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Lecture 1 Basic definitions February 25, 2019

Definition 1.1
A knot 𝐾 in 𝑆3 is a smooth (PL - smooth) embedding of a circle 𝑆1 in 𝑆3:

𝜑 ∶ 𝑆1 ↪ 𝑆3

Usually we think about a knot as an image of an embedding: 𝐾 = 𝜑(𝑆1).
Example 1.1

• Knots: (unknot), (trefoil).

• Not knots: (it is not an injection), (it is not smooth).

Definition 1.2
Two knots 𝐾0 = 𝜑0(𝑆1), 𝐾1 = 𝜑1(𝑆1) are equivalent if the embeddings 𝜑0
and 𝜑1 are isotopic, that is there exists a continues function

Φ ∶ 𝑆1 × [0, 1] ↪ 𝑆3

Φ(𝑥, 𝑡) = Φ𝑡(𝑥)

such that Φ𝑡 is an embedding for any 𝑡 ∈ [0, 1], Φ0 = 𝜑0 and Φ1 = 𝜑1.

Theorem 1.1
Two knots 𝐾0 and 𝐾1 are isotopic if and only if they are ambient isotopic,
i.e. there exists a family of self-diffeomorphisms Ψ = {𝜓𝑡 ∶ 𝑡 ∈ [0, 1]} such
that:

𝜓(𝑡) = 𝜓𝑡 is continius on 𝑡 ∈ [0, 1]
𝜓𝑡 ∶ 𝑆3 ↪ 𝑆3,
𝜓0 = 𝑖𝑑,
𝜓1(𝐾0) = 𝐾1.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding 𝜑(𝑡) = (cos 𝑡, sin 𝑡, 0),
where 𝑡 ∈ [0, 2𝜋] is a parametrisation of 𝑆1.
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Definition 1.4

A link with k - components is a (smooth) embedding of
𝑘

⏞⏞⏞⏞⏞𝑆1 ⊔ … ⊔ 𝑆1 in 𝑆3

Example 1.2
Links:

• a trivial link with 3 components: ,

• a hopf link: ,

• a Whitehead link: ,

• Borromean link: .

Definition 1.5
A link diagram 𝐷𝜋 is a picture over projection 𝜋 of a link 𝐿 in ℝ3(𝑆3) to ℝ2

(𝑆2) such that:

(1) 𝐷𝜋∣𝐿 is non degenerate: ,

(2) the double points are not degenerate: ,

(3) there are no triple point: .

There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.
Every link admits a link diagram.
Let 𝐷 be a diagram of an oriented link (to each component of a link we add
an arrow in the diagram).
We can distinguish two types of crossings: right-handed ( ), called a pos-
itive crossing, and left-handed ( ), called a negative crossing.
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1.1 Reidemeister moves
A Reidemeister move is one of the three types of operation on a link diagram
as shown below:

I

,

II

,

III

.

Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface
Let 𝐷 be an oriented diagram of a link 𝐿. We change the diagram by
smoothing each crossing:

↦
↦

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in ℝ3 (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive
and left-handed for a negative one. We get an orientable surface Σ such that
𝜕Σ = 𝐿.
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Figure 1: Constructing a Seifert surface.

Note: the obtained surface isn’t unique and in general doesn’t need to be
connected, but by taking connected sum of all components we can easily get
a connected surface (i.e. we take two disconnected components and cut a
disk in each of them: 𝐷1 and 𝐷2; now we glue both components on the
boundaries: 𝜕𝐷1 and 𝜕𝐷2.

Theorem 1.3 (Seifert)
Every link in 𝑆3 bounds a surface Σ that is compact, connected and orientable.
Such a surface is called a Seifert surface.

Definition 1.6
The three genus 𝑔3(𝐾) (𝑔(𝐾)) of a knot 𝐾 is the minimal genus of a Seifert
surface Σ for 𝐾.

Corollary 1.1
A knot 𝐾 is trivial if and only 𝑔3(𝐾) = 0.
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Figure 2: Connecting two surfaces.

genus 0
 

genus 2
 genus 1

 

genus 3
 

Figure 3: Genus of an orientable surface.

Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (András Juhász, 2008).

Definition 1.7
Suppose 𝛼 and 𝛽 are two simple closed curves in ℝ3. On a diagram 𝐿 consider
all crossings between 𝛼 and 𝛽. Let 𝑁+ be the number of positive crossings,
𝑁− - negative. Then the linking number: lk(𝛼, 𝛽) = 1

2(𝑁+ − 𝑁−).

Let 𝛼 and 𝛽 be two disjoint simple cross curves in 𝑆3. Let 𝜈(𝛽) be a tubular
neighbourhood of 𝛽. The linking number can be interpreted via first ho-
mology group, where lk(𝛼, 𝛽) is equal to evaluation of 𝛼 as element of first
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homology group of the complement of 𝛽:

𝛼 ∈ 𝐻1(𝑆3 \ 𝜈(𝛽), ℤ) ≅ ℤ.

