\begin{definition} A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$: \[ \varphi: S^1 \hookrightarrow S^3 \] \end{definition} \noindent Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$. Some basic examples and counterexamples are shown respectively in \autoref{fig:unknot} and \autoref{fig:notknot}. \begin{figure}[h] \centering \begin{subfigure}{0.45\textwidth} \centering \includegraphics[width=0.5\textwidth] {unknot.png} \end{subfigure} \begin{subfigure}{0.45\textwidth} \centering \includegraphics[width=0.5\textwidth] {trefoil.png} \end{subfigure} \caption{Knots examples: unknot (left) and trefoil (right).} \label{fig:unknot} \end{figure} \begin{figure}[h] \centering \begin{subfigure}{0.45\textwidth} \centering \includegraphics[width=0.5\textwidth] {not_injective_knot.png} \end{subfigure} \begin{subfigure}{0.45\textwidth} \centering \includegraphics[width=0.5\textwidth] {not_smooth_knot.png} \end{subfigure} \caption{ Not-knots examples: an image of a function ${S^1\longrightarrow S^3}$ that is not injective (left) and of a function that is not smooth (right). } \label{fig:notknot} \end{figure} \begin{definition} Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function \begin{align*} &\Phi: S^1 \times [0, 1] \hookrightarrow S^3, \\ &\Phi(x, t) = \Phi_t(x) \end{align*} such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and $\Phi_1 = \varphi_1$. \end{definition} \begin{theorem} Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that: \begin{align*} &\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$},\\ &\psi_t: S^3 \hookrightarrow S^3,\\ & \psi_0 = id ,\\ & \psi_1(K_0) = K_1. \end{align*} \end{theorem} \begin{definition} A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$. \end{definition} \begin{definition} A link with $k$ - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$. \end{definition} \noindent Example of simple links are shown in \autoref{fig:links}. \begin{figure}[h] \centering \begin{subfigure}{0.5\textwidth} \centering \includegraphics[width=1\textwidth] {3unknots.png} \caption{A trivial link with $3$ components.} \end{subfigure} \begin{subfigure}{0.4\textwidth} \centering \includegraphics[width=0.7\textwidth] {Hopf.png} \caption{A Hopf link.} \end{subfigure} \begin{subfigure}{0.4\textwidth} \centering \includegraphics[width=0.8\textwidth] {WhiteheadLink.png}, \caption{A Whitehead link.} \end{subfigure} \begin{subfigure}{0.4\textwidth} \centering \includegraphics[width=0.7\textwidth] {BorromeanRings.png} \caption{A Borromean link.} \end{subfigure} \caption{Link examples.} \label{fig:links} \end{figure} % % \begin{definition}\label{def:link_diagram} A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that: \begin{enumerate}[label={(\arabic*)}] \item $D_{\pi |_L}$ is non degenerate, \item the double points are not degenerate, \item there are no triple point. \end{enumerate} \end{definition} \noindent By \Cref{def:link_diagram} the following pictures can not be a part of a diagram: \begin{figure}[H] \centering \begin{subfigure}{0.1\textwidth} \includegraphics[width=0.8\textwidth] {LinkDiagram1.png}, \end{subfigure} \begin{subfigure}{0.1\textwidth} \includegraphics[width=0.6\textwidth] {LinkDiagram2.png}, \end{subfigure} \begin{subfigure}{0.1\textwidth} \includegraphics[width=0.8\textwidth] {LinkDiagram3.png}. \end{subfigure} \end{figure} \noindent There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning. \begin{lemma} Every link admits a link diagram. \end{lemma} \noindent Let $D$ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram). We can distinguish two types of crossings: right-handed $\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing. \subsection{Reidemeister moves} A Reidemeister move is one of the three types of operation on a link diagram as shown below: \begin{enumerate}[label=\Roman*] \item\hfill\\ \includegraphics[width=0.6\textwidth]{rm1.png}, \item\hfill\\\includegraphics[width=0.6\textwidth]{rm2.png}, \item\hfill\\\includegraphics[width=0.4\textwidth]{rm3.png}. \end{enumerate} \begin{theorem} [Reidemeister, 1927 ] Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane). \end{theorem} % % % %The number of Reidemeister Moves Needed for Unknotting %Joel Hass, Jeffrey C. Lagarias %(Submitted on 2 Jul 1998) % Piotr Sumata, praca magisterska % proof - transversality theorem (Thom) %Singularities of Differentiable Maps %Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M. \subsection{Seifert surface} \noindent Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing: \begin{align*} \PICorientpluscross \mapsto \PICorientLRsplit,\\ \PICorientminuscross \mapsto \PICorientLRsplit. \end{align*} We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\ \begin{figure}[h] \fontsize{15}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.8\textwidth}{!