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Lecture 1 Basic definitions February 25, 2019

Definition 1.1
A knot 𝐾 in 𝑆3 is a smooth (PL - smooth) embedding of a circle 𝑆1 in 𝑆3:

𝜑 ∶ 𝑆1 ↪ 𝑆3

Usually we think about a knot as an image of an embedding: 𝐾 = 𝜑(𝑆1).

Example 1.1
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• Knots: (unknot), (trefoil).

• Not knots: (it is not an injection), (it is not smooth).

Definition 1.2
Two knots 𝐾0 = 𝜑0(𝑆1), 𝐾1 = 𝜑1(𝑆1) are equivalent if the embeddings 𝜑0
and 𝜑1 are isotopic, that is there exists a continues function

Φ ∶ 𝑆1 × [0, 1] ↪ 𝑆3

Φ(𝑥, 𝑡) = Φ𝑡(𝑥)

such that Φ𝑡 is an embedding for any 𝑡 ∈ [0, 1], Φ0 = 𝜑0 and Φ1 = 𝜑1.

Theorem 1.1
Two knots 𝐾0 and 𝐾1 are isotopic if and only if they are ambient isotopic,
i.e. there exists a family of self-diffeomorphisms Ψ = {𝜓𝑡 ∶ 𝑡 ∈ [0, 1]} such
that:

𝜓(𝑡) = 𝜓𝑡 is continius on 𝑡 ∈ [0, 1]
𝜓𝑡 ∶ 𝑆3 ↪ 𝑆3,
𝜓0 = 𝑖𝑑,
𝜓1(𝐾0) = 𝐾1.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding 𝜑(𝑡) = (cos 𝑡, sin 𝑡, 0),
where 𝑡 ∈ [0, 2𝜋] is a parametrisation of 𝑆1.

Definition 1.4

A link with k - components is a (smooth) embedding of
𝑘

⏞⏞⏞⏞⏞𝑆1 ⊔ … ⊔ 𝑆1 in 𝑆3

Example 1.2
Links:

• a trivial link with 3 components: ,

• a hopf link: ,
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• a Whitehead link: ,

• Borromean link: ,

Definition 1.5
A link diagram 𝐷𝜋 is a picture over projection 𝜋 of a link 𝐿 in ℝ3(𝑆3) to ℝ2

(𝑆2) such that:

(1) 𝐷𝜋∣𝐿 is non degenerate: ,

(2) the double points are not degenerate: ,

(3) there are no triple point: .

There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.
Every link admits a link diagram.
Let 𝐷 be a diagram of an oriented link (to each component of a link we add
an arrow in the diagram).
We can distinguish two types of crossings: right-handed ( ), called a pos-
itive crossing, and left-handed ( ), called a negative crossing.

1.1 Reidemeister moves
A Reidemeister move is one of the three types of operation on a link diagram
as shown below:

I

,
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II

,

III

.

Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface

Let 𝐷 be an oriented diagram of a link 𝐿. We change the diagram by
smoothing each crossing:

↦
↦

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in ℝ3 (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive
and left-handed for a negative one. We get an orientable surface Σ such that
𝜕Σ = 𝐿.
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Figure 1: Constructing a Seifert surface.

Note: in general the obtained surface doesn’t need to be connected, but by
taking connected sum of all components we can easily get a connected surface
(i.e. we take two disconnected components and cut a disk in each of them:
𝐷1 and 𝐷2; now we glue both components on the boundaries: 𝜕𝐷1 and 𝜕𝐷2.

Figure 2: Connecting two surfaces.

Theorem 1.3 (Seifert)
Every link in 𝑆3 bounds a surface Σ that is compact, connected and orientable.
Such a surface is called a Seifert surface.
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genus 0 genus 2

genus 1 genus 3

Figure 3: Genus of an orientable surface.

Definition 1.6
The three genus 𝑔3(𝐾) (𝑔(𝐾)) of a knot 𝐾 is the minimal genus of a Seifert
surface Σ for 𝐾.
Corollary 1.1
A knot 𝐾 is trivial if and only 𝑔3(𝐾) = 0.
Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (András Juhász, 2008).
Definition 1.7
Suppose 𝛼 and 𝛽 are two simple closed curves in ℝ3. On a diagram 𝐿 consider
all crossings between 𝛼 and 𝛽. Let 𝑁+ be the number of positive crossings,
𝑁− - negative. Then the linking number: 𝑙𝑘(𝛼, 𝛽) = 1

2(𝑁+ − 𝑁−).