Example 1.3

• Hopf link:

lk(𝛼, 𝛽) = −1 

𝛼 
𝛽 

,

• 𝑇 (6, 2) link:

lk(𝛼, 𝛽) = 3
𝛼 

𝛽  .
Fact 1.1

𝑔3(Σ) = 1
2𝑏1(Σ) = 1

2 dimℝ 𝐻1(Σ, ℝ),
where 𝑏1 is first Betti number of Σ.

1.3 Seifert matrix
Let 𝐿 be a link and Σ be an oriented Seifert surface for 𝐿. Choose a basis for
𝐻1(Σ, ℤ) consisting of simple closed 𝛼1, … , 𝛼𝑛. Let 𝛼+

1 , … 𝛼+
𝑛 be copies of

𝛼𝑖 lifted up off the surface (push up along a vector field normal to Σ). Note
that elements 𝛼𝑖 are contained in the Seifert surface while all 𝛼+

𝑖 are don’t
intersect the surface. Let lk(𝛼𝑖, 𝛼+

𝑗 ) = {𝑎𝑖𝑗}. Then the matrix 𝑆 = {𝑎𝑖𝑗}𝑛
𝑖,𝑗=1

is called a Seifert matrix for 𝐿. Note that by choosing a different basis we
get a different matrix.
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𝛼+
1 𝛼1𝛼1

𝛼2

Theorem 1.4
The Seifert matrices 𝑆1 and 𝑆2 for the same link 𝐿 are S-equivalent, that is,
𝑆2 can be obtained from 𝑆1 by a sequence of following moves:

(1) 𝑉 → 𝐴𝑉 𝐴𝑇 , where 𝐴 is a matrix with integer coefficients,

(2) 𝑉 →
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 0
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

or 𝑉 →
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(3) inverse of (2)

Lecture 2 March 4, 2019

Theorem 2.1
For any knot 𝐾 ⊂ 𝑆3 there exists a connected, compact and orientable surface
Σ(𝐾) such that 𝜕Σ(𝐾) = 𝐾
Proof. (”joke”)
Let 𝐾 ∈ 𝑆3 be a knot and 𝑁 = 𝜈(𝐾) be its tubular neighbourhood. Because
𝐾 and 𝑁 are homotopy equivalent, we get:

𝐻1(𝑆3 \ 𝑁) ≅ 𝐻1(𝑆3 \ 𝐾).
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Let us consider a long exact sequence of cohomology of a pair (𝑆3, 𝑆3 \ 𝑁)
with integer coefficients:

ℤ

𝐻0(𝑆3) → 𝐻0(𝑆3 \ 𝑁) →

→ 𝐻1(𝑆3, 𝑆3 \ 𝑁) → 𝐻1(𝑆3) → 𝐻1(𝑆3 \ 𝑁) →

0

→ 𝐻2(𝑆3, 𝑆3 \ 𝑁) → 𝐻2(𝑆3) → 𝐻2(𝑆3 \ 𝑁) →

→ 𝐻3(𝑆3, 𝑆3 \ 𝑁) → 𝐻3(𝑆) → 0

ℤ

≅
≅

≅
≅

𝐻∗(𝑆3, 𝑆3 \ 𝑁) ≅ 𝐻∗(𝑁, 𝜕𝑁)

??????????????

Definition 2.1
Let 𝑆 be a Seifert matrix for a knot 𝐾. The Alexander polynomial Δ𝐾(𝑡) is
a Laurent polynomial:

Δ𝐾(𝑡) ∶= det(𝑡𝑆 − 𝑆𝑇 ) ∈ ℤ[𝑡, 𝑡−1] ≅ ℤ[ℤ]
Theorem 2.2
Δ𝐾(𝑡) is well defined up to multiplication by ±𝑡𝑘, for 𝑘 ∈ ℤ.
Proof. We need to show that Δ𝐾(𝑡) doesn’t depend on 𝑆-equivalence rela-
tion.

(1) Suppose 𝑆′ = 𝐶𝑆𝐶𝑇 , 𝐶 ∈ GL(𝑛, ℤ) (matrices invertible over ℤ). Then
det 𝐶 = 1 and:

det(𝑡𝑆′ − 𝑆′𝑇 ) = det(𝑡𝐶𝑆𝐶𝑇 − (𝐶𝑆𝐶𝑇 )𝑇 ) =
det(𝑡𝐶𝑆𝐶𝑇 − 𝐶𝑆𝑇 𝐶𝑇 ) = det 𝐶(𝑡𝑆 − 𝑆𝑇 )𝐶𝑇 = det(𝑡𝑆 − 𝑆𝑇 )
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(2) Let

𝐴 ∶= 𝑡
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 0
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

−
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆𝑇
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑡𝑆 − 𝑆𝑇
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 −1
𝑡 0

⎞⎟⎟⎟⎟⎟⎟
⎠

Using the Laplace expansion we get det 𝐴 = ±𝑡 det(𝑡𝑆 − 𝑆𝑇 ).

Example 2.1
If 𝐾 is a trefoil then we can take 𝑆 = (−1 −1

0 −1). Then

Δ𝐾(𝑡) = det (−𝑡 + 1 −𝑡
1 −𝑡 + 1) = (𝑡−1)2+𝑡 = 𝑡2−𝑡+1 ≠ 1 ⇒ trefoil is not trivial.

