Contents

1 Basic definitions
February 25, $2019 \quad 1$
1.1 Reidemeister moves . 3
1.2 Seifert surface . 4
1.3 Seifert matrix . 7

2
March 4, 20198

3
10

4

5

6

7
May 20, 201914
May 27, 201920

Lecture 1 Basic definitions

February 25, 2019

Definition 1.1

A knot K in S^{3} is a smooth ($P L$ - smooth) embedding of a circle S^{1} in S^{3} :

$$
\varphi: S^{1} \hookrightarrow S^{3}
$$

Usually we think about a knot as an image of an embedding: $K=\varphi\left(S^{1}\right)$.
Example 1.1

- Knots:
 (unknot),

- Not knots:
 (it is not an injection),
 (it is not smooth).

Definition 1.2

Two knots $K_{0}=\varphi_{0}\left(S^{1}\right), K_{1}=\varphi_{1}\left(S^{1}\right)$ are equivalent if the embeddings φ_{0} and φ_{1} are isotopic, that is there exists a continues function

$$
\begin{aligned}
& \Phi: S^{1} \times[0,1] \hookrightarrow S^{3} \\
& \Phi(x, t)=\Phi_{t}(x)
\end{aligned}
$$

such that Φ_{t} is an embedding for any $t \in[0,1], \Phi_{0}=\varphi_{0}$ and $\Phi_{1}=\varphi_{1}$.

Theorem 1.1

Two knots K_{0} and K_{1} are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi=\left\{\psi_{t}: t \in[0,1]\right\}$ such that:

$$
\begin{aligned}
& \psi(t)=\psi_{t} \text { is continius on } t \in[0,1] \\
& \psi_{t}: S^{3} \hookrightarrow S^{3} \\
& \psi_{0}=i d \\
& \psi_{1}\left(K_{0}\right)=K_{1}
\end{aligned}
$$

Definition 1.3

A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t)=(\cos t, \sin t, 0)$, where $t \in[0,2 \pi]$ is a parametrisation of S^{1}.

Definition 1.4
A link with k - components is a (smooth) embedding of $\overbrace{S^{1} \sqcup \ldots \sqcup S^{1}}^{k}$ in S^{3}

Example 1.2

Links:

- a trivial link with 3 components:

- a hopf link:

- a Whitehead link:

- Borromean link:

Definition 1.5

A link diagram D_{π} is a picture over projection π of a link L in $\mathbb{R}^{3}\left(S^{3}\right)$ to \mathbb{R}^{2} (S^{2}) such that:
(1) $D_{\pi \mid L}$ is non degenerate:

(2) the double points are not degenerate:
(3) there are no triple point:

There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.
Every link admits a link diagram.
Let D be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).
We can distinguish two types of crossings: right-handed (C), called a positive crossing, and left-handed $\left(\begin{array}{|c} \\)\end{array}\right.$, called a negative crossing.

1.1 Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram as shown below:

Theorem 1.2 (Reidemeister, 1927)
Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by smoothing each crossing:

$$
\begin{aligned}
& X \mapsto)(\\
& X \mapsto)(
\end{aligned}
$$

We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in \mathbb{R}^{3} (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface Σ such that $\partial \Sigma=L$.

Figure 1: Constructing a Seifert surface.

Note: in general the obtained surface doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: D_{1} and D_{2}; now we glue both components on the boundaries: ∂D_{1} and ∂D_{2}.

Figure 2: Connecting two surfaces.

Theorem 1.3 (Seifert)
Every link in S^{3} bounds a surface Σ that is compact, connected and orientable. Such a surface is called a Seifert surface.

Figure 3: Genus of an orientable surface.

Definition 1.6

The three genus $g_{3}(K)(g(K))$ of a knot K is the minimal genus of a Seifert surface Σ for K.

Corollary 1.1

A knot K is trivial if and only $g_{3}(K)=0$.
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
Definition 1.7
Suppose α and β are two simple closed curves in \mathbb{R}^{3}. On a diagram L consider all crossings between α and β. Let N_{+}be the number of positive crossings, $N_{-}-n e g a t i v e$. Then the linking number: $l k(\alpha, \beta)=\frac{1}{2}\left(N_{+}-N_{-}\right)$.

