\subsection{Algebraic knots} \noindent Suppose $F: \mathbb{C}^2 \rightarrow \mathbb{C}$ is a polynomial and $F(0) = 0$. Let take a small sphere $S^3$ around zero. This sphere intersect set of roots of $F$ (zero set of $F$) transversally and by the implicit function theorem the intersection is a manifold. The dimension of sphere is $3$ and $F^{-1}(0)$ has codimension $2$. So there is a subspace $L$ - compact one dimensional manifold without boundary. That means that $L$ is a link in $S^3$. \begin{figure}[h] \fontsize{40}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.2\textwidth}{!}{\input{images/milnor_singular.pdf_tex}} } \caption{The intersection of a sphere $S^3$ and zero set of polynomial $F$ is a link $L$.} \label{fig:milnor_singular} \end{figure} %ref: Milnor Singular Points of Complex Hypersurfaces \begin{theorem} $L$ is an unknot if and only if zero is a smooth point, i.e. $\bigtriangledown F(0) \neq 0$ (provided $S^3$ has a sufficiently small radius). \end{theorem} \noindent Remark: if $S^3$ is large it can happen that $L$ is unlink, but $F^{-1}(0) \cap B^4$ is "complicated". \\ %Kyle M. Ormsby \noindent In other words: if we take sufficiently small sphere, the link is non-trivial if and only if the point $0$ is singular and the isotopy type of the link doesn't depend on the radius of the sphere. A link obtained is such a way is called an algebraic link (in older books on knot theory there is another notion of algebraic link with another meaning). %ref: Eisenbud, D., Neumann, W. \begin{example} Let $p$ and $q$ be coprime numbers such that $p1$. \\ Zero is an isolated singular point ($\bigtriangledown F(0) = 0$). $F$ is quasi - homogeneous polynomial, so the isotopy class of the link doesn't depend on the choice of a sphere. Consider $S^3 = \{ (z, w) \in \mathbb{C} : \max( \vert z \vert, \vert w \vert )\} = \varepsilon$. The intersection $F^{-1}(0) \cap S^3$ is a torus $T(p, q)$. \\??????????????????? $F(z, w) = z^p - w^q$\\ .\\ $F^{-1}(0) = \{t = t^q, w = t^p\}.$ For unknot $t = \max (\vert t\vert ^p, \vert t \vert^q) = \varepsilon$. \end{example} as a corollary we see that $K_T^{n, }$ ???? \\ is not slice unless $m=0$. \\ $t = re^{i \Theta}, \Theta \in [0, 2\pi], r = \varepsilon^{\frac{i}{p}}$ \begin{figure}[h] \fontsize{40}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.2\textwidth}{!}{\input{images/polynomial_and_surface.pdf_tex}} } \caption{Sa.} \label{fig:polynomial_and_surface} \end{figure} \begin{theorem} Suppose $L$ is an algebraic link. $L = F^{-1}(0) \cap S^3$. Let \begin{align*} &\varphi : S^3 \setminus L \longrightarrow S^1 \\ &\varphi(z, w) =\frac{F(z, w)}{\vert F(z, w) \vert}\in S^1, \quad (z, w) \notin F^{-1}(0). \end{align*} The map $\varphi$ is a locally trivial fibration. \end{theorem} ???????\\ $ rh D \varphi \equiv 1$ \begin{definition} A map $\Pi : E \longrightarrow B$ is locally trivial fibration with fiber $F$ if for any $b \in B$, there is a neighbourhood $U \subset B$ such that $\Pi^{-1}(U) \cong U \times $ \\ ????????????\\ $\Gamma$ ?????????????\\ FIGURES\\ !!!!!!!!!!!!!!!!!!!!!!!!!!\\ \end{definition} \begin{theorem} The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$ \end{theorem} ... \\ In general $h$ is defined only up to homotopy, but this means that \[ h_* : H_1 (F, \mathbb{Z}) \longrightarrow H_1 (F, \mathbb{Z}) \] is well defined \\ ???????????\\ map. \begin{theorem} \label{thm:F_as_S} Suppose $S$ is a Seifert matrix associated with $F$ then $h = S^{-1}S^T$. \end{theorem} \begin{proof} TO WRITE REFERENCE!!!!!!!!!!! %see Arnold Varchenko vol II %Picard - Lefschetz formula %Nemeth (Real Seifert forms \end{proof} \noindent Consequences: \begin{enumerate}[label={(\arabic*)}] \item the Alexander polynomial is the characteristic polynomial of $h$: \[ \Delta_L (t) = \det (h - t I d) \] In particular $\Delta_L $ is monic (i.e. the top coefficient is $\pm 1$), ???????????????? \item S is invertible, \item $F$ minimize the genus (i.e. $F$ is minimal genus Seifert surface). \\??????????????????\\ \end{enumerate} % \begin{definition} A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longrightarrow S^1}$ which is locally trivial fibration. \end{definition} \noindent If $L$ is fibered then Theorem \ref{thm:F_as_S} holds and all its consequences. \begin{problem} If $K_1$ and $K_2$ are fibered knots, then also $K_1 \# K_2$ is fibered. \end{problem} \noindent ?????????????????????\\ \begin{problem} Prove that connected sum is well defined:\\ $\Delta_{K_1 \# K_2} = \Delta_{K_1} + \Delta_{K_2}$ and $g_3(K_1 \# K_2) = g_3(K_1) + g_3(K_2)$. \end{problem} \begin{figure}[h] \fontsize{12}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{\input{images/satellite.pdf_tex}}} \caption{Example for a satellite knot: a Whitehead double of a trefoil.\\ The pattern knot embedded non-trivially in an unknotted solid torus $T$ (e.i. $K \not\subset S^3\subset T$) on the left and the pattern in a companion knot - trefoil - on the right.} \label{fig:sattelite} \end{figure} \noindent \subsection{Alternating knot} \begin{definition} A knot (link) is called alternating if it admits an alternating diagram. \end{definition} \begin{figure}[h] \fontsize{12}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \includegraphics[width=0.3\textwidth]{figure8.png} } \caption{Example: figure eight knot is an alternating knot.} \label{fig:fig8} \end{figure} \begin{definition} A reducible crossing in a knot diagram is a crossing for which we can find a circle such that its intersection with a knot diagram is exactly that crossing. A knot diagram without reducible crossing is called reduced. \end{definition} \begin{lemma} Any reduced alternating diagram has minimal number of crossings. \end{lemma} \begin{definition} The writhe of the diagram is the difference between the number of positive and negative crossings. \end{definition} \begin{lemma}[Tait] Any two diagrams of the same alternating knot have the same writhe. \end{lemma} \begin{lemma} An alternating knot has Alexander polynomial of the form: $ a_1t^{n_1} + a_2t^{n_2} + \dots + a_s t^{n_s} $, where $n_1 < n_2 < \dots < n_s$ and $a_ia_{i+1} < 0$. \end{lemma} \begin{problem}[open] What is the minimal $\alpha \in \mathbb{R}$ such that if $z$ is a root of the Alexander polynomial of an alternating knot, then $\Re(z) > \alpha$.\\ Remark: alternating knots have very simple knot homologies. \end{problem} \begin{proposition} If $T_{p, q}$ is a torus knot, $p < q$, then it is alternating if and only if $p=2$. \end{proposition}