Fact 2.1
Δ𝐾(𝑡) is symmetric.

Proof. Let 𝑆 be an 𝑛 × 𝑛 matrix.

Δ𝐾(𝑡−1) = det(𝑡−1𝑆 − 𝑆𝑇 ) = (−𝑡)−𝑛 det(𝑡𝑆𝑇 − 𝑆) =
(−𝑡)−𝑛 det(𝑡𝑆 − 𝑆𝑇 ) = (−𝑡)−𝑛Δ𝐾(𝑡)

If 𝐾 is a knot, then 𝑛 is necessarily even, and so Δ𝐾(𝑡−1) = 𝑡−𝑛Δ𝐾(𝑡).

Lemma 2.1

1
2 deg Δ𝐾(𝑡) ≤ 𝑔3(𝐾), where 𝑑𝑒𝑔(𝑎𝑛𝑡𝑛 + ⋯ + 𝑎1𝑡𝑙) = 𝑘 − 𝑙.

Proof. If Σ is a genus 𝑔 - Seifert surface for 𝐾 then 𝐻1(Σ) = ℤ2𝑔, so 𝑆 is an
2𝑔 × 2𝑔 matrix. Therefore det(𝑡𝑆 − 𝑆𝑇 ) is a polynomial of degree at most
2𝑔.

Example 2.2
There are not trivial knots with Alexander polynomial equal 1, for example:
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Δ11𝑛34 ≡ 1.

Lemma 2.2 (Dehn)

Let 𝑀 be a 3-manifold and 𝐷2 𝑓
→ 𝑀3 be a map of a disk such that 𝑓∣𝜕𝐷2 is

an embedding. Then there exists an embedding 𝐷2 𝑔
↪ 𝑀 such that:

𝑔∣𝜕𝐷2 = 𝑓∣𝜕𝐷2.

Lecture 3

Example 3.1

𝐹 ∶ ℂ2 → ℂ a polynomial
𝐹(0) = 0

????????????
as a corollary we see that 𝐾𝑛,

𝑇 ????
is not slice unless 𝑚 = 0.

Theorem 3.1
The map 𝑗 ∶ 𝒞 ⟶ ℤ∞ is a surjection that maps 𝐾𝑛 to a linear independent
set. Moreover 𝒞 ≅ ℤ
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Fact 3.1 (Milnor Singular Points of Complex Hypersurfaces)

An oriented knot is called negative amphichiral if the mirror image 𝑚(𝐾) of
𝐾 is equivalent the reverse knot of 𝐾: 𝐾𝑟.

Problem 3.1
Prove that if 𝐾 is negative amphichiral, then 𝐾#𝐾 = 0 in 𝒞.
Example 3.2
Figure 8 knot is negative amphichiral.

Lecture 4 Concordance group March 18, 2019

Definition 4.1
Two knots 𝐾 and 𝐾′ are called (smoothly) concordant if there exists an
annulus 𝐴 that is smoothly embedded in 𝑆3 × [0, 1] such that

𝜕𝐴 = 𝐾′ × {1} ⊔ 𝐾 × {0}.

𝐾 𝐾′
𝑆3 ×{0} 𝑆3 ×{1}

𝑆3 × [0, 1]

Definition 4.2
A knot 𝐾 is called (smoothly) slice if 𝐾 is smoothly concordant to an unknot.
A knot 𝐾 is smoothly slice if and only if 𝐾 bounds a smoothly embedded disk
in 𝐵4.
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Let 𝑚(𝐾) denote a mirror image of a knot 𝐾.

Fact 4.1
For any 𝐾, 𝐾#𝑚(𝐾) is slice.

Fact 4.2
Concordance is an equivalence relation.

Fact 4.3
If 𝐾1 ∼ 𝐾1

′ and 𝐾2 ∼ 𝐾2
′, then 𝐾1#𝐾2 ∼ 𝐾1

′#𝐾2
′.

𝐾1

𝐾1′Annulus 𝐴1

𝐾2

𝐾2′Annulus 𝐴2

𝐾1′#𝐾2′
𝐾1#𝐾2

Figure 4: Sketch for Fakt 4.3.

Fact 4.4
𝐾#𝑚(𝐾) ∼ the unknot.

Theorem 4.1
Let 𝒞 denote a set of all equivalent classes for knots and {0} denote class of
all knots concordant to a trivial knot. 𝒞 is a group under taking connected
sums. The neutral element in the group is {0} and the inverse element of an
element {𝐾} ∈ 𝒞 is −{𝐾} = {𝑚𝐾}.

Fact 4.5
The figure eight knot is a torsion element in 𝒞 (2𝐾 ∼ the unknot).

Problem 4.1 (open)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments?
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Remark: 𝐾 ∼ 𝐾′ ⇔ 𝐾# − 𝐾′ is slice.