Let α and β be two disjoint simple cross curves in S^{3}. Let $\nu(\beta)$ be a tubular neighbourhood of β. The linking number can be interpreted via first homology group, where $l k(\alpha, \beta)$ is equal to evaluation of α as element of first homology group of the complement of β :

$$
\alpha \in H_{1}\left(S^{3} \backslash \nu(\beta), \mathbb{Z}\right) \cong \mathbb{Z}
$$

Example 1.3

- Hopf link

- $T(6,2)$ link

1.3 Seifert matrix

Let L be a link and Σ be an oriented Seifert surface for L. Choose a basis for $H_{1}(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_{1}, \ldots, \alpha_{n}$. Let $\alpha_{1}^{+}, \ldots \alpha_{n}^{+}$be copies of α_{i} lifted up off the surface (push up along a vector field normal to Σ). Note that elements α_{i} are contained in the Seifert surface while all α_{i}^{+}are don't intersect the surface. Let $l k\left(\alpha_{i}, \alpha_{j}^{+}\right)=\left\{a_{i j}\right\}$. Then the matrix $S=\left\{a_{i j}\right\}_{i, j=1}^{n}$ is called a Seifert matrix for L. Note that by choosing a different basis we get a different matrix.

Theorem 1.4

The Seifert matrices S_{1} and S_{2} for the same link L are S-equivalent, that is, S_{2} can be obtained from S_{1} by a sequence of following moves:
(1) $V \rightarrow A V A^{T}$, where A is a matrix with integer coefficients,
(2) $V \rightarrow\left(\begin{array}{ccc|cc} & & & * & 0 \\ & & & \vdots & \vdots \\ & & & 0 \\ * & \ldots & * & 0 & 0 \\ 0 & \ldots & 0 & 1 & 0\end{array}\right) \quad$ or $\quad V \rightarrow\left(\begin{array}{ccc|cc} & & & * & 0 \\ & V & & \vdots & \vdots \\ & & & * & 0 \\ \hline * & \ldots & * & 0 & 1 \\ 0 & \ldots & 0 & 0 & 0\end{array}\right)$
(3) inverse of (2)

Theorem 2.1
For any knot $K \subset S^{3}$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K)=K$

Proof. ("joke")
Let $K \in S^{3}$ be a knot and $N=\nu(K)$ be its tubular neighbourhood. Because K and N are homotopy equivalent, we get:

$$
H^{1}\left(S^{3} \backslash N\right) \cong H^{1}\left(S^{3} \backslash K\right)
$$

Let us consider a long exact sequence of cohomology of a pair $\left(S^{3}, S^{3} \backslash N\right)$ with integer coefficients:

$$
\begin{array}{ccc}
\begin{array}{c}
\mathbb{Z} \\
H^{0}\left(S^{3}\right)
\end{array} & \rightarrow & H^{0}\left(S^{3} \backslash N\right) \rightarrow \\
\rightarrow H^{1}\left(S^{3}, S^{3} \backslash N\right) \rightarrow & H^{1}\left(S^{3}\right) \rightarrow & H^{1}\left(S^{3} \backslash N\right) \rightarrow \\
0 & & \\
\rightarrow H^{2}\left(S^{3}, S^{3} \backslash N\right) \rightarrow \quad H^{2}\left(S^{3}\right) \rightarrow & H^{2}\left(S^{3} \backslash N\right) \rightarrow \\
\rightarrow H^{3}\left(S^{3}, S^{3} \backslash N\right) \rightarrow \quad H^{3}(S) \rightarrow & 0 \\
\text { 2\| } & & \\
\mathbb{Z} & \\
H^{*}\left(S^{3}, S^{3} \backslash N\right) \cong H^{*}(N, \partial N)
\end{array}
$$

??????????????

