??????? \begin{theorem} Such a pairing is isometric to a pairing: \[ \begin{bmatrix} 1 \end{bmatrix} \times \begin{bmatrix} 1 \end{bmatrix} \rightarrow \frac{\epsilon}{p^k_{\xi}}, \: \epsilon \in {\pm 1} \] \end{theorem} ????????????? \[ \begin{bmatrix} 1 \end{bmatrix} = 1 \in \quot{\Lambda}{p^k_{\xi} \Lambda } \] ???????? \begin{theorem} The jump of the signature function at $\xi$ is equal to $2 \sum\limits_{k_i \odd} \epsilon_i$. \\ The peak of the signature function is equal to $\sum\limits_{k_i \even} \epsilon_i$. \[ (\quot{\Lambda}{p^{k_1} \Lambda}, \epsilon_1) \oplus \dots \oplus (\quot{\Lambda}{p^{k_n} \Lambda}, \epsilon_n) \] %$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$ \end{theorem} \begin{definition} A matrix $A$ is called Hermitian if $\overline{A(t)} = {A(t)}^T$ \end{definition} \begin{theorem}[Borodzik-Friedl 2015, Borodzik-Conway-Politarczyk 2018] A square Hermitian matrix $A(t)$ of size $n$ with coefficients in $\mathbb{Z}[t, t^{-1}]$ (or $\mathbb{R}[t, t^{-1}]$ ) represents the Blanchfield pairing if: \begin{eqnarray*} H_1(\bar{X}, \Lambda) = \quot{\Lambda^n }{A\Lambda^n },\\ (x, y) \mapsto {\overline{x}}^T A^{-1} y \in \quot{\Omega}{\Lambda}\\ H_1(\widetilde{X}, \Lambda) \times H_1(\widetilde{X}, \Lambda) \longrightarrow \quot{\Omega}{\Lambda}, \end{eqnarray*} where $\Lambda = \mathbb{Z}[t, t^{-1}]$ or $\mathbb{R}[t, t^{-1}]$, $\Omega = \mathbb{Q}(t)$ or $\mathbb{R}(t)$ \end{theorem} ????????\\field of fractions ?????? \begin{eqnarray*} H_1(\Sigma(K), \mathbb{Z}) = \quot{\mathbb{Z}^n}{(V + V^T) \mathbb{Z}^n}\\ H_1(\Sigma(K), \mathbb{Z}) \times H_1(\Sigma(K), \mathbb{Z}) \longrightarrow = \quot{\mathbb{Q}}{\mathbb{Z}}\\ (a, b) \mapsto a{(V + V^T)}^{-1} b \end{eqnarray*} ???????????????????\\ \begin{eqnarray*} y \mapsto y + Az \\ \overline{x^T} A^{-1}(y + Az) = \overline{x^T} A^{-1} + \overline{x^T} \mathbb{1} z \end{eqnarray*}