??????? \begin{theorem} Such a pairing is isometric to a pairing: \[ \begin{bmatrix} 1 \end{bmatrix} \times \begin{bmatrix} 1 \end{bmatrix} \rightarrow \frac{\epsilon}{p^k_{\xi}}, \: \epsilon \in {\pm 1} \] \end{theorem} ????????????? \[ \begin{bmatrix} 1 \end{bmatrix} = 1 \in \quot{\Lambda}{p^k_{\xi} \Lambda } \] ???????? \begin{theorem} The jump of the signature function at $\xi$ is equal to $2 \sum\limits_{k_i \odd} \epsilon_i$. \\ The peak of the signature function is equal to $\sum\limits_{k_i \even} \epsilon_i$. \[ (\quot{\Lambda}{p^{k_1} \Lambda}, \epsilon_1) \oplus \dots \oplus (\quot{\Lambda}{p^{k_n} \Lambda}, \epsilon_n) \] %$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$ \end{theorem} \begin{definition} A matrix $A$ is called Hermitian if $\overline{A(t)} = {A(t)}^T$ \end{definition} \begin{theorem}[Borodzik-Friedl 2015, Borodzik-Conway-Politarczyk 2018] A square Hermitian matrix $A(t)$ of size $n$ with coefficients in $\mathbb{Z}[t, t^{-1}]$ (or $\mathbb{R}[t, t^{-1}]$ ) represents the Blanchfield pairing if: \begin{eqnarray*} H_1(\bar{X}, \Lambda) = \quot{\Lambda^n }{A\Lambda^n },\\ (x, y) \mapsto {\overline{x}}^T A^{-1} y \in \quot{\Omega}{\Lambda}\\ H_1(\widetilde{X}, \Lambda) \times H_1(\widetilde{X}, \Lambda) \longrightarrow \quot{\Omega}{\Lambda}, \end{eqnarray*} where $\Lambda = \mathbb{Z}[t, t^{-1}]$ or $\mathbb{R}[t, t^{-1}]$, $\Omega = \mathbb{Q}(t)$ or $\mathbb{R}(t)$ \end{theorem} ????????\\field of fractions ?????? \begin{eqnarray*} H_1(\Sigma(K), \mathbb{Z}) = \quot{\mathbb{Z}^n}{(V + V^T) \mathbb{Z}^n}\\ H_1(\Sigma(K), \mathbb{Z}) \times H_1(\Sigma(K), \mathbb{Z}) \longrightarrow = \quot{\mathbb{Q}}{\mathbb{Z}}\\ (a, b) \mapsto a{(V + V^T)}^{-1} b \end{eqnarray*} ???????????????????\\ ???????????????????\\ \begin{eqnarray*} y \mapsto y + Az \\ \overline{x^T} A^{-1}(y + Az) = \overline{x^T} A^{-1} y + \overline{x^T} \mathbb{1} z = \overline{x^T} A^{-1}y \in \quot{\Omega}{\Lambda} \\ \overline{x^T} \mathbb{1} z \in \Lambda \\ H_1(\widetilde{X}, \Lambda) = \quot{ \Lambda^n }{(Vt - V) \Lambda^n} \\ (a, b) \mapsto \overline{a^T}(Vt - V^T)^{-1} (t -1)b \end{eqnarray*} (Blanchfield '59) \begin{theorem}[Kearton '75, Friedl, Powell '15] There exits a matrix $A$ representing the Blanchfield paring over $\mathbb{Z}[t, t^{-1}]$. The size of $A$ is a size of Seifert form. \end{theorem} Remark: \begin{enumerate} \item Over $\mathbb{R}$ we can take $A$ to be diagonal. \item The jump of signature function at $\xi$ is equal to \[ \lim_{t \rightarrow 0^+} \sign A (e^{it} \xi) - \sign A(e^{-it} \xi). \] \item The minimal size of a matrix $A$ that presents a Blanchfield paring (over $\mathbb{Z}[t, t^{-1}]$) for a knot $K$ is a knot invariant. \end{enumerate} \subsection{The unknotting number} Let $K$ be a knot and $D$ a knot diagram. A crossing change is a modification of a knot diagram by one of following changes \begin{align*} \PICorientpluscross \mapsto \PICorientminuscross ,\\ \PICorientminuscross \mapsto\PICorientminuscross. \end{align*} The unknotting number $u(K)$ is a number of crossing changes needed to turn a knot into an unknot, where the minimum is taken over all diagrams of a given knot. \begin{definition} A Gordian distance $G(K, K^\prime)$ between knots $K$ and $K^\prime$ is the minimal number of crossing changes required to turn $K$ into $K^\prime$. \end{definition} \begin{problem} Prove that: \[ G(K, K^{\prime\prime}) \leq G(K, K^{\prime}) + G(K^\prime, K^{\prime\prime}). \] Open problem: \[ u(K\# K^\prime) = u(K) + u(K^\prime). \] \end{problem} \begin{lemma}[Scharlemann '84] Unknotting number one knots are prime. \end{lemma} \subsection*{Tools to bound unknotting number} \begin{theorem} For any symmetric polynomial $\Delta \in \mathbb{Z}[t, t^{-1}]$ such that $\Delta(1) = 1$, there exists a knot $K$ such that: \begin{enumerate} \item $K$ has unknotting number $1$, \item $\Delta_K = \Delta$. \end{enumerate} \end{theorem} Let us consider a knot $K$ and its Seifert surface $\Sigma$. the Seifert form for $K_-$ \\ the Seifert form for $K_+$ \\ $S_- + S_+$ differs from by a term in the bottom right corner Let $A$ be a symmetric $n \times n$ matrix over $\mathbb{R}$. Let $A_1, \dots, A_n$ be minors of $A$. \\ Let $\epsilon_0 = 1$ If