Let Ω be an oriented four-manifold.
???????
Suppose Σ is a Seifert surface and 𝑉 a Seifert form defined on Σ: (𝛼, 𝛽) ↦ lk(𝛼, 𝛽+).
Suppose 𝛼, 𝛽 ∈ 𝐻1(Σ, ℤ) (i.e. there are cycles).
??????????????
𝛼, 𝛽 ∈ ker(𝐻1(Σ, ℤ) ⟶ 𝐻1(Ω, ℤ)). Then there are two cycles 𝐴, 𝐵 ∈ Ω
such that 𝜕𝐴 = 𝛼 and 𝜕𝐵 = 𝛽. Let 𝐵+ be a push off of 𝐵 in the positive
normal direction such that 𝜕𝐵+ = 𝛽+. Then lk(𝛼, 𝛽+) = 𝐴 ⋅ 𝐵+

Lecture 5 April 8, 2019

𝑋 is a closed orientable four-manifold. Assume 𝜋1(𝑋) = 0 (it is not needed to
define the intersection form). In particular 𝐻1(𝑋) = 0. 𝐻2 is free (exercise).

𝐻2(𝑋, ℤ)
Poincaré duality
−−−−−−−−−→ 𝐻2(𝑋, ℤ) evaluation−−−−−−→ Hom(𝐻2(𝑋, ℤ), ℤ)

Intersection form: 𝐻2(𝑋, ℤ) × 𝐻2(𝑋, ℤ) ⟶ ℤ - symmetric, non singular.
Let 𝐴 and 𝐵 be closed, oriented surfaces in 𝑋.

Proposition 5.1
𝐴 ⋅ 𝐵 doesn’t depend of choice of 𝐴 and 𝐵 in their homology classes.
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Lecture 6 March 11, 2019

Definition 6.1
A link 𝐿 is fibered if there exists a map 𝜙 ∶ 𝑆3 \ 𝐿 ⟵ 𝑆1 which is locally
trivial fibration.

Lecture 7 April 15, 2019

In other words:
Choose a basis (𝑏1, ..., 𝑏𝑖)
???
of 𝐻2(𝑌 , ℤ, then 𝐴 = (𝑏𝑖, 𝑏𝑦)
??
is a matrix of intersection form:

ℤ𝑛/𝐴ℤ𝑛 ≅ 𝐻1(𝑌 , ℤ).

In particular ∣ det 𝐴 ∣= #𝐻1(𝑌 , ℤ).
That means - what is happening on boundary is a measure of degeneracy.

𝐻1(𝑌 , ℤ) × 𝐻1(𝑌 , ℤ) ⟶ ℚ/ℤ - a linking form

ℤ𝑛/𝐴ℤ
ℤ𝑛/𝐴ℤ

≅ ≅

(𝑎, 𝑏) ↦ 𝑎𝐴−1𝑏𝑇

?????????????????????????????????
The intersection form on a four-manifold determines the linking on the
boundary.
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Let 𝐾 ∈ 𝑆1 be a knot, Σ(𝐾) its double branched cover. If 𝑉 is a Seifert
matrix for 𝐾, then 𝐻1(Σ(𝐾), ℤ) ≅ ℤ𝑛/𝐴ℤ where 𝐴 = 𝑉 ×𝑉 𝑇 , 𝑛 = rank 𝑉 .
Let 𝑋 be the four-manifold obtained via the double branched cover of 𝐵4

𝐵4 Σ

 

𝐵4 
Σ̃

Σ

Figure 5: Pushing the Seifert surface in 4-ball.

branched along Σ̃.

Fact 7.1

• 𝑋 is a smooth four-manifold,

• 𝐻1(𝑋, ℤ) = 0,

• 𝐻2(𝑋, ℤ) ≅ ℤ𝑛

• The intersection form on 𝑋 is 𝑉 + 𝑉 𝑇 .

𝐵4 

Σ
Σ̃

pusched cycle 𝛼

cycle 𝛼

Figure 6: Cycle pushed in 4-ball.

Let 𝑌 = Σ(𝐾). Then:

𝐻1(𝑌 , ℤ) × 𝐻1(𝑌 , ℤ) ⟶ ℚ/ℤ
(𝑎, 𝑏) ↦ 𝑎𝐴−1𝑏𝑇 , 𝐴 = 𝑉 + 𝑉 𝑇 .

16



????????????????????????????

𝐻1(𝑌 , ℤ) ≅ ℤ𝑛/𝐴ℤ
𝐴 ⟶ 𝐵𝐴𝐶𝑇 Smith normal form

???????????????????????
In general

Lecture 8 May 20, 2019

Let 𝑀 be compact, oriented, connected four-dimensional manifold. If 𝐻1(𝑀, ℤ) = 0
then there exists a bilinear form - the intersection form on 𝑀 :

𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) ⟶ ℤ

ℤ𝑛

≅

Let us consider a specific case: 𝑀 has a boundary 𝑌 = 𝜕𝑀 . Betti number
𝑏1(𝑌 ) = 0, 𝐻1(𝑌 , ℤ) is finite. Then the intersection form can be degenerated
in the sense that:

𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) ⟶ ℤ 𝐻2(𝑀, ℤ) ⟶ Hom(𝐻2(𝑀, ℤ), ℤ)
(𝑎, 𝑏) ↦ ℤ 𝑎 ↦ (𝑎, _)𝐻2(𝑀, ℤ)

has coker precisely 𝐻1(𝑌 , ℤ).
???????????????
Let 𝐾 ⊂ 𝑆3 be a knot,
𝑋 = 𝑆3 \ 𝐾 - a knot complement,
𝑋

𝜌
−−→ 𝑋 - an infinite cyclic cover (universal abelian cover).

