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Lecture 1 Basic definitions February 25, 2019

Definition 1.1
A knot K in S3 is a smooth (PL - smooth) embedding of a circle S* in S3:

p: 8l 83
Usually we think about a knot as an image of an embedding: K = (S*).

Example 1.1



. Knots: Q (unknot), @ (trefoil).

e Not knots: (it is not an injection), ~_/ (it is not smooth).

— =

Definition 1.2
Two knots Ky = po(SY), Ky = ¢1(SY) are equivalent if the embeddings
and @, are isotopic, that is there exists a continues function

®: S x[0,1] < 53
O(z,t) = ¢y(x)

such that ®, is an embedding for any t € [0,1], ®; = ¢, and &, = ¢;.

Theorem 1.1

Two knots K, and K, are isotopic if and only if they are ambient isotopic,
i.e. there exists a family of self-diffeomorphisms W = {4, : t € [0,1]} such
that:

W(t) =1, is continius on t € [0, 1]

wt : 83 — ‘937
@b():ida
1/’1(K0> = K;.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding o(t) = (cost,sint,0),
where t € (0,27 is a parametrisation of St.

Definition 1.4 .

e ———
A link with k - components is a (smooth) embedding of S* U ... U S in S3

Example 1.2
Links:

e a trivial link with 3 components: Q Q\ ,
e a hopf link: @

)



)

e a Whitehead link: @’

S
-~ )

e Borromean link: @

Definition 1.5
A link diagram D, is a picture over projection m of a link L in R3(S3) to R?
(S?) such that:

Y

(1) D”‘L is non degenerate: >,

(2) the double points are not degenerate: K,

(3) there are no triple point: ><<

There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.

Every link admits a link diagram.

Let D be a diagram of an oriented link (to each component of a link we add
an arrow in the diagram).

We can distinguish two types of crossings: right-handed <\/\'>, called a pos-

itive crossing, and left-handed (X), called a negative crossing.
1.1 Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram
as shown below:

d—|—4

Y



Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by
smoothing each crossing:

A= )(
N )(

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in R? (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive

and left-handed for a negative one. We get an orientable surface X such that
0¥ = L.



Figure 1: Constructing a Seifert surface.

Note: in general the obtained surface doesn’t need to be connected, but by
taking connected sum of all components we can easily get a connected surface
(i.e. we take two disconnected components and cut a disk in each of them:
D, and D,; now we glue both components on the boundaries: 0D, and dD,.

<« ¢
O >> A
// / ‘,/\
@ N o
AN
Y \

Figure 2: Connecting two surfaces.

Theorem 1.3 (Seifert)
Every link in S3 bounds a surface ¥ that is compact, connected and orientable.
Such a surface is called a Seifert surface.



. genus 0 m genus 2

Figure 3: Genus of an orientable surface.

Definition 1.6
The three genus g3(K) (9(K)) of a knot K s the minimal genus of a Seifert
surface 3 for K.

Corollary 1.1
A knot K is trivial if and only g5(K) = 0.

Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (Andras Juhdsz, 2008).

Definition 1.7
Suppose o and 3 are two simple closed curves in R3. On a diagram L consider

all crossings between o and 3. Let N be the number of positive crossings,
N_ - negative. Then the linking number: lk(c, 8) = 5(N,. — N_).

Let a and 3 be two disjoint simple cross curves in S3. Let v(3) be a tubular
neighbourhood of B. The linking number can be interpreted via first ho-
mology group, where lk(c, 3) is equal to evaluation of « as element of first
homology group of the complement of j:

a€ H(S*\v(B),2)=Z.
Example 1.3

e Hopf link

lk((l7 3) =-1



e T(6,2) link

1.3 Seifert matrix

Let L be a link and ¥ be an oriented Seifert surface for L. Choose a basis for
H,(X,Z) consisting of simple closed ay,...,a,,. Let af,...a;l be copies of
«a; lifted up off the surface (push up along a vector field normal to ). Note
that elements «; are contained in the Seifert surface while all o] are don’t
intersect the surface. Let Ik(cy;, a ) = {a;;}. Then the matrix S = {a;;}7,_,
is called a Seifert matrix for L. Note that by choosing a different basis we
get a different matrix.

