% I don't have this first fragent in my notes Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a bilinear form - the intersection form on $M$: \begin{center} \begin{tikzcd} [ column sep=tiny, row sep=small, ar symbol/.style = {draw=none,"\textstyle#1" description,sloped}, isomorphic/.style = {ar symbol={\cong}}, ] H_2(M, \mathbb{Z})& \times & H_2(M, \mathbb{Z}) \longrightarrow & \mathbb{Z} \\ \ar[u,isomorphic] \mathbb{Z}^n && &\\ \end{tikzcd} \end{center} \noindent Let us consider a specific case: $M$ has a boundary $Y = \partial M$. Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite. Then the intersection form can be degenerated in the sense that: \begin{align*} H_2(M, \mathbb{Z}) \times H_2(M, \mathbb{Z}) &\longrightarrow \mathbb{Z} \quad& H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\ (a, b) &\mapsto \mathbb{Z} \quad& a &\mapsto (a, \_) \in H_2(M, \mathbb{Z}) \end{align*} has coker precisely $H_1(Y, \mathbb{Z})$. \\???????????????\\ % Here my notes begin: Let $K \subset S^3$ be a knot, $X = S^3 \setminus K$ a knot complement and $\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ an infinite cyclic cover (universal abelian cover). %By Hurewicz theorem we know that: %\begin{align*} %\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z} %\end{align*} \noindent $C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\ Let $H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ be the Alexander module of the knot $K$ with an intersection form: \begin{align*} H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]} \end{align*} \begin{lemma} \begin{align*} &H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong \quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\ &\text{where $V$ is a Seifert matrix.} \end{align*} \end{lemma} \begin{lemma} \begin{align*} H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\ (\alpha, \beta) \quad &\mapsto \alpha^{-1}{(t -1)(tV - V^T)}^{-1}\beta \end{align*} \end{lemma} \noindent Note that $\mathbb{Z}[t, t^{-1}]$ is not PID. Therefore we don't have primary decomposition of this module. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition, but we can \begin{align*} \xi \in S^1 \setminus \{ \pm 1\} &\quad p_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1} \\ \xi \in \mathbb{R} \setminus \{ \pm 1\} &\quad q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1} \\ \xi \notin \mathbb{R} \cup S^1 &\quad q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1}) (t - \overbar{\xi}^{-1}) t^{-2} \end{align*} Let $\Lambda = \mathbb{R}[t, t^{-1}]$. Then: \begin{align*} H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}} ( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi} \oplus \bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}} (\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}& \end{align*} We can make this composition orthogonal with respect to the Blanchfield paring. \vspace{0.5cm}\\ Historical remark: \begin{itemize} \item John Milnor, \textit{On isometries of inner product spaces}, 1969, \item Walter Neumann, \textit{Invariants of plane curve singularities} %in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223–232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva , 1983, \item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995, %Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41 \item Maciej Borodzik, Stefan Friedl \textit{The unknotting number and classical invariants II}, 2014. \end{itemize} \vspace{0.5cm} Let $p = p_{\xi}$, $k\geq 0$. \begin{align*} \quot{\Lambda}{p^k \Lambda} \times \quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\ (1, 1) &\mapsto \kappa\\ \text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\ p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\ \text{therfore } p^k \kappa &\in \Lambda\\ \text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\ \end{align*} $h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\ Let $h = p^k \kappa$. \begin{example} \begin{align*} \phi_0 ((1, 1))=\frac{+1}{p}\\ \phi_1 ((1, 1)) = \frac{-1}{p} \end{align*} $\phi_0$ and $\phi_1$ are not isomorphic. \end{example} \begin{proof} Let $\Phi: \quot{\Lambda}{p^k \Lambda} \longrightarrow \quot{\Lambda}{p^k \Lambda}$ be an isomorphism. \\ Let: $\Phi(1) = g \in \lambda$ \begin{align*} \quot{\Lambda}{p^k \Lambda} \xrightarrow{\enspace \Phi \enspace}& \quot{\Lambda}{p^k \Lambda}\\ \phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad \phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).