𝜋1(𝑋) ⟶ 𝜋1(𝑋)/[𝜋1(𝑋), 𝜋1(𝑋)] = 𝐻1(𝑋, ℤ) ≅ ℤ

17



𝐶∗(𝑋) has a structure of a ℤ[𝑡, 𝑡−1] ≅ ℤ[ℤ] module.
𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) - Alexander module,

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) × 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ⟶ ℚ/ℤ[𝑡, 𝑡−1]
Fact 8.1

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ≅ ℤ[𝑡, 𝑡−1]𝑛/(𝑡𝑉 − 𝑉 𝑇 )ℤ[𝑡, 𝑡−1]𝑛 ,
where 𝑉 is a Seifert matrix.

Fact 8.2

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) × 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ⟶ ℚ/ℤ[𝑡, 𝑡−1]
(𝛼, 𝛽) ↦ 𝛼−1(𝑡 − 1)(𝑡𝑉 − 𝑉 𝑇 )−1𝛽

Note that ℤ is not PID. Therefore we don’t have primer decomposition of
this moduli. We can simplify this problem by replacing ℤ by ℝ. We lose
some date by doing this transition.

𝜉 ∈ 𝑆1 \ {±1} 𝑝𝜉 = (𝑡 − 𝜉)(𝑡 − 𝜉−1)𝑡−1

𝜉 ∈ ℝ \ {±1} 𝑞𝜉 = (𝑡 − 𝜉)(𝑡 − 𝜉−1)𝑡−1

𝜉 ∉ ℝ ∪ 𝑆1 𝑞𝜉 = (𝑡 − 𝜉)(𝑡 − ̅𝜉)(𝑡 − 𝜉−1)(𝑡 − ̅𝜉−1)𝑡−2

Λ = ℝ[𝑡, 𝑡−1]
Then: 𝐻1(𝑋, Λ) ≅ ⨁

𝜉∈𝑆1\{±1}
𝑘≥0

(Λ/𝑝𝑘
𝜉
)𝑛𝑘,𝜉 ⊕ ⨁

𝜉∉𝑆1
𝑙≥0

(Λ/𝑞𝑙
𝜉
)𝑛𝑙,𝜉

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:
• John Milnor, On isometries of inner product spaces, 1969,

• Walter Neumann, Invariants of plane curve singularities , 1983,

18



• András Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

• Maciej Borodzik, Stefan Friedl The unknotting number and classical
invariants II, 2014.

Let 𝑝 = 𝑝𝜉, 𝑘 ≥ 0.

Λ/𝑝𝑘Λ × Λ/𝑝𝑘Λ ⟶ ℚ(𝑡)/Λ
(1, 1) ↦ 𝜅

Now: (𝑝𝑘 ⋅ 1, 1) ↦ 0
𝑝𝑘𝜅 = 0 ∈ ℚ(𝑡)/Λ

therfore 𝑝𝑘𝜅 ∈ Λ

we have (1, 1) ↦ ℎ
𝑝𝑘

ℎ is not uniquely defined: ℎ → ℎ + 𝑔𝑝𝑘 doesn’t affect paring.
Let ℎ = 𝑝𝑘𝜅.

Example 8.1

𝜙0((1, 1)) = +1
𝑝

𝜙1((1, 1)) = −1
𝑝

𝜙0 and 𝜙1 are not isomorphic.

Proof. Let Φ ∶ Λ/𝑝𝑘Λ ⟶ Λ/𝑝𝑘Λ be an isomorphism.
Let: Φ(1) = 𝑔 ∈ 𝜆

Λ/𝑝𝑘Λ
Φ−−−→Λ/𝑝𝑘Λ

𝜙0((1, 1)) = 1
𝑝𝑘 𝜙1((𝑔, 𝑔)) = 1

𝑝𝑘 (Φ is an isometry).
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Suppose for the paring 𝜙1((𝑔, 𝑔)) = 1
𝑝𝑘 we have 𝜙1((1, 1)) = −1

𝑝𝑘 . Then:

−𝑔 ̅𝑔
𝑝𝑘 = 1

𝑝𝑘 ∈ ℚ(𝑡)/Λ
−𝑔 ̅𝑔
𝑝𝑘 − 1

𝑝𝑘 ∈ Λ

−𝑔 ̅𝑔 ≡ 1 (mod 𝑝) in Λ
−𝑔 ̅𝑔 − 1 = 𝑝𝑘𝜔 for some 𝜔 ∈ Λ

evalueting at 𝜉:
>0

⏞⏞⏞⏞⏞− 𝑔(𝜉)𝑔(𝜉−1) −1 = 0 ⇒⇐

????????????????????