} {\input{images/seifert_alg.pdf_tex}} \caption{Constructing a Seifert surface.} \label{fig:SeifertAlg} } \end{figure} \noindent Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$. Then we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$. \begin{figure}[h] \centering \includegraphics[width=0.6\textwidth] {seifert_connect.png} \caption{Connecting two surfaces.} \label{fig:SeifertConnect} \end{figure} \begin{theorem}[Seifert]\label{theo:Seifert} Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface. \end{theorem} \begin{figure}[h] \fontsize{12}{10}\selectfont \centering \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{ \input{images/torus_1_2_3.pdf_tex}} \caption{Genus of an orientable surface.} \label{fig:genera} \end{figure} % % \begin{definition} The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$. \end{definition} \begin{corollary} A knot $K$ is trivial if and only $g_3(K) = 0$. \end{corollary} \noindent Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008). \begin{definition} Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$. On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$. \end{definition} \begin{definition}\label{def:lk_via_homo} Let $\alpha$ and $\beta$ be two disjoint simple closed curves in $S^3$. Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$: \[ \alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}. \] \end{definition} \begin{figure}[h] \fontsize{10}{8}\selectfont \centering \def\svgwidth{\linewidth} \resizebox{\textwidth}{!}{ % \centering \begin{subfigure}{0.3\textwidth} \centering \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{ \input{images/linking_torus_6_2.pdf_tex} } \end{subfigure} \begin{subfigure}{0.3\textwidth} \centering \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{ \input{images/linking_hopf.pdf_tex} } \end{subfigure} } \vspace*{10mm} \caption{ Linking number of a Hopf link (left) and a torus link $T(6, 2)$ (right). } \label{fig:unknot} \end{figure} \begin{lemma} $ g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) = \frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}), $ where $b_1$ is first Betti number of a surface $\Sigma$. \end{lemma} \subsection{Seifert matrix} Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed curves $\alpha_1, \dots, \alpha_n$. \noindent Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ don't intersect the surface. \noindent Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix. \begin{figure}[h] \fontsize{20}{10}\selectfont \centering \def\svgwidth{\linewidth} \resizebox{0.8\textwidth}{!}{ \input{images/seifert_matrix.pdf_tex} } \caption{ A basis $\alpha_1, \alpha_2$ of the first homology group of a Seifert surface and a copy of element $\alpha_1$ pushed up along vector normal to the Seifert surface. } \label{fig:alpha_plus} \end{figure} \begin{theorem} The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves: \begin{enumerate}[label={(\arabic*)}] \item $V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients, \item $V \rightarrow \begin{pmatrix} \begin{array}{c|c} V & \begin{matrix} \ast & 0 \\ \sdots & \sdots\\ \ast & 0 \end{matrix} \\ \hline \begin{matrix} \ast & \dots & \ast\\ 0 & \dots & 0 \end{matrix} & \begin{matrix} 0 & 0\\ 1 & 0 \end{matrix} \end{array} \end{pmatrix} \quad$ or $\quad V \rightarrow \begin{pmatrix} \begin{array}{c|c} V & \begin{matrix} \ast & 0 \\ \sdots & \sdots\\ \ast & 0 \end{matrix} \\ \hline \begin{matrix} \ast & \dots & \ast\\ 0 & \dots & 0 \end{matrix} & \begin{matrix} 0 & 1\\ 0 & 0 \end{matrix} \end{array} \end{pmatrix},$ \item inverse of (2). \end{enumerate} \end{theorem}