} \end{align*} Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then: \begin{align*} \frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\ \frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\ -g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\ -g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\ \text{evalueting at $\xi$: }\\ \overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction \end{align*} \end{proof} ????????????????????\\ \begin{align*} g &= \sum{g_i t^i}\\ \overbar{g} &= \sum{g_i t^{-i}}\\ \overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\ \overbar{g}(\xi) &=\overbar{g(\xi)} \end{align*} Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$. \begin{theorem} Every sesquilinear non-degenerate pairing \begin{align*} \quot{\Lambda}{p^k} \times \quot{\Lambda}{p} \longrightarrow \frac{h}{p^k} \end{align*} is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number). \end{theorem} \begin{proof} There are two steps of the proof: \begin{enumerate} \item Reduce to the case when $h$ has a constant sign on $S^1$. \item Prove in the case, when $h$ has a constant sign on $S^1$. \end{enumerate} \begin{lemma} If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$. \end{lemma} \begin{proof}[Sketch of proof]: Induction over $\deg P$.\\ Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by $(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$. Therefore: \begin{align*} &P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\ &P^{\prime} = g^{\prime}\overbar{g} \end{align*} We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and $P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \vert P$ (at least - otherwise it would change sign). Therefore: \begin{align*} &P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\ &g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.} \end{align*} The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$. \end{proof} \begin{lemma}\label{L:coprime polynomials} Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist symmetric polynomials $P$, $Q$ such that $P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$. \end{lemma} \begin{proof}[Idea of proof] For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial . \\??????????????????????????\\ \begin{flalign*} (1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}&\\ g\overbar{g} h + p^k\omega = 1& \end{flalign*} Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied, \begin{align*} Ph + Qp^{2k} = 1\\ p>0 \Rightarrow p = g \overbar{g}\\ p = (t - \xi)(t - \overbar{\xi})t^{-1}\\ \text{so } p \geq 0 \text{ on } S^1\\ p(t) = 0 \Leftrightarrow t = \xi or t = \overbar{\xi}\\ h(\xi) > 0\\ h(\overbar{\xi})>0\\ g\overbar{g}h + Qp^{2k} = 1\\ g\overbar{g}h \equiv 1 \mod{p^{2k}}\\ g\overbar{g} \equiv 1 \mod{p^k} \end{align*} ???????????????????????????????\\ If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is. \end{proof} ?????????????????\\ \begin{align*} \quot{\Lambda}{p_{\xi}^k} \times \quot{\Lambda}{p_{\xi}^k} &\longrightarrow \frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\ \quot{\Lambda}{q_{\xi}^k} \times \quot{\Lambda}{q_{\xi}^k} &\longrightarrow \frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\ \end{align*} ??????????????????? 1 ?? epsilon?\\ \begin{theorem}[Matumoto, Borodzik-Conway-Politarczyk] Let $K$ be a knot, \begin{align*} H_1(\widetilde{X}, \Lambda) \times H_1(\widetilde{X}, \Lambda) = \bigoplus_{\substack{k, \xi, \epsilon\\ \xi \in S^1}} (\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta} (\quot{\Lambda}{p_{\xi}^k})^{m_k} \text{ and} \\ \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}} \sigma(e^{2\pi i \varepsilon} \xi) - \sigma(e^{-2\pi i \varepsilon} \xi),\\ \text{then } \sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0} \sigma(e^{2\pi i \varepsilon}\xi) + \sigma(e^{-2 \pi i \varepsilon}\xi) \end{align*} The jump at $\xi$ is equal to $2\sum\limits_{k_i \odd} \epsilon_i$.\\ The peak of the signature function is equal to ${\sum\limits_{k_i \even}}{\epsilon_i}$. \\ ????????????????? \\ $(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$ % Livingston Pacific Jurnal of M. 2012 \end{theorem} \end{proof}