𝑔 = ∑ 𝑔𝑖𝑡𝑖

̅𝑔 = ∑ 𝑔𝑖𝑡−𝑖

̅𝑔(𝜉) = ∑ 𝑔𝑖𝜉𝑖 𝜉 ∈ 𝑆1

̅𝑔(𝜉) = ̅𝑔(𝜉)

Suppose 𝑔 = (𝑡 − 𝜉)𝛼𝑔′. Then (𝑡 − 𝜉)𝑘−𝛼 goes to 0 in Λ/𝑝𝑘Λ.

Theorem 8.1
Every sesquilinear non-degenerate pairing

Λ/𝑝𝑘 × Λ/𝑝 ⟷ ℎ
𝑝𝑘

is isomorphic either to the pairing wit ℎ = 1 or to the paring with ℎ = −1
depending on sign of ℎ(𝜉) (which is a real number).

Proof. There are two steps of the proof:

1. Reduce to the case when ℎ has a constant sign on 𝑆1.

2. Prove in the case, when ℎ has a constant sign on 𝑆1.
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Lemma 8.1
If 𝑃 is a symmetric polynomial such that 𝑃(𝜂) ≥ 0 for all 𝜂 ∈ 𝑆1, then 𝑃
can be written as a product 𝑃 = 𝑔 ̅𝑔 for some polynomial 𝑔.

Sketch of proof. Induction over deg 𝑃 .
Let 𝜁 ∉ 𝑆1 be a root of 𝑃 , 𝑃 ∈ ℝ[𝑡, 𝑡−1]. Assume 𝜁 ∉ ℝ. We know that
polynomial 𝑃 is divisible by (𝑡−𝜁), (𝑡− ̅𝜁), (𝑡−1 −𝜁) and (𝑡−1 − ̅𝜁). Therefore:

𝑃 ′ = 𝑃
(𝑡 − 𝜁)(𝑡 − ̅𝜁)(𝑡−1 − 𝜁)(𝑡−1 − ̅𝜁)

𝑃 ′ = 𝑔′ ̅𝑔

We set 𝑔 = 𝑔′(𝑡 − 𝜁)(𝑡 − ̅𝜁) and 𝑃 = 𝑔 ̅𝑔. Suppose 𝜁 ∈ 𝑆1. Then (𝑡 − 𝜁)2 ∣ 𝑃
(at least - otherwise it would change sign). Therefore:

𝑃 ′ = 𝑃
(𝑡 − 𝜁)2(𝑡−1 − 𝜁)2

𝑔 = (𝑡 − 𝜁)(𝑡−1 − 𝜁)𝑔′ etc.

The map (1, 1) ↦ ℎ
𝑝𝑘 = 𝑔 ̅𝑔ℎ

𝑝𝑘 is isometric whenever 𝑔 is coprime with 𝑃 .

Lemma 8.2
Suppose 𝐴 and 𝐵 are two symmetric polynomials that are coprime and that
∀𝑧 ∈ 𝑆1 either 𝐴(𝑧) > 0 or 𝐵(𝑧) > 0. Then there exist symmetric polyno-
mials 𝑃 , 𝑄 such that 𝑃(𝑧), 𝑄(𝑧) > 0 for 𝑧 ∈ 𝑆1 and 𝑃𝐴 + 𝑄𝐵 ≡ 1.

Idea of proof. For any 𝑧 find an interval (𝑎𝑧, 𝑏𝑧) such that if 𝑃(𝑧) ∈ (𝑎𝑧, 𝑏𝑧)
and 𝑃(𝑧)𝐴(𝑧) + 𝑄(𝑧)𝐵(𝑧) = 1, then 𝑄(𝑧) > 0, 𝑥(𝑧) = 𝑎𝑧+𝑏𝑧

𝑖 is a continues
function on 𝑆1 approximating 𝑧 by a polynomial .
??????????????????????????

(1, 1) ↦ ℎ
𝑝𝑘 ↦ 𝑔 ̅𝑔ℎ

𝑝𝑘

𝑔 ̅𝑔ℎ + 𝑝𝑘𝜔 = 1
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Apply Lemma 8.2 for 𝐴 = ℎ, 𝐵 = 𝑝2𝑘. Then, if the assumptions are satisfied,
𝑃ℎ + 𝑄𝑝2𝑘 = 1
𝑝 > 0 ⇒ 𝑝 = 𝑔 ̅𝑔

𝑝 = (𝑡 − 𝜉)(𝑡 − ̅𝜉)𝑡−1

so 𝑝 ≥ 0 on 𝑆1

𝑝(𝑡) = 0 ⇔ 𝑡 = 𝜉𝑜𝑟𝑡 = ̅𝜉
ℎ(𝜉) > 0
ℎ( ̅𝜉) > 0

𝑔 ̅𝑔ℎ + 𝑄𝑝2𝑘 = 1
𝑔 ̅𝑔ℎ ≡ 1 mod 𝑝2𝑘

𝑔 ̅𝑔 ≡ 1 mod 𝑝𝑘

???????????????????????????????
If 𝑃 has no roots on 𝑆1 then 𝐵(𝑧) > 0 for all 𝑧, so the assumptions of Lemma
8.2 are satisfied no matter what 𝐴 is.