Theorem 1.4
The Seifert matrices S, and Sy for the same link L are S-equivalent, that is,
S, can be obtained from S| by a sequence of following moves:

(1) V. — AV AT where A is a matriz with integer coefficients,

x* 0 x* 0

|4 Do vV H

(2) V— * 0 or V— x 0
x .. x/0 0 * *|0 1

0 ... 0|1 0 0 0/0 O

(3) inverse of (2)



Lecture 2 March 4, 2019

Theorem 2.1
For any knot K C S3 there exists a connected, compact and orientable surface
Y(K) such that 0%(K) = K

Proof. (7joke”)
Let K € S3 be a knot and N = v(K) be its tubular neighbourhood. Because
K and N are homotopy equivalent, we get:

HY(S3\ N) = H'(S3\ K).

Let us consider a long exact sequence of cohomology of a pair (53,53 \ N)
with integer coefficients:

Z
I

HO(S3) — HO(S3\ N) —

— HY(S3,83\ N) - HY(S3) — HY(S*\N)—
l

0
Al

— H?(S3 S3\ N) - H?*(S3) — H?*S3\N) —
— H3(S3, 83\ N) — H3(S) — 0

Al
Z

H*(S83,83\ N) >~ H*(N,ON)

Vaddddddddddaas



Definition 2.1

Let S be a Seifert matriz for a knot K. The Alexander polynomial Ay (t) is
a Laurent polynomial:

Ag(t) :==det(tS — ST) € Z[t,t 7] = 7[7]
Theorem 2.2
A (t) is well defined up to multiplication by +t*, for k € 7.

Proof. We need to show that A (t) doesn’t depend on S-equivalence rela-
tion.

(1) Suppose S” = CSCT, C € Gl(n,Z) (matrices invertible over Z). Then
det C =1 and:

det(tS’ — S'T) = det(tCSCT — (CSCT)T) =
det(tCSCT — CSTCT) = det C(tS — ST)CT = det(tS — ST)

(2) Let
x 0 * 0 * 0
S o ST tS—ST| &
A=t * 0 |— * 0 | = * 0
* ... %[0 0 x ... %[0 1 * ... %[0 —1
0 ... 0[1 0 0 ... 0/0 O 0 0Ot 0
Using the Laplace expansion we get det A = 4t det(tS — S7).
]
Example 2.1
If K is a trefoil then we can take S = <_01 :})

o (—t+1
AK(t)—det< 1 41

Fact 2.1
A (t) is symmetric.

) = (t—1)%2+t = t2—t+1 #+ 1 = trefoil is not trivial

Proof. Let S be an n X n matrix.

A1) =det(t 19 — ST) = (—t) " det(tST — 5) =
(—t) " det(tS — ST) = (—t) " Ag(t)

If K is a knot, then n is necessarily even, and so A (t71) =t A (t). O

9



Lemma 2.1

1
2 deg Ay (t) < g5(K), where deg(a, t™ + -+ at') =k — 1.

Proof. 1If ¥ is a genus g - Seifert surface for K then H,(X) = 729, so S is an
2g x 2g matrix. Therefore det(tS — ST) is a polynomial of degree at most
2g. 0

Example 2.2
There are not trivial knots with Alexander polynomial equal 1, for example:
Ajipza = 1.

Lecture 3

Example 3.1
F :C? = C a polynomial
F(0)=0

Fact (Milnor Singular Points of Complex Hypersurfaces):

An oriented knot is called negative amphichiral if the mirror image m(K)
if K is equivalent the reverse knot of K.

Example 3.2 (Problem)
Prove that if K is negative amphichiral, then K#K in C

10



Lecture 4 March 18, 2019

Definition 4.1

A knot K s called (smoothly) slice if K is smoothly concordant to an unknot.
A knot K is smoothly slice if and only if K bounds a smoothly embedded disk
in B

Definition 4.2
Two knots K and K’ are called (smoothly) concordant if there exists an
annulus A that is smoothly embedded in S3 x [0,1] such that 0A = K’ x
{1} U K x {0}.

S3 % [0,1]

K
S3x {0} B S%x {1}

Let m(K) denote a mirror image of a knot K.

Fact 4.1

For any K, K#m(K) is slice.

Fact 4.2

Concordance is an equivalence relation.

Fact 4.3

IfK, ~K," and K, ~ K, , then K,#K, ~ K,'#K,’.
Fact 4.4

K#m(K) ~ the unknot.

