\subsection{Slice knots and metabolic form} \begin{theorem} \label{the:sign_slice} If $K$ is slice, then $\sigma_K(t) = \sign ( (1 - t)S +(1 - \bar{t})S^T)$ is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$. \end{theorem} \begin{lemma} \label{lem:metabolic} If $V$ is a Hermitian matrix ($\overline{V} = V^T$) of size $2n \times 2n$, $ V = \begin{pmatrix} 0 & A \\ \overline{A^T} & B \end{pmatrix} $ and $\det V \neq 0$ then $\sigma(V) = 0$. \end{lemma} \begin{definition} A Hermitian form $V$ is metabolic if $V$ has structure $\begin{pmatrix} 0 & A\\ \overline{A^T} & B \end{pmatrix}$ with half-dimensional null-space. \end{definition} \noindent Theorem \ref{the:sign_slice} can be also express as follow: non-degenerate metabolic hermitian form has vanishing signature. \begin{proof} \noindent We note that $\det(S + S^T) \neq 0$. Hence $\det ( (1 - t) S + (1 - \bar{t})S^T)$ is not identically zero on $S^1$, so it is non-zero except possibly at finitely many points. We apply the Lemma \ref{lem:metabolic}. \\ Let $t \in S^1 \setminus \{1\}$. Then: \begin{align*} \det((1 - t) S + (1 - \bar{t}) S^T) =& \det((1 - t) S + (t\bar{t} - \bar{t}) S^T) =\\ &\det((1 - t) (S - \bar{t} - S^T)) = \det((1 -t)(S - \bar{t} S^T)). \end{align*} As $\det (S + S^T) \neq 0$, so $S - \bar{t}S^T \neq 0$. \end{proof} \begin{corollary} If $K \sim K^\prime$ then for all but finitely many $t \in S^1 \setminus \{1\}: \sigma_K(t) = -\sigma_{K^\prime}(t)$. \end{corollary} \begin{proof} If $ K \sim K^\prime$ then $K \# K^\prime$ is slice. \[ \sigma_{-K^\prime}(t) = -\sigma_{K^\prime}(t) \] The signature gives a homomorphism from the concordance group to $\mathbb{Z}$. Remark: if $t \in S^1$ is not algebraic over $\mathbb{Z}$, then $\sigma_K(t) \neq 0$ (we can use the argument that $\mathscr{C} \longrightarrow \mathbb{Z}$ as well). \end{proof} \subsection{Four genus} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.7\textwidth}{!}{\input{images/genus_2_bordism.pdf_tex}} } \caption{$K$ and $K^\prime$ are connected by a genus $g$ surface.}\label{fig:genus_2_bordism} \end{figure} \begin{proposition}[Kawauchi inequality] If there exists a genus $g$ surface as in Figure \ref{fig:genus_2_bordism} then for almost all $t \in S^1 \setminus \{1\}$ we have $\vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g$. \end{proposition} % Kawauchi Chapter 12 ??? % Borodzik 2010 Morse theory for plane algebraic curves \begin{lemma} If $K$ bounds a genus $g$ surface $X \in B^4$ and $S$ is a Seifert form then ${S \in M_{2n \times 2n}}$ has a block structure $\begin{pmatrix} 0 & A\\ B & C \end{pmatrix}$, where $0$ is $(n - g) \times (n - g)$ submatrix. \end{lemma} \begin{proof} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.5\textwidth}{!}{\input{images/genus_bordism_zeros.pdf_tex}} } \caption{There exists a $3$ - manifold $\Omega$ such that $\partial \Omega = X \cup \Sigma$.}\label{fig:omega_in_B_4} \end{figure} \noindent Let $K$ be a knot and $\Sigma$ its Seifert surface as in Figure \ref{fig:omega_in_B_4}. There exists a $3$ - submanifold $\Omega$ such that $\partial \Omega = Y = X \cup \Sigma$ (by Thom-Pontryagin construction). If $\alpha, \beta \in \ker (H_1(\Sigma) \longrightarrow H_1(\Omega))$, then ${\Lk(\alpha, \beta^+) = 0}$. Now we have to determine the size of the kernel. We know that ${\dim H_1(\Sigma) = 2 n}$. When we glue $\Sigma$ (genus $n$) and $X$ (genus $g$) along a circle we get a surface of genus $n + g$. Therefore $\dim H_1 (Y) = 2 n + 2 g$. Then: \[ \dim (\ker (H_1(Y) \longrightarrow H_1(\Omega)) = n + g. \] So we have $H_1(W)$ of dimension $2 n + 2 g$ - the image of $H_1(Y)$ with a subspace corresponding to the image of $H_1(\Sigma)$ with dimension $2 n$ and a subspace corresponding to the kernel of $H_1(Y) \longrightarrow H_1(\Omega)$ of size $n + g$. We consider minimal possible intersection of this subspaces that corresponds to the kernel of the composition $H_1(\Sigma) \longrightarrow H_1(Y) \longrightarrow H_1(\Omega)$. As the first map is injective, elements of the kernel of the composition have to be in the kernel of the second map. So we can calculate: \[ \dim \ker (H_1(\Sigma) \longrightarrow H_1(\Omega)) = 2 n + n + g -2 n - 2 g = n - g. \] \end{proof} \begin{corollary} If $t$ is not a root of $\det (tS - S^T) $, then $\vert \sigma_K(t) \vert \leq 2g$. \end{corollary} \begin{fact} If there exists cobordism of genus $g$ between $K$ and $K^\prime$ like shown in Figure \ref{fig:proof_for_bound_disk}, then $K \# -K^\prime$ bounds a surface of genus $g$ in $B^4$. \end{fact} \begin{figure}[H] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.7\textwidth}{!