Contents

1 Basic definitions February 25, 20192
1.1 Reidemeister moves 4
1.2 Seifert surface 4
1.3 Seifert matrix 7
2 March 4, 20198
3 11
4 Concordance group March 18, 2019125
April 8, 20191467March 11, 201915April 15, 201915
May 20, 2019179May 27, 201923
10
June 3, 201923
11 balagan 25
12May 6, 201926
13 balagan 27

Lecture 1 Basic definitions

Definition 1.1

A knot K in S^{3} is a smooth (PL - smooth) embedding of a circle S^{1} in S^{3} :

$$
\varphi: S^{1} \hookrightarrow S^{3}
$$

Usually we think about a knot as an image of an embedding: $K=\varphi\left(S^{1}\right)$.
Example 1.1

- Knots:

- Not knots:
 (it is not an injection),
 (it is not smooth).

Definition 1.2

Two knots $K_{0}=\varphi_{0}\left(S^{1}\right), K_{1}=\varphi_{1}\left(S^{1}\right)$ are equivalent if the embeddings φ_{0} and φ_{1} are isotopic, that is there exists a continues function

$$
\begin{aligned}
& \Phi: S^{1} \times[0,1] \hookrightarrow S^{3} \\
& \Phi(x, t)=\Phi_{t}(x)
\end{aligned}
$$

such that Φ_{t} is an embedding for any $t \in[0,1], \Phi_{0}=\varphi_{0}$ and $\Phi_{1}=\varphi_{1}$.

Theorem 1.1

Two knots K_{0} and K_{1} are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi=\left\{\psi_{t}: t \in[0,1]\right\}$ such that:

$$
\begin{aligned}
& \psi(t)=\psi_{t} \text { is continius on } t \in[0,1] \\
& \psi_{t}: S^{3} \hookrightarrow S^{3} \\
& \psi_{0}=i d \\
& \psi_{1}\left(K_{0}\right)=K_{1}
\end{aligned}
$$

Definition 1.3

A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t)=(\cos t, \sin t, 0)$, where $t \in[0,2 \pi]$ is a parametrisation of S^{1}.

Definition 1.4

A link with k-components is a (smooth) embedding of $\overbrace{S^{1} \sqcup \ldots \sqcup S^{1}}^{k}$ in S^{3}

Example 1.2

Links:

- a trivial link with 3 components:

- a hopf link:

- a Whitehead link:

- Borromean link:

Definition 1.5

A link diagram D_{π} is a picture over projection π of a link L in $\mathbb{R}^{3}\left(S^{3}\right)$ to \mathbb{R}^{2} (S^{2}) such that:
(1) $D_{\left.\pi\right|_{L}}$ is non degenerate:

(2) the double points are not degenerate: $/$
(3) there are no triple point: \nless

There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.
Every link admits a link diagram.
Let D be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).
We can distinguish two types of crossings: right-handed (\times), called a positive crossing, and left-handed $\left(\lambda^{\wedge}\right)$, called a negative crossing.

1.1 Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram as shown below:
I

Theorem 1.2 (Reidemeister, 1927)
Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by smoothing each crossing:

$$
\begin{aligned}
& x \mapsto)(\\
& x \mapsto)(
\end{aligned}
$$

We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in \mathbb{R}^{3} (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface Σ such that $\partial \Sigma=L$.

Figure 1: Constructing a Seifert surface.

Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: D_{1} and D_{2}; now we glue both components on the boundaries: ∂D_{1} and ∂D_{2}.

Theorem 1.3 (Seifert)
Every link in S^{3} bounds a surface Σ that is compact, connected and orientable. Such a surface is called a Seifert surface.

Definition 1.6

The three genus $g_{3}(K)(g(K))$ of a knot K is the minimal genus of a Seifert surface Σ for K.

Corollary 1.1

A knot K is trivial if and only $g_{3}(K)=0$.

Figure 2: Connecting two surfaces.

Figure 3: Genus of an orientable surface.

Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).

Definition 1.7

Suppose α and β are two simple closed curves in \mathbb{R}^{3}. On a diagram L consider all crossings between α and β. Let N_{+}be the number of positive crossings, $N_{-}-$negative. Then the linking number: $\operatorname{lk}(\alpha, \beta)=\frac{1}{2}\left(N_{+}-N_{-}\right)$.

Let α and β be two disjoint simple cross curves in S^{3}. Let $\nu(\beta)$ be a tubular neighbourhood of β. The linking number can be interpreted via first homology group, where $\operatorname{lk}(\alpha, \beta)$ is equal to evaluation of α as element of first
homology group of the complement of β :

$$
\alpha \in H_{1}\left(S^{3} \backslash \nu(\beta), \mathbb{Z}\right) \cong \mathbb{Z}
$$

Example 1.3

- Hopf link:

- $T(6,2)$ link:

Fact 1.1

$$
g_{3}(\Sigma)=\frac{1}{2} b_{1}(\Sigma)=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} H_{1}(\Sigma, \mathbb{R}),
$$

where b_{1} is first Betti number of Σ.