Let 𝛼 and 𝛽 be two disjoint simple cross curves in 𝑆3. Let 𝜈(𝛽) be a tubular
neighbourhood of 𝛽. The linking number can be interpreted via first ho-
mology group, where 𝑙𝑘(𝛼, 𝛽) is equal to evaluation of 𝛼 as element of first
homology group of the complement of 𝛽:

𝛼 ∈ 𝐻1(𝑆3 \ 𝜈(𝛽), ℤ) ≅ ℤ.
Example 1.3

• Hopf link

𝑙𝑘(𝛼, 𝛽) = −1
𝛼

𝛽
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• 𝑇 (6, 2) link

𝑙𝑘(𝛼, 𝛽) = 3
𝛼

𝛽

1.3 Seifert matrix
Let 𝐿 be a link and Σ be an oriented Seifert surface for 𝐿. Choose a basis for
𝐻1(Σ, ℤ) consisting of simple closed 𝛼1, … , 𝛼𝑛. Let 𝛼+

1 , … 𝛼+
𝑛 be copies of

𝛼𝑖 lifted up off the surface (push up along a vector field normal to Σ). Note
that elements 𝛼𝑖 are contained in the Seifert surface while all 𝛼+

𝑖 are don’t
intersect the surface. Let 𝑙𝑘(𝛼𝑖, 𝛼+

𝑗 ) = {𝑎𝑖𝑗}. Then the matrix 𝑆 = {𝑎𝑖𝑗}𝑛
𝑖,𝑗=1

is called a Seifert matrix for 𝐿. Note that by choosing a different basis we
get a different matrix.

𝛼+
1 𝛼1𝛼1

𝛼2

Theorem 1.4
The Seifert matrices 𝑆1 and 𝑆2 for the same link 𝐿 are S-equivalent, that is,
𝑆2 can be obtained from 𝑆1 by a sequence of following moves:

(1) 𝑉 → 𝐴𝑉 𝐴𝑇 , where 𝐴 is a matrix with integer coefficients,

(2) 𝑉 →
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 0
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

or 𝑉 →
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(3) inverse of (2)
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Lecture 2 March 4, 2019

Theorem 2.1
For any knot 𝐾 ⊂ 𝑆3 there exists a connected, compact and orientable surface
Σ(𝐾) such that 𝜕Σ(𝐾) = 𝐾

Proof. (”joke”)
Let 𝐾 ∈ 𝑆3 be a knot and 𝑁 = 𝜈(𝐾) be its tubular neighbourhood. Because
𝐾 and 𝑁 are homotopy equivalent, we get:

𝐻1(𝑆3 \ 𝑁) ≅ 𝐻1(𝑆3 \ 𝐾).

Let us consider a long exact sequence of cohomology of a pair (𝑆3, 𝑆3 \ 𝑁)
with integer coefficients:

ℤ

𝐻0(𝑆3) → 𝐻0(𝑆3 \ 𝑁) →

→ 𝐻1(𝑆3, 𝑆3 \ 𝑁) → 𝐻1(𝑆3) → 𝐻1(𝑆3 \ 𝑁) →

0

→ 𝐻2(𝑆3, 𝑆3 \ 𝑁) → 𝐻2(𝑆3) → 𝐻2(𝑆3 \ 𝑁) →

→ 𝐻3(𝑆3, 𝑆3 \ 𝑁) → 𝐻3(𝑆) → 0

ℤ

≅
≅

≅
≅

𝐻∗(𝑆3, 𝑆3 \ 𝑁) ≅ 𝐻∗(𝑁, 𝜕𝑁)

??????????????
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Definition 2.1
Let 𝑆 be a Seifert matrix for a knot 𝐾. The Alexander polynomial Δ𝐾(𝑡) is
a Laurent polynomial:

Δ𝐾(𝑡) ∶= det(𝑡𝑆 − 𝑆𝑇 ) ∈ ℤ[𝑡, 𝑡−1] ≅ ℤ[ℤ]
Theorem 2.2
Δ𝐾(𝑡) is well defined up to multiplication by ±𝑡𝑘, for 𝑘 ∈ ℤ.
Proof. We need to show that Δ𝐾(𝑡) doesn’t depend on 𝑆-equivalence rela-
tion.