?????????????????

(Λ/𝑝𝑘
𝜉

× Λ/𝑝𝑘
𝜉
) ⟶ 𝜖

𝑝𝑘
𝜉

, 𝜉 ∈ 𝑆1 \ {±1}

(Λ/𝑞𝑘
𝜉

× Λ/𝑞𝑘
𝜉
) ⟶ 1

𝑞𝑘
𝜉

, 𝜉 ∉ 𝑆1

??????????????????? 1 ?? epsilon?

Theorem 8.2
(Matumoto, Conway-Borodzik-Politarczyk) Let 𝐾 be a knot,

𝐻1(𝑋, Λ) × 𝐻1(𝑋, Λ) = ⨁
𝑘,𝜉,𝜖

𝜉𝑖𝑛𝑆1

(Λ/𝑝𝑘
𝜉
, 𝜖)𝑛𝑘,𝜉,𝜖 ⊕ ⨁

𝑘,𝜂
(Λ/𝑝𝑘

𝜉
)𝑚𝑘

Let 𝛿𝜎(𝜉) = lim
𝜀→0+

𝜎(𝑒2𝜋𝑖𝜀𝜉) − 𝜎(𝑒−2𝜋𝑖𝜀𝜉),

then 𝜎𝑗(𝜉) = 𝜎(𝜉) − 1
2 lim

𝜀→0
𝜎(𝑒2𝜋𝑖𝜀𝜉) + 𝜎(𝑒−2𝜋𝑖𝜀𝜉)
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The jump at 𝜉 is equal to 2 ∑
𝑘𝑖 odd

𝜖𝑖. The peak of the signature function is

equal to ∑
𝑘𝑖even

𝜖𝑖.

Lecture 9 May 27, 2019

....

Definition 9.1
A square hermitian matrix 𝐴 of size 𝑛.

field of fractions

Lecture 10 June 3, 2019

Theorem 10.1
Let 𝐾 be a knot and 𝑢(𝐾) its unknotting number. Let 𝑔4(𝐾) be a minimal
four genus of a smooth surface 𝑆 in 𝐵4 such that 𝜕𝑆 = 𝐾. Then:

𝑢(𝐾) ≥ 𝑔4(𝐾)

Proof. Recall that if 𝑢(𝐾) = 𝑢 then 𝐾 bounds a disk Δ with 𝑢 ordinary
double points.
Remove from Δ the two self intersecting and glue the Seifert surface for the
Hopf link. The reality surface 𝑆 has Euler characteristic 𝜒(𝑆) = 1 − 2𝑢.
Therefore 𝑔4(𝑆) = 𝑢 .
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???????????????????

Example 10.1
The knot 820 is slice: 𝜎 ≡ 0 almost everywhere but 𝜎(𝑒2𝜋𝑖

6 ) = +1.

Surgery
Recall that 𝐻1(𝑆1×𝑆1, ℤ) = ℤ3. As generators for 𝐻1 we can set 𝛼 = [𝑆1 × {pt}]
and 𝛽 = [{pt} ×𝑆1]. Suppose 𝜙 ∶ 𝑆1 × 𝑆1 ⟶ 𝑆1 × 𝑆1 is a diffeomorphism.
Consider an induced map on homology group:

𝐻1(𝑆1 × 𝑆1, ℤ) ∋ 𝜙∗(𝛼) = 𝑝𝛼 + 𝑞𝛽, 𝑝, 𝑞 ∈ ℤ,
𝜙∗(𝛽) = 𝑟𝛼 + 𝑠𝛽, 𝑟, 𝑠 ∈ ℤ,

𝜙∗ = (𝑝 𝑞
𝑟 𝑠)

As 𝜙∗ is diffeomorphis, it must be invertible over ℤ. Then for a direction
preserving diffeomorphism we have det 𝜙∗ = 1. Therefore 𝜙∗ ∈ SL(2, ℤ).
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Theorem 10.2
Every such a matrix can be realized as a torus.

Proof. (I) Geometric reason

𝜙𝑡 ∶ 𝑆1 × 𝑆1 ⟶ 𝑆1 × 𝑆1

𝑆1 × {pt} ⟶ {pt} ×𝑆1

{pt} ×𝑆1 ⟶ 𝑆1 × {pt}
(𝑥, 𝑦) ↦ (−𝑦, 𝑥)

(II)

Lecture 11 balagan

Proof. By Poincaré duality we know that:

𝐻3(Ω, 𝑌 ) ≅ 𝐻0(Ω),
𝐻2(𝑌 ) ≅ 𝐻0(𝑌 ),
𝐻2(Ω) ≅ 𝐻1(Ω, 𝑌 ),

𝐻2(Ω, 𝑌 ) ≅ 𝐻1(Ω).

Therefore dimℚ
𝐻1(𝑌 )/𝑉 = dimℚ 𝑉 .