Definition 2.1

Let S be a Seifert matrix for a knot K. The Alexander polynomial $\Delta_{K}(t)$ is a Laurent polynomial:

$$
\Delta_{K}(t):=\operatorname{det}\left(t S-S^{T}\right) \in \mathbb{Z}\left[t, t^{-1}\right] \cong \mathbb{Z}[\mathbb{Z}]
$$

Theorem 2.2

$\Delta_{K}(t)$ is well defined up to multiplication by $\pm t^{k}$, for $k \in \mathbb{Z}$.
Proof. We need to show that $\Delta_{K}(t)$ doesn't depend on S-equivalence relation.
(1) Suppose $S^{\prime}=C S C^{T}, C \in \operatorname{Gl}(n, \mathbb{Z})$ (matrices invertible over $\left.\mathbb{Z}\right)$. Then $\operatorname{det} C=1$ and:

$$
\begin{aligned}
& \operatorname{det}\left(t S^{\prime}-S^{\prime} T\right)=\operatorname{det}\left(t C S C^{T}-\left(C S C^{T}\right)^{T}\right)= \\
& \operatorname{det}\left(t C S C^{T}-C S^{T} C^{T}\right)=\operatorname{det} C\left(t S-S^{T}\right) C^{T}=\operatorname{det}\left(t S-S^{T}\right)
\end{aligned}
$$

(2) Let

$$
A:=t\left(\begin{array}{ccc|cc}
& & & * & 0 \\
& S & & \vdots & \vdots \\
& & & * & 0 \\
\hline * & \ldots & * & 0 & 0 \\
0 & \ldots & 0 & 1 & 0
\end{array}\right)-\left(\begin{array}{ccc|cc}
& & & * & 0 \\
& S^{T} & & \vdots & \vdots \\
& & & * & 0 \\
\hline * & \ldots & * & 0 & 1 \\
0 & \ldots & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc|cc}
t S & & & * & 0 \\
& & \\
& & & \\
& & \\
* & 0 \\
\hline * & \ldots & * & 0 & -1 \\
0 & \ldots & 0 & t & 0
\end{array}\right)
$$

Using the Laplace expansion we get $\operatorname{det} A= \pm t \operatorname{det}\left(t S-S^{T}\right)$.

Example 2.1

If K is a trefoil then we can take $S=\left(\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right)$.
$\Delta_{K}(t)=\operatorname{det}\left(\begin{array}{cc}-t+1 & -t \\ 1 & -t+1\end{array}\right)=(t-1)^{2}+t=t^{2}-t+1 \neq 1 \Rightarrow$ trefoil is not trivial
Fact 2.1
$\Delta_{K}(t)$ is symmetric.
Proof. Let S be an $n \times n$ matrix.

$$
\begin{aligned}
& \Delta_{K}\left(t^{-1}\right)=\operatorname{det}\left(t^{-1} S-S^{T}\right)=(-t)^{-n} \operatorname{det}\left(t S^{T}-S\right)= \\
& (-t)^{-n} \operatorname{det}\left(t S-S^{T}\right)=(-t)^{-n} \Delta_{K}(t)
\end{aligned}
$$

If K is a knot, then n is necessarily even, and so $\Delta_{K}\left(t^{-1}\right)=t^{-n} \Delta_{K}(t)$.

Lemma 2.1

$$
\frac{1}{2} \operatorname{deg} \Delta_{K}(t) \leq g_{3}(K), \text { where } \operatorname{deg}\left(a_{n} t^{n}+\cdots+a_{1} t^{l}\right)=k-l .
$$

Proof. If Σ is a genus g - Seifert surface for K then $H_{1}(\Sigma)=\mathbb{Z}^{2 g}$, so S is an $2 g \times 2 g$ matrix. Therefore $\operatorname{det}\left(t S-S^{T}\right)$ is a polynomial of degree at most $2 g$.

Example 2.2

There are not trivial knots with Alexander polynomial equal 1, for example: $\Delta_{11 n 34} \equiv 1$.

Lecture 3

Example 3.1

$$
\begin{aligned}
& F: \mathbb{C}^{2} \rightarrow \mathbb{C} \text { a polynomial } \\
& F(0)=0
\end{aligned}
$$

Fact (Milnor Singular Points of Complex Hypersurfaces):

An oriented knot is called negative amphichiral if the mirror image $m(K)$ if K is equivalent the reverse knot of K.

Example 3.2 (Problem)
Prove that if K is negative amphichiral, then $K \# K$ in \mathbf{C}

Lecture 4
March 18, 2019

Definition 4.1

A knot K is called (smoothly) slice if K is smoothly concordant to an unknot. A knot K is smoothly slice if and only if K bounds a smoothly embedded disk in B^{4}.

Definition 4.2

Two knots K and K^{\prime} are called (smoothly) concordant if there exists an annulus A that is smoothly embedded in $S^{3} \times[0,1]$ such that $\partial A=K^{\prime} \times$ $\{1\} \sqcup K \times\{0\}$.