(1) Suppose 𝑆′ = 𝐶𝑆𝐶𝑇 , 𝐶 ∈ Gl(𝑛, ℤ) (matrices invertible over ℤ). Then
det 𝐶 = 1 and:

det(𝑡𝑆′ − 𝑆′𝑇 ) = det(𝑡𝐶𝑆𝐶𝑇 − (𝐶𝑆𝐶𝑇 )𝑇 ) =
det(𝑡𝐶𝑆𝐶𝑇 − 𝐶𝑆𝑇 𝐶𝑇 ) = det 𝐶(𝑡𝑆 − 𝑆𝑇 )𝐶𝑇 = det(𝑡𝑆 − 𝑆𝑇 )

(2) Let

𝐴 ∶= 𝑡
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 0
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

−
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆𝑇
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑡𝑆 − 𝑆𝑇
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 −1
𝑡 0

⎞⎟⎟⎟⎟⎟⎟
⎠

Using the Laplace expansion we get det 𝐴 = ±𝑡 det(𝑡𝑆 − 𝑆𝑇 ).

Example 2.1
If 𝐾 is a trefoil then we can take 𝑆 = (−1 −1

0 −1).

Δ𝐾(𝑡) = det (−𝑡 + 1 −𝑡
1 −𝑡 + 1) = (𝑡−1)2+𝑡 = 𝑡2−𝑡+1 ≠ 1 ⇒ trefoil is not trivial

Fact 2.1
Δ𝐾(𝑡) is symmetric.
Proof. Let 𝑆 be an 𝑛 × 𝑛 matrix.

Δ𝐾(𝑡−1) = det(𝑡−1𝑆 − 𝑆𝑇 ) = (−𝑡)−𝑛 det(𝑡𝑆𝑇 − 𝑆) =
(−𝑡)−𝑛 det(𝑡𝑆 − 𝑆𝑇 ) = (−𝑡)−𝑛Δ𝐾(𝑡)

If 𝐾 is a knot, then 𝑛 is necessarily even, and so Δ𝐾(𝑡−1) = 𝑡−𝑛Δ𝐾(𝑡).

9



Lemma 2.1

1
2 deg Δ𝐾(𝑡) ≤ 𝑔3(𝐾), where 𝑑𝑒𝑔(𝑎𝑛𝑡𝑛 + ⋯ + 𝑎1𝑡𝑙) = 𝑘 − 𝑙.

Proof. If Σ is a genus 𝑔 - Seifert surface for 𝐾 then 𝐻1(Σ) = ℤ2𝑔, so 𝑆 is an
2𝑔 × 2𝑔 matrix. Therefore det(𝑡𝑆 − 𝑆𝑇 ) is a polynomial of degree at most
2𝑔.

Example 2.2
There are not trivial knots with Alexander polynomial equal 1, for example:
Δ11𝑛34 ≡ 1.

Lecture 3

Example 3.1

𝐹 ∶ ℂ2 → ℂ a polynomial
𝐹(0) = 0

Fact (Milnor Singular Points of Complex Hypersurfaces):

An oriented knot is called negative amphichiral if the mirror image 𝑚(𝐾)
if 𝐾 is equivalent the reverse knot of 𝐾.

Example 3.2 (Problem)
Prove that if 𝐾 is negative amphichiral, then 𝐾#𝐾 in C
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Lecture 4 March 18, 2019

Definition 4.1
A knot 𝐾 is called (smoothly) slice if 𝐾 is smoothly concordant to an unknot.
A knot 𝐾 is smoothly slice if and only if 𝐾 bounds a smoothly embedded disk
in 𝐵4.
Definition 4.2
Two knots 𝐾 and 𝐾′ are called (smoothly) concordant if there exists an
annulus 𝐴 that is smoothly embedded in 𝑆3 × [0, 1] such that 𝜕𝐴 = 𝐾′ ×
{1} ⊔ 𝐾 × {0}.

