1(\partial X)$ \\????????????\\ is torsion. $H_2(\partial X)$ is torsion free (by universal coefficient theorem),\\ ???????????????????????\\ therefore it is $0$. \\?????????????????????\\ We know that $b_1(X) = b_2(X)$. Therefore by Poincar\'e duality: \begin{align*} b_1(X) = \dim_{\mathbb{Q}} H_1(X, \mathbb{Q}) \overset{\mathrm{PD}}{=} \dim_{\mathbb{Q}} H^2(X, \mathbb{Q}) = \dim_{\mathbb{Q}} H_2(X, \mathbb{Q}) = b_2(X) \end{align*} ???????????????????????????????\\ $H_2(X, \mathbb{Z})$ is torsion free and $H_2(X_1, \mathbb{Q}) = 0$, therefore $H_2(X, \mathbb{Z}) = 0$. The map $H_2(X, \mathbb{Z}) \longrightarrow H_2(X, \partial X, \mathbb{Z})$ is a monomorphism. \\??????????\\ (because it is an isomorphism after tensoring by $\mathbb{Q}$. \\ Suppose $\alpha_1, \dots, \alpha_n$ is a basis of $H_2(X, \mathbb{Z})$. Let $A$ be the intersection matrix in this basis. Then: \begin{enumerate} \item A has integer coefficients, \item $\det A \neq 0$, \item $\vert \det A \vert = \vert H_1 (\partial X, \mathbb{Z}) \vert = \vert \coker H_2(X) \longrightarrow H_2(X, \partial X) \vert$. \end{enumerate} \end{example} ??????????????????? \\ \\ If $CUC^T = W$, then for $\binom{a}{b} = C^{-1} \binom{1}{0}$ we have: \[ \binom{a}{b} W \binom{a}{b} = \binom{1}{0} U \binom{1}{0} = 1 \notin 2 \mathbb{Z}. \] % if we switch to \mathbb{Q} it will be possible? \begin{theorem}[Whitehead] Any non-degenerate form \[ A : \mathbb{Z}^4 \times \mathbb{Z}^4 \longrightarrow \mathbb{Z} \] can be realized as an intersection form of a simple connected $4$-dimensional manifold. \end{theorem} ?????????????????????????? \begin{theorem}[Donaldson, 1982] If $A$ is an even definite intersection form of a smooth $4$-manifold then it is diagonalizable over $\mathbb{Z}$. \end{theorem} ?????????????????????????? ?????????????????????????? ?????????????????????????? ?????????????????????????? \begin{definition} even define \end{definition} Suppose $X$ us $4$ -manifold with a boundary such that $H_1(X) = 0$. %$A \cdot B$ gives the pairing as ?? \begin{proof} Obviously: \[H_1(\partial X, \mathbb{Z}) = \coker H_2(X) \longrightarrow H_2(X, \partial X) = \quot{H_2(X, \partial X)}{H_2(X)}. \] Let $A$ be an $n \times n$ matrix. $A$ determines a \\ ??????????????/\\ \begin{align*} \mathbb{Z}^n \longrightarrow \Hom (\mathbb{Z}^n, \mathbb{Z})\\ a \mapsto (b \mapsto b^T A a)\\ \vert \coker A \vert = \vert \det A \vert \end{align*} all homomorphisms $b = (b_1, \dots, b_n) $???????\\?????????\\ \end{proof}