???????????????????\\ \begin{theorem} Suppose that $K \subset S^3$ is a slice knot (i.e. $K$ bound a disk in $B^4$). Then if $F$ is a Seifert surface of $K$ and $V$ denotes the associated Seifet matrix, then there exists $P \in \Gl_g(\mathbb{Z})$ such that: \\??????????????? T ???????? \begin{align} PVP^{-1} = \begin{pmatrix} 0 & A\\ B & C \end{pmatrix}, \quad A, C, C \in M_{g \times g} (\mathbb{Z}) \end{align} \end{theorem} In other words you can find rank $g$ direct summand $\mathcal{Z}$ of $H_1(F)$ \\ ????????????\\ such that for any $\alpha, \beta \in \mathcal{L}$ the linking number $\Lk (\alpha, \beta^+) = 0$. \begin{definition} An abstract Seifert matrix (i. e. \end{definition} Choose a basis $(b_1, ..., b_i)$ \\ ???\\ of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form: \begin{align*} \quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}). \end{align*} In particular $\vert \det A\vert = \# H_1(Y, \mathbb{Z})$.\\ That means - what is happening on boundary is a measure of degeneracy. \begin{center} \begin{tikzcd} [ column sep=tiny, row sep=small, ar symbol/.style =% {draw=none,"\textstyle#1" description,sloped}, isomorphic/.style = {ar symbol={\cong}}, ] H_1(Y, \mathbb{Z}) & \times \quad H_1(Y, \mathbb{Z})& \longrightarrow & \quot{\mathbb{Q}}{\mathbb{Z}} \text{ - a linking form} \\ \quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] & \quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\ \end{tikzcd} $(a, b) \mapsto aA^{-1}b^T$ \end{center} ?????????????????????????????????\\ \noindent The intersection form on a four-manifold determines the linking on the boundary. \\ \noindent \begin{fact} Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then \[H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}\ \ ,\] where $A = V \times V^T$ and $n = \rank V$. \end{fact} %\input{ink_diag} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}} \caption{Pushing the Seifert surface in 4-ball.} \label{fig:pushSeifert} } \end{figure} \noindent Let $X$ be the four-manifold obtained via the double branched cover of $B^4$ branched along $\widetilde{\Sigma}$. \begin{fact} \begin{itemize} \item $X$ is a smooth four-manifold, \item $H_1(X, \mathbb{Z}) =0$, \item $H_2(X, \mathbb{Z}) \cong \mathbb{Z}^n$ \item The intersection form on $X$ is $V + V^T$. \end{itemize} \end{fact} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_cycle.pdf_tex}} \caption{Cycle pushed in 4-ball.} \label{fig:pushCycle} } \end{figure} \noindent Let $Y = \Sigma(K)$. Then: \begin{align*} H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}} \\ (a,b) &\mapsto a A^{-1} b^{T},\qquad A = V + V^T. \end{align*} ???????????????????????????? \\ We have a primary decomposition of $H_1(Y, \mathbb{Z}) = U$ (as a group). For any $p \in \mathbb{P}$ we define $U_p$ to be the subgroup of elements annihilated by the same power of $p$. We have $U = \bigoplus_p U_p$. \begin{example} \begin{align*} \text{If } U &= \mathbb{Z}_3 \oplus \mathbb{Z}_{45} \oplus \mathbb{Z}_{15} \oplus \mathbb{Z}_{75} \text{ then }\\ U_3 &= \mathbb{Z}_3 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \text{ and }\\ U_5 &= (e) \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{25}. \end{align*} \end{example} \begin{lemma} Suppose $x \in U_{p_1}$, $y \in U_{p_2}$ and $p_1 \neq p_2$. Then $ = 0$. \end{lemma} \begin{proof} \begin{align*} x \in U_{p_1} \end{align*} \end{proof} \begin{align*} H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}\\ A \longrightarrow BAC^T \quad \text{Smith normal form} \end{align*} ???????????????????????\\ In general %no lecture at 29.04