\begin{theorem} If $K$ is slice, then $\sigma_K(t) = \sign ( (1 - t)S +(1 - \bar{t})S^T)$ is zero except possibly of finitely many points and $\sigma_K(-1) = \sign(S + S^T) \neq 0$. \end{theorem} \begin{proof} \begin{lemma} \label{lem:metabolic} If $V$ is a Hermitian matrix ($\bar{V} = V^T$), $V$ is of size $2n \times 2n$ and $ V = \begin{pmatrix} 0 & A \\ \bar{A}^T & B \end{pmatrix} $ and $\det V \neq 0$ then $\sigma(V) = 0$. \end{lemma} \begin{definition} A Hermitian form $V$ is metabolic if $V$ has structure $\begin{pmatrix} 0 & A\\ \bar{A}^T & B \end{pmatrix}$ with half-dimensional null-space. \end{definition} \noindent In other words: non-degenerate metabolic hermitian form has vanishing signature.\\ We note that $\det(S + S^T) \neq 0$. Hence $\det ( (1 - t) S + (1 - \bar{t})S^T)$ is not identically zero on $S^1$, so it is non-zero except possibly at finitely many points. We apply the Lemma \ref{lem:metabolic}. \\ Let $t \in S^1 \setminus \{1\}$. Then: \begin{align*} &\det((1 - t) S + (1 - \bar{t}) S^T) = \det((1 - t) S + (t\bar{t} - \bar{t}) S^T) =\\ &\det((1 - t) (S - \bar{t} - S^T)) = \det((1 -t)(S - \bar{t} S^T)). \end{align*} As $\det (S + S^T) \neq 0$, so $S - \bar{t}S^T \neq 0$. \end{proof} ?????????????????s\\ \begin{corollary} If $K \sim K^\prime$ then for all but finitely many $t \in S^1 \setminus \{1\}: \sigma_K(t) = \sigma_{K^\prime}(t)$. \end{corollary} \begin{proof} If $ K \sim K^\prime$ then $K \# K^\prime$ is slice. \[ \sigma_{-K^\prime}(t) = -\sigma_{K^\prime}(t) \] \\??????????????\\ The signature give a homomorphism from the concordance group to $\mathbb{Z}$.\\ ??????????????????\\ Remark: if $t \in S^1$ is not algebraic over $\mathbb{Z}$, then $\sigma_K(t) \neq 0$ (we can is the argument that $\mathscr{C} \longrightarrow \mathbb{Z}$ as well). \end{proof} \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.5\textwidth}{!}{\input{images/genus_2_bordism.pdf_tex}} } \caption{$K$ and $K^\prime$ are connected by a genus $g$ surface of genus.}\label{fig:genus_2_bordism} \end{figure} ???????????????????????\\ \begin{proposition}[Kawauchi inequality] If there exists a genus $g$ surface as in Figure \ref{fig:genus_2_bordism} then for almost all $t \in S^1 \setminus \{1\}$ we have $\vert \sigma_K(t) - \sigma_{K^\prime}(t) \vert \leq 2 g$. \end{proposition} % Kawauchi Chapter 12 ??? \begin{lemma} If $K$ bounds a genus $g$ surface $X \in B^4$ and $S$ is a Seifert form then ${S \in M_{2n \times 2n}}$ has a block structure $\begin{pmatrix} 0 & A\\ B & C \end{pmatrix}$, where $0$ is $(n - g) \times (n - g)$ submatrix. \end{lemma} \begin{definition} The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$. \end{definition} \noindent Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not.