Suppose 𝑔(𝐾) = 0 (𝐾 is slice). Then 𝐻1(Σ, ℤ) ≅ 𝐻1(𝑌 , ℤ). Let 𝑔Σ be
the genus of Σ, dim 𝐻1(𝑌 , ℤ) = 2𝑔Σ. Then the Seifert form 𝑉 on a 4 -
manifolds???
?????
has a subspace of dimension 𝑔Σ on which it is zero:
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𝑉 =
𝑔Σ

⎧{
⎨{⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑔Σ
⏞0 … 0 ∗ … ∗
⋮ ⋮ ⋮ ⋮
0 … 0 ∗ … ∗
∗ … ∗ ∗ … ∗
⋮ ⋮ ⋮ ⋮
∗ … ∗ ∗ … ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠2𝑔Σ×2𝑔Σ

Lecture 12 May 6, 2019

Definition 12.1
Let 𝑋 be a knot complement. Then 𝐻1(𝑋, ℤ) ≅ ℤ and there exists an

epimorphism 𝜋1(𝑋)
𝜙
↠ ℤ.

The infinite cyclic cover of a knot complement 𝑋 is the cover associated with
the epimorphism 𝜙.

𝑋 −↠ 𝑋

Formal sums ∑ 𝜙𝑖(𝑡)𝑎𝑖 + ∑ 𝜙𝑗(𝑡)𝛼𝑗
finitely generated as a ℤ[𝑡, 𝑡−1] module.
Let 𝑣𝑖𝑗 = lk(𝑎𝑖, 𝑎+

𝑗 ). Then 𝑉 = {𝑣𝑖𝑗}𝑛
𝑖,𝑗=1 is the Seifert matrix associ-

ated to the surface Σ and the basis 𝑎1, … , 𝑎𝑛. Therefore 𝑎+
𝑘 = ∑𝑗 𝑣𝑗𝑘𝛼𝑗.

Then lk(𝑎𝑖, 𝑎+
𝑘 ) = lk(𝑎+

𝑘 , 𝑎𝑖) = ∑𝑗 𝑣𝑗𝑘 lk(𝛼𝑗, 𝑎𝑖) = 𝑣𝑖𝑘. We also notice that
lk(𝑎𝑖, 𝑎−

𝑗 ) = lk(𝑎+
𝑖 , 𝑎𝑗) = 𝑣𝑖𝑗 and 𝑎−

𝑗 = ∑𝑘 𝑣𝑘𝑗𝑡−1𝛼𝑗.
The homology of 𝑋 is generated by 𝑎1, … , 𝑎𝑛 and relations.

Definition 12.2
The ℤ[𝑡, 𝑡−1] module 𝐻1(𝑋) is called the Alexander module of knot 𝐾.

26



𝑆0 𝑁0 𝑆1 𝑁1𝑁−1

𝑡−1𝛼1, 𝑡−1𝛼2, … , 𝑡−1𝛼𝑛

𝑡𝑎1, 𝑡𝑎2, … , 𝑡𝑎𝑛𝑎1, 𝑎2, … , 𝑎𝑛

𝑎𝑗 𝑎+
𝑖

𝛼1, 𝛼2, … , 𝛼𝑛

Figure 7: Infinite cyclic cover of a knot complement.

Let 𝑅 be a PID, 𝑀 a finitely generated 𝑅 module. Let us consider

𝑅𝑘 𝐴⟶ 𝑅𝑛 −↠ 𝑀,

where 𝐴 is a 𝑘 × 𝑛 matrix, assume 𝑘 ≥ 𝑛. The order of 𝑀 is the gcd of all
determinants of the 𝑛 × 𝑛 minors of 𝐴. If 𝑘 = 𝑛 then ord 𝑀 = det 𝐴.

Theorem 12.1
Order of 𝑀 doesn’t depend on 𝐴.

For knots the order of the Alexander module is the Alexander polynomial.

Theorem 12.2

∀𝑥 ∈ 𝑀 ∶ (ord 𝑀)𝑥 = 0.
𝑀 is well defined up to a unit in 𝑅.

Blanchfield pairing
Lecture 13 balagan

Theorem 13.1
Let 𝐻𝑝 be a 𝑝 - torsion part of 𝐻. There exists an orthogonal decomposition
of 𝐻𝑝:

𝐻𝑝 = 𝐻𝑝,1 ⊕ ⋯ ⊕ 𝐻𝑝,𝑟𝑝
.
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lk(𝛼𝑗, 𝑎𝑖) = 𝛿𝑖𝑗

𝑎1, … , 𝑎𝑛 - generators of 𝐻1(𝑆)
𝐾

𝑁

𝛼1, … , 𝛼𝑛 - dual generators of 𝐻1(𝑁)

𝑆

Σ × (−1, 1)

Figure 8: A knot complement.

𝐻𝑝,𝑖 is a cyclic module:

𝐻𝑝,𝑖 = ℤ[𝑡, 𝑡−1]/𝑝𝑘𝑖ℤ[𝑡, 𝑡−1]

The proof is the same as over ℤ.
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