Let € denote all equivalent classes for knots. € is a group under taking
connected sums, with neutral element (the class defined by) an unknot and
inverse element (a class defined by) a mirror image.

The figure eight knot is a torsion element in € (2K ~ the unknot).

11



Example 4.1 (Problem)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments? (open)

Remark: K ~ K’ < K# — K’ is slice.

Lecture 5 April 8, 2019

X is a closed orientable four-manifold. Assume 7, (X) = 0 (it is not needed to
define the intersection form). In particular H,(X) = 0. H, is free (exercise).

Poincaré duality evaluation

Hy(X,7) —————— H*(X,7) =2 Hom(H,(X,Z),7)

Intersection form: Hy(X,Z) x Hy(X,Z) — Z - symmetric, non singular.
Let A and B be closed, oriented surfaces in X.

Proposition 5.1
A - B doesn’t depend of choice of A and B in their homology classes.

Lecture 6 April 15, 2019

In other words:

Choose a basis (by, ..., b;)
777

of Hy(Y,Z, then A = (b;,b,)
77

is a matrix of intersection form:

z [ azn = Hi(Y,2).

12



In particular | det A |= #H, (Y, Z.
That means - what is happening on boundary is a measure of degeneracy.

H,(Y,7z) x H,Y.,Z) — Q/Z - a linking form
2l 2l

“laz Yz

(a,b) = aA~'bT

The intersection form on a four-manifold determines the linking on the
boundary.

Let K € S! be a knot, $(K) its double branched cover. If V is a Seifert
matrix for K, then H,(X(K),Z) = ZH/AZ where A = V x VT, where
n =rank V.

by *i

Figure 4: Pushing the Seifert surface in 4-ball.

Let X be the forlvlr—manifold obtained via the double branched cover of B*
branched along 3.

Fact 6.1

X is a smooth four-manifold,

e H(X,Z)=0,

Hy(X,Z) = 7"

The intersection form on X is V 4+ V7T,

13



Let Y = ¥(K). Then:

H\(Y,2) x H\(Y,Z) — ¥/,

(a,b) = aA~tbT, A=V 4+ VT
~ I

H\(Y.Z)=%"/

A — BACT Smith normal form

29792979727222222727277

In general

Lecture 7 May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If H,(M,Z) =
0 then there exists a bilinear form - the intersection form on M:

Hy(M,7) x Hy(M,7)— Z
2
Z’I’L

Let us consider a specific case: M has a boundary Y = 0M.
Betti number b,(Y) =0, H, (Y, Z) is finite.
Then the intersection form can be degenerate in the sense that

Hy(M,7Z) x Hy(M,Z) — Z Hy(M,7) — Hom(Hy(M,Z7),7)
(a,b) = Z at> (a, YHy(M,Z)

has coker precisely H,(Y,Z).
addddddddddddds

Let K C S3 be a knot,

14



X = S3\ K - a knot complement,

~ P
X — X - an infinite cyclic cover (universal abelian cover).

m(X) — X))/ —H/(X,2)~7Z

(71 (X), 71 (X))]

C,(X) has a structure of a Z[t,t!] = Z[Z] module.
H,(X,Z[t,t7]) - Alexander module,

o,(X,z[t,t7Y) x H(X,Z[t,t7}]) — Q/Z[t,rl]

Fact 7.1

H,(X, z[t,t1]) = 21 t_l]n/(tv —Vhz[t, e

where V' is a Seifert matrix.

Fact 7.2

H (X, Z[t,t7)) x H (X, Z[t,t7!]) — Q[t]/z[t 1
(@, 8) = a Yt — 1)tV —VT)1g

Note that Z is not PID. Therefore we don’t have primer decomposition of
this module. We can simplify this problem by replacing Z by R. We lose
some date by doing this transition.

§eSI\{£L} pe=(t—-OEt -t
ERN{HL} q=(—-Ht—& )t

EERUST ¢o=(—t—gt—&HA -

A =R[t,t71]
Then: H,(X,A) = EB (A/pk)n’“’f ® @ (A/ql)nl’€
ges\(x1) 16 ggst ¢
k>0 >0

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:

15



e John Milnor, On isometries of inner product spaces, 1969,
o Walter Neumann, Invariants of plane curve singularities , 1983,

o Andras Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

o Maciej Borodzik, Stefan Friedl The unknotting number and classical

invariants 11, 2014.