Let $m(K)$ denote a mirror image of a knot K.

Fact 4.1

For any $K, K \# m(K)$ is slice.
Fact 4.2
Concordance is an equivalence relation.
Fact 4.3
If $K_{1} \sim K_{1}{ }^{\prime}$ and $K_{2} \sim K_{2}{ }^{\prime}$, then $K_{1} \# K_{2} \sim K_{1}{ }^{\prime} \# K_{2}{ }^{\prime}$.

Fact 4.4

$K \# m(K) \sim$ the unknot.
Let \mathcal{C} denote all equivalent classes for knots. \mathcal{C} is a group under taking connected sums, with neutral element (the class defined by) an unknot and inverse element (a class defined by) a mirror image.
The figure eight knot is a torsion element in $\mathcal{C}(2 K \sim$ the unknot $)$.

Example 4.1 (Problem)
Are there in concordance group torsion elements that are not 2 torsion elements? (open)
Remark: $K \sim K^{\prime} \Leftrightarrow K \#-K^{\prime}$ is slice.

Lecture 5
April 8, 2019
X is a closed orientable four-manifold. Assume $\pi_{1}(X)=0$ (it is not needed to define the intersection form). In particular $H_{1}(X)=0 . H_{2}$ is free (exercise).

$$
H_{2}(X, \mathbb{Z}) \xrightarrow{\text { Poincaré duality }} H^{2}(X, \mathbb{Z}) \xrightarrow{\text { evaluation }} \operatorname{Hom}\left(H_{2}(X, \mathbb{Z}), \mathbb{Z}\right)
$$

Intersection form: $H_{2}(X, \mathbb{Z}) \times H_{2}(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular. Let A and B be closed, oriented surfaces in X.

Proposition 5.1
$A \cdot B$ doesn't depend of choice of A and B in their homology classes.

Lecture 6

April 15, 2019

In other words:
Choose a basis $\left(b_{1}, \ldots, b_{i}\right)$
???
of $H_{2}\left(Y, \mathbb{Z}\right.$, then $A=\left(b_{i}, b_{y}\right)$
??
is a matrix of intersection form:

$$
\mathbb{Z}^{n} /_{A \mathbb{Z}^{n}} \cong H_{1}(Y, \mathbb{Z})
$$

In particular $|\operatorname{det} A|=\# H_{1}(Y, \mathbb{Z}$.
That means - what is happening on boundary is a measure of degeneracy.

The intersection form on a four-manifold determines the linking on the boundary.

Let $K \in S^{1}$ be a knot, $\Sigma(K)$ its double branched cover. If V is a Seifert matrix for K, then $H_{1}(\Sigma(K), \mathbb{Z}) \cong \mathbb{Z}^{n} /_{A \mathbb{Z}}$ where $A=V \times V^{T}$, where $n=\operatorname{rank} V$.

Figure 4: Pushing the Seifert surface in 4-ball.

Let X be the four-manifold obtained via the double branched cover of B^{4} branched along $\widetilde{\Sigma}$.

Fact 6.1

- X is a smooth four-manifold,
- $H_{1}(X, \mathbb{Z})=0$,
- $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}^{n}$
- The intersection form on X is $V+V^{T}$.

Let $Y=\Sigma(K)$. Then:

$$
\begin{aligned}
& H_{1}(Y, \mathbb{Z}) \times H_{1}(Y, \mathbb{Z}) \longrightarrow \mathbb{Q} / \mathbb{Z} \\
& (a, b) \mapsto a A^{-1} b^{T}, \quad A=V+V^{T} \\
& H_{1}(Y, \mathbb{Z}) \cong \mathbb{Z}^{n} / A \mathbb{Z} \\
& A \longrightarrow B A C^{T} \quad \text { Smith normal form }
\end{aligned}
$$

???????????????????????
In general

Lecture 7
May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If $H_{1}(M, \mathbb{Z})=$ 0 then there exists a bilinear form - the intersection form on M :

$$
\begin{aligned}
& \underset{2 \|}{H_{2}(M, \mathbb{Z})} \quad \times \quad H_{2}(M, \mathbb{Z}) \longrightarrow \quad \mathbb{Z} \\
& \quad \mathbb{Z}^{n}
\end{aligned}
$$