𝐾 𝐾′
𝑆3 ×{0} 𝑆3 ×{1}

𝑆3 × [0, 1]

Let 𝑚(𝐾) denote a mirror image of a knot 𝐾.
Fact 4.1
For any 𝐾, 𝐾#𝑚(𝐾) is slice.
Fact 4.2
Concordance is an equivalence relation.
Fact 4.3
If 𝐾1 ∼ 𝐾1

′ and 𝐾2 ∼ 𝐾2
′, then 𝐾1#𝐾2 ∼ 𝐾1

′#𝐾2
′.

Fact 4.4
𝐾#𝑚(𝐾) ∼ the unknot.
Let 𝒞 denote all equivalent classes for knots. 𝒞 is a group under taking
connected sums, with neutral element (the class defined by) an unknot and
inverse element (a class defined by) a mirror image.
The figure eight knot is a torsion element in 𝒞 (2𝐾 ∼ the unknot).
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Example 4.1 (Problem)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments? (open)
Remark: 𝐾 ∼ 𝐾′ ⇔ 𝐾# − 𝐾′ is slice.

Lecture 5 April 8, 2019

𝑋 is a closed orientable four-manifold. Assume 𝜋1(𝑋) = 0 (it is not needed to
define the intersection form). In particular 𝐻1(𝑋) = 0. 𝐻2 is free (exercise).

𝐻2(𝑋, ℤ)
Poincaré duality
−−−−−−−−−→ 𝐻2(𝑋, ℤ) evaluation−−−−−−→ Hom(𝐻2(𝑋, ℤ), ℤ)

Intersection form: 𝐻2(𝑋, ℤ) × 𝐻2(𝑋, ℤ) ⟶ ℤ - symmetric, non singular.
Let 𝐴 and 𝐵 be closed, oriented surfaces in 𝑋.
Proposition 5.1
𝐴 ⋅ 𝐵 doesn’t depend of choice of 𝐴 and 𝐵 in their homology classes.

Lecture 6 April 15, 2019

In other words:
Choose a basis (𝑏1, ..., 𝑏𝑖)
???
of 𝐻2(𝑌 , ℤ, then 𝐴 = (𝑏𝑖, 𝑏𝑦)
??
is a matrix of intersection form:

ℤ𝑛/𝐴ℤ𝑛 ≅ 𝐻1(𝑌 , ℤ).
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In particular ∣ det 𝐴 ∣= #𝐻1(𝑌 , ℤ.
That means - what is happening on boundary is a measure of degeneracy.

𝐻1(𝑌 , ℤ) × 𝐻1(𝑌 , ℤ) ⟶ ℚ/ℤ - a linking form

ℤ𝑛/𝐴ℤ
ℤ𝑛/𝐴ℤ

≅ ≅
(𝑎, 𝑏) ↦ 𝑎𝐴−1𝑏𝑇

The intersection form on a four-manifold determines the linking on the
boundary.

Let 𝐾 ∈ 𝑆1 be a knot, Σ(𝐾) its double branched cover. If 𝑉 is a Seifert
matrix for 𝐾, then 𝐻1(Σ(𝐾), ℤ) ≅ ℤ𝑛/𝐴ℤ where 𝐴 = 𝑉 × 𝑉 𝑇 , where
𝑛 = rank 𝑉 .

𝐵4𝐵4 Σ Σ̃

Figure 4: Pushing the Seifert surface in 4-ball.

Let 𝑋 be the four-manifold obtained via the double branched cover of 𝐵4

branched along Σ̃.

Fact 6.1

• 𝑋 is a smooth four-manifold,

• 𝐻1(𝑋, ℤ) = 0,

• 𝐻2(𝑋, ℤ) ≅ ℤ𝑛

• The intersection form on 𝑋 is 𝑉 + 𝑉 𝑇 .
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Let 𝑌 = Σ(𝐾). Then:

𝐻1(𝑌 , ℤ) × 𝐻1(𝑌 , ℤ) ⟶ ℚ/ℤ
(𝑎, 𝑏) ↦ 𝑎𝐴−1𝑏𝑇 , 𝐴 = 𝑉 + 𝑉 𝑇

𝐻1(𝑌 , ℤ) ≅ ℤ𝑛/𝐴ℤ
𝐴 ⟶ 𝐵𝐴𝐶𝑇 Smith normal form

???????????????????????
In general

Lecture 7 May 20, 2019

Let 𝑀 be compact, oriented, connected four-dimensional manifold. If 𝐻1(𝑀, ℤ) =
0 then there exists a bilinear form - the intersection form on 𝑀 :

𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) ⟶ ℤ

ℤ𝑛

≅

Let us consider a specific case: 𝑀 has a boundary 𝑌 = 𝜕𝑀 .
Betti number 𝑏1(𝑌 ) = 0, 𝐻1(𝑌 , ℤ) is finite.
Then the intersection form can be degenerate in the sense that

𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) ⟶ ℤ 𝐻2(𝑀, ℤ) ⟶ Hom(𝐻2(𝑀, ℤ), ℤ)
(𝑎, 𝑏) ↦ ℤ 𝑎 ↦ (𝑎, _)𝐻2(𝑀, ℤ)

has coker precisely 𝐻1(𝑌 , ℤ).
???????????????
Let 𝐾 ⊂ 𝑆3 be a knot,
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𝑋 = 𝑆3 \ 𝐾 - a knot complement,
𝑋

𝜌
−−→ 𝑋 - an infinite cyclic cover (universal abelian cover).

𝜋1(𝑋) ⟶ 𝜋1(𝑋)/[𝜋1(𝑋), 𝜋1(𝑋)] = 𝐻1(𝑋, ℤ) ≅ ℤ

𝐶∗(𝑋) has a structure of a ℤ[𝑡, 𝑡−1] ≅ ℤ[ℤ] module.
𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) - Alexander module,

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) × 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ⟶ ℚ/ℤ[𝑡, 𝑡−1]
Fact 7.1

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ≅ ℤ[𝑡, 𝑡−1]𝑛/(𝑡𝑉 − 𝑉 𝑇 )ℤ[𝑡, 𝑡−1]𝑛 ,
where 𝑉 is a Seifert matrix.

Fact 7.2

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) × 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ⟶ ℚ[𝑡]/ℤ[𝑡, 𝑡−1]
(𝛼, 𝛽) ↦ 𝛼−1(𝑡 − 1)(𝑡𝑉 − 𝑉 𝑇 )−1𝛽

Note that ℤ is not PID. Therefore we don’t have primer decomposition of
this module. We can simplify this problem by replacing ℤ by ℝ. We lose
some date by doing this transition.

𝜉 ∈ 𝑆1 \ {±1} 𝑝𝜉 = (𝑡 − 𝜉)(𝑡 − 𝜉−1)𝑡−1

𝜉 ∈ ℝ \ {±1} 𝑞𝜉 = (𝑡 − 𝜉)(𝑡 − 𝜉−1)𝑡−1

𝜉 ∉ ℝ ∪ 𝑆1 𝑞𝜉 = (𝑡 − 𝜉)(𝑡 − ̅𝜉)(𝑡 − 𝜉−1)(1 − ̅𝜉−1)𝑡−2

Λ = ℝ[𝑡, 𝑡−1]
Then: 𝐻1(𝑋, Λ) ≅ ⨁

𝜉∈𝑆1\{±1}
𝑘≥0

(Λ/𝑝𝑘
𝜉
)𝑛𝑘,𝜉 ⊕ ⨁

𝜉∉𝑆1
𝑙≥0

(Λ/𝑞𝑙
𝜉
)𝑛𝑙,𝜉

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:
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• John Milnor, On isometries of inner product spaces, 1969,

• Walter Neumann, Invariants of plane curve singularities , 1983,

• András Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

• Maciej Borodzik, Stefan Friedl The unknotting number and classical
invariants II, 2014.

Let 𝑝 = 𝑝𝜉, 𝑘 ≥ 0.
Λ/𝑝𝑘Λ × Λ/𝑝𝑘Λ ⟶ ℚ(𝑡)/Λ

(1, 1) ↦ 𝜅
Now: (𝑝𝑘 ⋅ 1, 1) ↦ 0

𝑝𝑘𝜅 = 0 ∈ ℚ(𝑡)/Λ
therfore 𝑝𝑘𝜅 ∈ Λ

we have (1, 1) ↦ ℎ
𝑝𝑘

ℎ is not uniquely defined: ℎ → ℎ + 𝑔𝑝𝑘 doesn’t affect paring.
Let ℎ = 𝑝𝑘𝜅.
Example 7.1

𝜙0((1, 1)) = +1
𝑝

𝜙1((1, 1)) = −1
𝑝

𝜙0 and 𝜙1 are not isomorphic.

