\documentclass[12pt, twoside]{article} \usepackage{comment} \usepackage{amssymb} \usepackage{amsmath} \usepackage[english]{babel} \usepackage{csquotes} \usepackage{graphicx} \usepackage{float} \usepackage{titlesec} \usepackage{comment} \usepackage{pict2e} \usepackage{advdate} %... Set the first lecture date \ThisYear{2019} \ThisMonth{3} \ThisDay{5} \graphicspath{ {images/} } \newtheorem{lemama}{Lemma} \newtheorem{fact}{Fact} \newtheorem{example}{Example} %\theoremstyle{definition} \newtheorem{definition}{Definition} %\theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{proposition}{Proposition} \input{knots_macros} \titleformat{\section}{\normalfont \Large \bfseries} {Lecture\ \thesection}{2.3ex plus .2ex}{} \titlespacing{\subsection}{2em}{*1}{*1} \begin{document} %\input{myNotes} \section{} \begin{definition} A \textbf{knot} $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$: \begin{align*} \varphi: S^1 \hookrightarrow S^3 \end{align*} \end{definition} Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$. \begin{definition} \hfill\\ Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function \begin{align*} &\Phi: S^1 \times [0, 1] \hookrightarrow S^3 \\ &\Phi(x, t) = \Phi_t(x) \end{align*} such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and $\Phi_1 = \varphi_1$ \\ Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Phi$ such that: \begin{align*} &\Psi: S^3 \hookrightarrow S^3\\ & \psi_0 = id\\ & \psi_1(K_0) = K_1 \end{align*} \end{definition} \begin{definition} A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$. \end{definition} \begin{definition} A link with k - components is a (smooth) embedding of\\ $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$ \end{definition} \begin{example} A trivial link with $3$ components\\ A hopf link\\ Whitehead link\\ Borromean link \end{example} \begin{definition} A link diagram is a picture over projection of a link is $S^3$/$R^3$ such that: \begin{enumerate} \item is non degenerate \item The double points are not degenerated \item There are no triple point \end{enumerate} \end{definition} There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\ Every link admits a link diagram. \subsection{Reidemeister moves} A Reidemeister move is one of the three types of operation on a link diagram as shown in Figure~\ref{fig: reidemeister}. % The first Reidemeister move inserts or removes a coil. % The second Reidemeister move slides a strand and inserts or removes two crossings of opposite sign. % The third Reidemeister move slides a strand over or under a crossing. \begin{figure}[H] \centering \includegraphics[width=0.7\textwidth]{moves.png} \caption{\label{fig: reidemeister}Reidemeister moves (adapted from Adams).} \end{figure} \begin{theorem} [Reidemeister’s Theorem] Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane). \end{theorem} \section{Z nagrania Kamili} \begin{example} \begin{align*} &F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{a polynomial} \\ &F(0) = 0 \end{align*} Fact (Milnor Singular Points of Complex Hypersurfaces): \end{example} \section{} 25.03.19 \end{document}