Let us consider a specific case: M has a boundary $Y=\partial M$.
Betti number $b_{1}(Y)=0, H_{1}(Y, \mathbb{Z})$ is finite.
Then the intersection form can be degenerate in the sense that

$$
\begin{array}{rlrl}
H_{2}(M, \mathbb{Z}) \times H_{2}(M, \mathbb{Z}) \longrightarrow \mathbb{Z} & H_{2}(M, \mathbb{Z}) \longrightarrow & \operatorname{Hom}\left(H_{2}(M, \mathbb{Z}), \mathbb{Z}\right) \\
(a, b) & \mapsto \mathbb{Z} & & \mapsto\left(a, _\right) H_{2}(M, \mathbb{Z})
\end{array}
$$

has coker precisely $H_{1}(Y, \mathbb{Z})$.
???????????????
Let $K \subset S^{3}$ be a knot,
$X=S^{3} \backslash K$ - a knot complement,
$\widetilde{X} \xrightarrow{\rho} X$ - an infinite cyclic cover (universal abelian cover).

$$
\pi_{1}(X) \longrightarrow \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]=H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}
$$

$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}\left[t, t^{-1}\right] \cong \mathbb{Z}[\mathbb{Z}]$ module.
$H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right)$ - Alexander module,

$$
H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \times H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \longrightarrow \mathbb{Q} / \mathbb{Z}\left[t, t^{-1}\right]
$$

Fact 7.1

$$
H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \cong \mathbb{Z}\left[t, t^{-1}\right]^{n} /\left(t V-V^{T}\right) \mathbb{Z}\left[t, t^{-1}\right]^{n}
$$

where V is a Seifert matrix.
Fact 7.2

$$
\begin{aligned}
H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \times H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) & \longrightarrow \mathbb{Q}[t] / \mathbb{Z}\left[t, t^{-1}\right] \\
(\alpha, \beta) & \mapsto \alpha^{-1}(t-1)\left(t V-V^{T}\right)^{-1} \beta
\end{aligned}
$$

Note that \mathbb{Z} is not PID. Therefore we don't have primer decomposition of this module. We can simplify this problem by replacing \mathbb{Z} by \mathbb{R}. We lose some date by doing this transition.

$$
\begin{aligned}
& \xi \in S^{1} \backslash\{ \pm 1\} \quad p_{\xi}=(t-\xi)\left(t-\xi^{-1}\right) t^{-1} \\
& \xi \in \mathbb{R} \backslash\{ \pm 1\} \quad q_{\xi}=(t-\xi)\left(t-\xi^{-1}\right) t^{-1} \\
& \xi \notin \mathbb{R} \cup S^{1} \quad q_{\xi}=(t-\xi)(t-\bar{\xi})\left(t-\xi^{-1}\right)\left(1-\bar{\xi}^{-1}\right) t^{-2} \\
& \Lambda=\mathbb{R}\left[t, t^{-1}\right] \\
& \text { Then: } H_{1}(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^{1} \backslash\{ \pm 1\} \\
k \geq 0}}\left(\Lambda / p_{\xi}^{k}\right)^{n_{k}, \xi} \oplus \bigoplus_{\substack{\xi \notin S^{1} \\
l \geq 0}}\left(\Lambda / q_{\xi}^{l}\right)^{n_{l}, \xi}
\end{aligned}
$$

We can make this composition orthogonal with respect to the Blanchfield paring.

Historical remark:

- John Milnor, On isometries of inner product spaces, 1969,
- Walter Neumann, Invariants of plane curve singularities, 1983,
- András Némethi, The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities, 1995,
- Maciej Borodzik, Stefan Friedl The unknotting number and classical invariants II, 2014.

Let $p=p_{\xi}, k \geq 0$.

$$
\begin{aligned}
\Lambda / p^{k} \Lambda \times \Lambda / p^{k} \Lambda & \longrightarrow \mathbb{Q}(t) / \Lambda \\
(1,1) & \mapsto \kappa
\end{aligned}
$$

Now: $\left(p^{k} \cdot 1,1\right) \mapsto 0$

$$
p^{k} \kappa=0 \in \mathbb{Q}(t) / \Lambda
$$

therfore $p^{k} \kappa \in \Lambda$
we have $(1,1) \mapsto \frac{h}{p^{k}}$
h is not uniquely defined: $h \rightarrow h+g p^{k}$ doesn't affect paring. Let $h=p^{k} \kappa$.