Proof. Let Φ ∶ Λ/𝑝𝑘Λ ⟶ Λ/𝑝𝑘Λ be an isomorphism.
Let: Φ(1) = 𝑔 ∈ 𝜆

Λ/𝑝𝑘Λ
Φ−−−→Λ/𝑝𝑘Λ

𝜙0((1, 1)) = 1
𝑝𝑘 𝜙1((𝑔, 𝑔)) = 1

𝑝𝑘 (Φ is an isometry).

16



Suppose for the paring 𝜙1((𝑔, 𝑔)) = 1
𝑝𝑘 we have 𝜙1((1, 1)) = −1

𝑝𝑘 . Then:

−𝑔 ̅𝑔
𝑝𝑘 = 1

𝑝𝑘 ∈ ℚ(𝑡)/Λ
−𝑔 ̅𝑔
𝑝𝑘 − 1

𝑝𝑘 ∈ Λ

−𝑔 ̅𝑔 ≡ 1 (mod 𝑝) in Λ
−𝑔 ̅𝑔 − 1 = 𝑝𝑘𝜔 for some 𝜔 ∈ Λ

evalueting at 𝜉:
>0

⏞⏞⏞⏞⏞− 𝑔(𝜉)𝑔(𝜉−1) −1 = 0 ⇒⇐

????????????????????

𝑔 = ∑ 𝑔𝑖𝑡𝑖

̅𝑔 = ∑ 𝑔𝑖𝑡−𝑖

̅𝑔(𝜉) = ∑ 𝑔𝑖𝜉𝑖 𝜉 ∈ 𝑆1

̅𝑔(𝜉) = ̅𝑔(𝜉)

Suppose 𝑔 = (𝑡 − 𝜉)𝛼𝑔′. Then (𝑡 − 𝜉)𝑘−𝛼 goes to 0 in Λ/𝑝𝑘Λ.

Theorem 7.1
Every sesquilinear non-degenerate pairing

Λ/𝑝𝑘 × Λ/𝑝 ⟷ ℎ
𝑝𝑘

is isomorphic either to the pairing wit ℎ = 1 or to the paring with ℎ = −1
depending on sign of ℎ(𝜉) (which is a real number).

Proof. There are two steps of the proof:

1. Reduce to the case when ℎ has a constant sign on 𝑆1.

2. Prove in the case, when ℎ has a constant sign on 𝑆1.

17



Lemma 7.1
If 𝑝 is a symmetric polynomial such that𝑝(𝜂) ≥ 0 for all 𝜂 ∈ 𝑆1, then 𝑝 can
be written as a product 𝑝 = 𝑔 ̅𝑔 for some polynomial 𝑔.

Sketch of proof. Induction over deg 𝑝.
Let 𝜁 ∉ 𝑆1 be a root of 𝑝, 𝑝 ∈ ℝ[𝑡, 𝑡−1]. Assume 𝜁 ∉ ℝ. We know that

(𝑡 − 𝜁) ∣ 𝑝,
(𝑡 − ̅𝜁) ∣ 𝑝,

(𝑡−1 − 𝜁) ∣ 𝑝,
(𝑡−1 − ̅𝜁) ∣ 𝑝,

therefore:

𝑝′ = 𝑝
(𝑡 − 𝜁)(𝑡 − ̅𝜁)(𝑡−1 − 𝜁)(𝑡−1 − ̅𝜁)

𝑝′ = 𝑔′ ̅𝑔
we set 𝑔 = 𝑔′(𝑡 − 𝜁)(𝑡 − ̅𝜁

𝑝 = 𝑔 ̅𝑔

Suppose 𝜁 ∈ 𝑆1. Then (𝑡−𝜁)2 ∣ 𝑝 (at least - otherwise it would change sign).

𝑝′ = 𝑝
(𝑡 − 𝜁)2(𝑡−1 − 𝜁)2

𝑔 = (𝑡 − 𝜁)(𝑡−1 − 𝜁)𝑔′ etc.

(1, 1) ↦ ℎ
𝑝𝑘 = 𝑔 ̅𝑔ℎ

𝑝𝑘 isometry whenever 𝑔 is coprime with 𝑝.