Let p = pg, k > 0.
Yy x a9
(L,1) =k
Now: (pF-1,1) 0
p’% =0€ Q(t)/
therfore pFr € A

A

h
we have (1,1) = —
p

h is not uniquely defined: h — h + gp”* doesn’t affect paring.
Let h = pFr.

Example 7.1
+1
Bo((1,1)) = —
o((1,1)) »
1

(bl((l? 1)) = _?

@y and ¢, are not isomorphic.
A A : .
Proof. Let @ : /pkA — /pkA be an isomorphism.
Let: ®(1) =g € A
A A
/pkA /pkA
1 1

dol(1,1)) = % ¢1((9,9)) = 75 (@ s an isometry).

16



Suppose for the paring ¢,((g,9)) = # we have ¢,((1,1)) = ;—,}. Then:

—_9§:i€®<t>/A

pk pk
—q7 1
e
p p

—gg =1 (mod p)in A
—gg — 1 = pFw for some w € A

evalueting at &:

>0
r— e

—9(§)g(EH)-1=0 =<«

Vaddddddddddddddddads

_ _ Ao,/ _ Ak« A
Suppose g = (t — &)*g’. Then (t — &) goes to 0 in /pkA'

Theorem 7.1
FEvery sesquilinear non-degenerate pairing

h
A/pk XA/pHﬁ

is isomorphic either to the pairing wit h = 1 or to the paring with h =
depending on sign of h(§) (which is a real number).

Proof. There are two steps of the proof:
1. Reduce to the case when h has a constant sign on S?.

2. Prove in the case, when h has a constant sign on S*.

17



Lemma 7.1
If p is a symmetric polynomial such thatp(n) > 0 for alln € S*, then p can
be written as a product p = gg for some polynomial g.

Sketch of proof. Induction over degp.
Let ¢ ¢ S* be a root of p, p € R[t,t71]. Assume ¢ ¢ R. We know that

t—0) |p,

(t—<)|p,

t =0 |p

=0 | p,

therefore:

p' = __7 =
t=QU—=Qt =t =0
p=gyg
we set g = g'(t — ()(t — ¢
p=99

Suppose ¢ € St. Then (t—()? | p (at least - otherwise it would change sign).

;o p
T =0
g=(t=Qt" =Qg et

(L,1) = — = % isometry whenever g is coprime with p.
p p

]

Lemma 7.2

Suppose A and B are two symmetric polynomials that are coprime and that
Vz € St either A(z) > 0 or B(z) > 0. Then there exist symmetric polyno-
mials P, Q such that P(2),Q(z) >0 for z € S* and PA+ QB = 1.

Idea of proof. For any z find an interval (a,,b,) such that if P(z) € (a,,b,)

and P(2)A(2) + Q(2)B(z) = 1, then Q(z) > 0, x(z) = %22 is a continues
function on S! approximating z by a polynomial .

18



20202072727222222227272727

h ggh

L) = — = —
(L) e 2=k
ggh +pFw =1

Apply Lemma 7.2 for A = h, B = p?*. Then, if the assumptions are satisfied,

Ph+Qp** =1
p>0=p=gg

p=(t—=t—-OHt!

sop>0on St
pt)=0st==Cort =¢
h(€§) >0

h(€) >0

9gh+Qp** =1
ggh =1 mod p**
gg=1 mod p*

2220702279722222222727272222727

If P has no roots on S! then B(z) > 0 for all z, so the assumptions of Lemma
7.2 are satisfied no matter what A is. ]

29297222727272977

€

A3 M — g st )

1
(A/quA/qi;)H%, £¢ St

19



Theorem 7.2
(Matumoto, Conway-Borodzik-Politarczyk) Let K be a knot,

H (X, A) x H(XA) = P A/ pomsca @A/ m
ke Pe ko e
&inS

Let §,(€) = lim o(e?™€¢) — o(e 2™¢),

e—0t

then o;(€) = 0(&) — 1 lim o(e275€) + o (e 271%¢)

J 2 e—0

The jump at € is equal to 2 Y €,. The peak of the signature function is

k; odd
equal to > €.
k,;even
]
Lecture 8 May 27, 2019

Definition 8.1
A square hermitian matrix A of size n.

field of fractions

20
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