Example 7.1

$$
\begin{aligned}
& \phi_{0}((1,1))=\frac{+1}{p} \\
& \phi_{1}((1,1))=\frac{-1}{p}
\end{aligned}
$$

ϕ_{0} and ϕ_{1} are not isomorphic.
Proof. Let $\Phi: \Lambda / p^{k} \Lambda \longrightarrow \Lambda / p^{k} \Lambda$ be an isomorphism.
Let: $\Phi(1)=g \in \lambda$

$$
\begin{gathered}
\Lambda / p^{k} \Lambda \xrightarrow{\Phi} \Lambda / p^{k} \Lambda \\
\phi_{0}((1,1))=\frac{1}{p^{k}} \quad \phi_{1}((g, g))=\frac{1}{p^{k}} \quad(\Phi \text { is an isometry }) .
\end{gathered}
$$

Suppose for the paring $\phi_{1}((g, g))=\frac{1}{p^{k}}$ we have $\phi_{1}((1,1))=\frac{-1}{p^{k}}$. Then:

$$
\overbrace{-g(\xi) g\left(\xi^{-1}\right)}^{>0}-1=0 \quad \Rightarrow \Leftarrow
$$

????????????????????

$$
\begin{aligned}
g & =\sum g_{i} t^{i} \\
\bar{g} & =\sum g_{i} t^{-i} \\
\bar{g}(\xi) & =\sum g_{i} \xi^{i} \quad \xi \in S^{1} \\
\bar{g}(\xi) & =g(\bar{\xi})
\end{aligned}
$$

Suppose $g=(t-\xi)^{\alpha} g^{\prime}$. Then $(t-\xi)^{k-\alpha}$ goes to 0 in $\Lambda / p^{k} \Lambda$.

Theorem 7.1

Every sesquilinear non-degenerate pairing

$$
\Lambda / p^{k} \times \Lambda / p \leftrightarrow \frac{h}{p^{k}}
$$

is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).

Proof. There are two steps of the proof:

1. Reduce to the case when h has a constant sign on S^{1}.
2. Prove in the case, when h has a constant sign on S^{1}.

$$
\begin{aligned}
& \frac{-g \bar{g}}{p^{k}}=\frac{1}{p^{k}} \in \mathbb{Q}(t) / \Lambda \\
& \frac{-g \bar{g}}{p^{k}}-\frac{1}{p^{k}} \in \Lambda \\
& -g \bar{g} \equiv 1 \quad(\bmod p) \text { in } \Lambda \\
& -g \bar{g}-1=p^{k} \omega \text { for some } \omega \in \Lambda
\end{aligned}
$$

Lemma 7.1

If p is a symmetric polynomial such thatp $(\eta) \geq 0$ for all $\eta \in S^{1}$, then p can be written as a product $p=g \bar{g}$ for some polynomial g.

Sketch of proof. Induction over $\operatorname{deg} p$.
Let $\zeta \notin S^{1}$ be a root of $p, p \in \mathbb{R}\left[t, t^{-1}\right]$. Assume $\zeta \notin \mathbb{R}$. We know that

$$
\begin{array}{r}
(t-\zeta) \mid p, \\
(t-\bar{\zeta}) \mid p, \\
\left(t^{-1}-\zeta\right) \mid p, \\
\left(t^{-1}-\bar{\zeta}\right) \mid p,
\end{array}
$$

therefore:

$$
\begin{array}{r}
p^{\prime}=\frac{p}{(t-\zeta)(t-\bar{\zeta})\left(t^{-1}-\zeta\right)\left(t^{-1}-\bar{\zeta}\right)} \\
p^{\prime}=g^{\prime} \bar{g} \\
\text { we set } g=g^{\prime}(t-\zeta)(t-\bar{\zeta} \\
p=g \bar{g}
\end{array}
$$

Suppose $\zeta \in S^{1}$. Then $(t-\zeta)^{2} \mid p$ (at least - otherwise it would change sign).

$$
\begin{aligned}
p^{\prime} & =\frac{p}{(t-\zeta)^{2}\left(t^{-1}-\zeta\right)^{2}} \\
g & =(t-\zeta)\left(t^{-1}-\zeta\right) g^{\prime} \quad \text { etc. }
\end{aligned}
$$

$(1,1) \mapsto \frac{h}{p^{k}}=\frac{g \bar{g} h}{p^{k}} \quad$ isometry whenever g is coprime with p.