Lemma 7.2
Suppose 𝐴 and 𝐵 are two symmetric polynomials that are coprime and that
∀𝑧 ∈ 𝑆1 either 𝐴(𝑧) > 0 or 𝐵(𝑧) > 0. Then there exist symmetric polyno-
mials 𝑃 , 𝑄 such that 𝑃(𝑧), 𝑄(𝑧) > 0 for 𝑧 ∈ 𝑆1 and 𝑃𝐴 + 𝑄𝐵 ≡ 1.

Idea of proof. For any 𝑧 find an interval (𝑎𝑧, 𝑏𝑧) such that if 𝑃(𝑧) ∈ (𝑎𝑧, 𝑏𝑧)
and 𝑃(𝑧)𝐴(𝑧) + 𝑄(𝑧)𝐵(𝑧) = 1, then 𝑄(𝑧) > 0, 𝑥(𝑧) = 𝑎𝑧+𝑏𝑧

𝑖 is a continues
function on 𝑆1 approximating 𝑧 by a polynomial .
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??????????????????????????

(1, 1) ↦ ℎ
𝑝𝑘 ↦ 𝑔 ̅𝑔ℎ

𝑝𝑘

𝑔 ̅𝑔ℎ + 𝑝𝑘𝜔 = 1

Apply Lemma 7.2 for 𝐴 = ℎ, 𝐵 = 𝑝2𝑘. Then, if the assumptions are satisfied,

𝑃ℎ + 𝑄𝑝2𝑘 = 1
𝑝 > 0 ⇒ 𝑝 = 𝑔 ̅𝑔

𝑝 = (𝑡 − 𝜉)(𝑡 − ̅𝜉)𝑡−1

so 𝑝 ≥ 0 on 𝑆1

𝑝(𝑡) = 0 ⇔ 𝑡 = 𝜉𝑜𝑟𝑡 = ̅𝜉
ℎ(𝜉) > 0
ℎ( ̅𝜉) > 0

𝑔 ̅𝑔ℎ + 𝑄𝑝2𝑘 = 1
𝑔 ̅𝑔ℎ ≡ 1 mod 𝑝2𝑘

𝑔 ̅𝑔 ≡ 1 mod 𝑝𝑘

???????????????????????????????
If 𝑃 has no roots on 𝑆1 then 𝐵(𝑧) > 0 for all 𝑧, so the assumptions of Lemma
7.2 are satisfied no matter what 𝐴 is.

?????????????????

(Λ/𝑝𝑘
𝜉

× Λ/𝑝𝑘
𝜉
) ⟶ 𝜖

𝑝𝑘
𝜉

, 𝜉 ∈ 𝑆1 \ {±1}

(Λ/𝑞𝑘
𝜉

× Λ/𝑞𝑘
𝜉
) ⟶ 1

𝑞𝑘
𝜉

, 𝜉 ∉ 𝑆1

??????????????????? 1 ?? epsilon?
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Theorem 7.2
(Matumoto, Conway-Borodzik-Politarczyk) Let 𝐾 be a knot,

𝐻1(𝑋, Λ) × 𝐻1(𝑋, Λ) = ⨁
𝑘,𝜉,𝜖

𝜉𝑖𝑛𝑆1

(Λ/𝑝𝑘
𝜉
, 𝜖)𝑛𝑘,𝜉,𝜖 ⊕ ⨁

𝑘,𝜂
(Λ/𝑝𝑘

𝜉
)𝑚𝑘

Let 𝛿𝜎(𝜉) = lim
𝜀→0+

𝜎(𝑒2𝜋𝑖𝜀𝜉) − 𝜎(𝑒−2𝜋𝑖𝜀𝜉),

then 𝜎𝑗(𝜉) = 𝜎(𝜉) − 1
2 lim

𝜀→0
𝜎(𝑒2𝜋𝑖𝜀𝜉) + 𝜎(𝑒−2𝜋𝑖𝜀𝜉)

The jump at 𝜉 is equal to 2 ∑
𝑘𝑖 odd

𝜖𝑖. The peak of the signature function is

equal to ∑
𝑘𝑖even

𝜖𝑖.

Lecture 8 May 27, 2019

....

Definition 8.1
A square hermitian matrix 𝐴 of size 𝑛.

field of fractions
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