}{\input{images/genus_bordism_proof.pdf_tex}} } \caption{If $K$ and $K^\prime$ are connected by a genus $g$ surface, then $K \# -K^\prime$ bounds a genus $g$ surface.}\label{fig:proof_for_bound_disk} \end{figure} \begin{definition} The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$. \end{definition} \noindent Remarks: \begin{enumerate}[label={(\arabic*)}] \item $3$ - genus is additive under taking connected sum, but $4$ - genus is not, \item for any knot $K$ we have $g_4(K) \leq g_3(K)$. \end{enumerate} \begin{example} \begin{itemize} \item Let $K = T(2, 3)$. $\sigma(K) = -2$, therefore $T(2, 3)$ isn't a slice knot. \item Let $K$ be a trefoil and $K^\prime$ a mirror of a trefoil. $g_4(K^\prime) = 1$, but $g_4(K \# K^\prime) = 0$, so we see that $4$-genus isn't additive, \item the equality: \[ g_4(T(p, q) ) = \frac{1}{2} (p - 1) (g -1) \] was conjecture in the '70 and proved by P. Kronheimer and T. Mrówka (1994). % OZSVATH-SZABO AND RASMUSSEN \end{itemize} \end{example} \begin{proposition} $g_4 (T(p, q) \# -T(r, s))$ is in general hopelessly unknown. \end{proposition} \begin{proposition} Supremum of the signature function of the knot is bounded almost everywhere by two times $4$ - genus: \[ \ess \sup \vert \sigma_K(t) \vert \leq 2 g_4(K). \] \end{proposition} \subsection{Topological genus} \begin{definition} A knot $K$ is called topologically slice if $K$ bounds a topological locally flat disc in $B^4$ (i.e. the disk has tubular neighbourhood). \end{definition} \begin{theorem}[Freedman, '82] If $\Delta_K(t) = 1$, then $K$ is topologically slice (but not necessarily smoothly slice). \end{theorem} \begin{theorem}[Powell, 2015] If $K$ is genus $g$ (topologically flat) cobordant to $K^\prime$, then \[ \vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g \] if $g_4^{\mytop}(K) \geq \ess \sup \vert \sigma_K(t) \vert$. \end{theorem} \noindent The proof for smooth category was based on following equality: \[ \dim \ker (H_1 (Y) \longrightarrow H_1(\Omega)) = \frac{1}{2} \dim H_1(Y). \] For this equality we assumed that there exists a $3$ - dimensional manifold $\Omega$ (as shown in Figure \ref{fig:omega_in_B_4}) which was guaranteed by Pontryagin-Thom Construction.\\ Pontryagin-Thom Construction relays on taking $\Omega$ as preimage of regular value: \[ H^1 (B^4 \setminus Y, \mathbb{Z}) = [B^4 \setminus Y, S^1], \] what relies on Sard's theorem, that the set of regular values has positive measure. But Sard's theorem doesn't work for topologically locally flat category. So there was a gap in the proof for topological locally flat category - the existence of $\Omega$.\\ \noindent Remark: unless $p=2$ or $p = 3 \wedge q = 4$: \[ g_4^{\mytop} (T(p, q)) < q_4(T(p, q)). \] % Wilczyński '93 %Feller 2014 %Baoder 2017 %Lemark \\ \noindent From the category of cobordant knots (or topologically cobordant knots) there exists a map to $\mathbb{Z}$ given by signature function. To any element $K$ we can associate a form \[ (1 - t)S + (1 - \bar{t})S^T) \in W(\mathbb{Z}[t, t^{-1}]). \] This association is not well define because id depends on the choice of Seifert form. However, different choices lead ever to congruent forms ($S \mapsto CSC^T$) or induced the change on the form by adding or subtracting a hyperbolic element. \begin{definition} The Witt group $W$ of $\mathbb{Z}[t, t^{-1}]$ elements are classes of non-degenerate forms over $\mathbb{Z}[t, t^{-1}]$ under the equivalence relation $V \sim W$ if $V \oplus - W$ is metabolic. \end{definition} \noindent If $S$ differs from $S^\prime$ by a row extension, then $(1 - t) S + (1 - \bar{t}^{-1}) S^T$ is Witt equivalence to $(1 - t) S^\prime + (1 - t^{-1})S^T$. \\ \noindent A form is meant as hermitian with respect to this involution: $A^T = A: (a, b) = \bar{(a, b)}$. \\ $ W(\mathbb{Z}_p) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ or $\mathbb{Z}_4$ \\ ??????????????????????? \\ $\sum a_gt^j \longrightarrow \sum a_g t^{-1}$\\ \begin{theorem}[Levine '68] \[ W(\mathbb{Z}[t^{\pm 1}]) \longrightarrow \mathbb{Z}_2^\infty \oplus \mathbb{Z}_4^\infty \oplus \mathbb{Z} \] \end{theorem}