Lemma 7.2

Suppose A and B are two symmetric polynomials that are coprime and that $\forall z \in S^{1}$ either $A(z)>0$ or $B(z)>0$. Then there exist symmetric polynomials P, Q such that $P(z), Q(z)>0$ for $z \in S^{1}$ and $P A+Q B \equiv 1$.

Idea of proof. For any z find an interval $\left(a_{z}, b_{z}\right)$ such that if $P(z) \in\left(a_{z}, b_{z}\right)$ and $P(z) A(z)+Q(z) B(z)=1$, then $Q(z)>0, x(z)=\frac{a z+b z}{i}$ is a continues function on S^{1} approximating z by a polynomial .

$$
\begin{array}{r}
(1,1) \mapsto \frac{h}{p^{k}} \mapsto \frac{g \bar{g} h}{p^{k}} \\
g \bar{g} h+p^{k} \omega=1
\end{array}
$$

Apply Lemma 7.2 for $A=h, B=p^{2 k}$. Then, if the assumptions are satisfied,

$$
\begin{array}{r}
P h+Q p^{2 k}=1 \\
p>0 \Rightarrow p=g \bar{g} \\
p=(t-\xi)(t-\bar{\xi}) t^{-1} \\
\text { so } p \geq 0 \text { on } S^{1} \\
p(t)=0 \Leftrightarrow t=\xi \text { ort }=\bar{\xi} \\
h(\xi)>0 \\
h(\bar{\xi})>0 \\
g \bar{g} h+Q p^{2 k}=1 \\
g \bar{g} h \equiv 1 \quad \bmod p^{2 k} \\
g \bar{g} \equiv 1 \quad \bmod p^{k}
\end{array}
$$

???????????????????????????????
If P has no roots on S^{1} then $B(z)>0$ for all z, so the assumptions of Lemma 7.2 are satisfied no matter what A is.
?????????????????

$$
\begin{aligned}
& \left(\Lambda / p_{\xi}^{k} \times \Lambda / p_{\xi}^{k}\right) \longrightarrow \frac{\epsilon}{p_{\xi}^{k}}, \quad \xi \in S^{1} \backslash\{ \pm 1\} \\
& \left(\Lambda / q_{\xi}^{k} \times \Lambda / q_{\xi}^{k}\right) \longrightarrow \frac{1}{q_{\xi}^{k}}, \quad \xi \notin S^{1}
\end{aligned}
$$

??????????????????? 1 ?? epsilon?

Theorem 7.2

(Matumoto, Conway-Borodzik-Politarczyk) Let K be a knot,

$$
\begin{gathered}
H_{1}(\widetilde{X}, \Lambda) \times H_{1}(\widetilde{X}, \Lambda)=\bigoplus_{\substack{k, \xi, \epsilon \\
\xi i n S^{1}}}\left(\Lambda / p_{\xi}^{k}, \epsilon\right)^{n_{k}, \xi, \epsilon} \oplus \bigoplus_{k, \eta}\left(\Lambda / p_{\xi}^{k}\right)^{m_{k}} \\
\text { Let } \delta_{\sigma}(\xi)=\lim _{\varepsilon \rightarrow 0^{+}} \sigma\left(e^{2 \pi i \varepsilon} \xi\right)-\sigma\left(e^{-2 \pi i \varepsilon} \xi\right), \\
\text { then } \sigma_{j}(\xi)=\sigma(\xi)-\frac{1}{2} \lim _{\varepsilon \rightarrow 0} \sigma\left(e^{2 \pi i \varepsilon} \xi\right)+\sigma\left(e^{-2 \pi i \varepsilon} \xi\right)
\end{gathered}
$$

The jump at ξ is equal to $2 \sum_{k_{i} \text { odd }} \epsilon_{i}$. The peak of the signature function is equal to $\sum_{k_{i} \text { even }} \epsilon_{i}$.

Lecture 8

May 27, 2019

Definition 8.1

A square hermitian matrix A of size n.
field of fractions