1.3 Seifert matrix

Let L be a link and Σ be an oriented Seifert surface for L. Choose a basis for $H_{1}(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_{1}, \ldots, \alpha_{n}$. Let $\alpha_{1}^{+}, \ldots \alpha_{n}^{+}$be copies of α_{i} lifted up off the surface (push up along a vector field normal to Σ). Note that elements α_{i} are contained in the Seifert surface while all α_{i}^{+}are don't intersect the surface. Let $\operatorname{lk}\left(\alpha_{i}, \alpha_{j}^{+}\right)=\left\{a_{i j}\right\}$. Then the matrix $S=\left\{a_{i j}\right\}_{i, j=1}^{n}$ is called a Seifert matrix for L. Note that by choosing a different basis we get a different matrix.

Theorem 1.4

The Seifert matrices S_{1} and S_{2} for the same link L are S-equivalent, that is, S_{2} can be obtained from S_{1} by a sequence of following moves:
(1) $V \rightarrow A V A^{T}$, where A is a matrix with integer coefficients,
(2) $V \rightarrow\left(\begin{array}{ccc|cc} & & & * & 0 \\ \vdots & & \vdots \\ \vdots & & & * & 0 \\ \hline * & \ldots & * & 0 & 0 \\ 0 & \ldots & 0 & 1 & 0\end{array}\right) \quad$ or $\quad V \rightarrow\left(\begin{array}{ccc|cc} & & & * & 0 \\ & V & & \vdots & \vdots \\ & & & * & 0 \\ \hline * & \ldots & * & 0 & 1 \\ 0 & \ldots & 0 & 0 & 0\end{array}\right)$
(3) inverse of (2)

Lecture 2

March 4, 2019

Theorem 2.1

For any knot $K \subset S^{3}$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K)=K$
Proof. ("joke")
Let $K \in S^{3}$ be a knot and $N=\nu(K)$ be its tubular neighbourhood. Because K and N are homotopy equivalent, we get:

$$
H^{1}\left(S^{3} \backslash N\right) \cong H^{1}\left(S^{3} \backslash K\right)
$$

Let us consider a long exact sequence of cohomology of a pair $\left(S^{3}, S^{3} \backslash N\right)$ with integer coefficients:

$$
\begin{aligned}
& \mathbb{Z} \\
& 211 \\
& H^{0}\left(S^{3}\right) \rightarrow H^{0}\left(S^{3} \backslash N\right) \rightarrow \\
& \rightarrow H^{1}\left(S^{3}, S^{3} \backslash N\right) \rightarrow \underset{\text { H }}{\text { 1 }}\left(S^{3}\right) \rightarrow \quad H^{1}\left(S^{3} \backslash N\right) \rightarrow \\
& 0 \\
& 21 \\
& \rightarrow H^{2}\left(S^{3}, S^{3} \backslash N\right) \rightarrow H^{2}\left(S^{3}\right) \rightarrow H^{2}\left(S^{3} \backslash N\right) \rightarrow \\
& \rightarrow H^{3}\left(S^{3}, S^{3} \backslash N\right) \rightarrow \quad H^{3}(S) \rightarrow \quad 0 \\
& 21 \\
& \mathbb{Z} \\
& H^{*}\left(S^{3}, S^{3} \backslash N\right) \cong H^{*}(N, \partial N)
\end{aligned}
$$

??????????????

Definition 2.1

Let S be a Seifert matrix for a knot K. The Alexander polynomial $\Delta_{K}(t)$ is a Laurent polynomial:

$$
\Delta_{K}(t):=\operatorname{det}\left(t S-S^{T}\right) \in \mathbb{Z}\left[t, t^{-1}\right] \cong \mathbb{Z}[\mathbb{Z}]
$$

Theorem 2.2

$\Delta_{K}(t)$ is well defined up to multiplication by $\pm t^{k}$, for $k \in \mathbb{Z}$.
Proof. We need to show that $\Delta_{K}(t)$ doesn't depend on S-equivalence relation.
(1) Suppose $S^{\prime}=C S C^{T}, C \in \operatorname{GL}(n, \mathbb{Z})$ (matrices invertible over \mathbb{Z}). Then $\operatorname{det} C=1$ and:

$$
\begin{aligned}
& \operatorname{det}\left(t S^{\prime}-S^{\prime T}\right)=\operatorname{det}\left(t C S C^{T}-\left(C S C^{T}\right)^{T}\right)= \\
& \operatorname{det}\left(t C S C^{T}-C S^{T} C^{T}\right)=\operatorname{det} C\left(t S-S^{T}\right) C^{T}=\operatorname{det}\left(t S-S^{T}\right)
\end{aligned}
$$

(2) Let

$$
A:=t\left(\begin{array}{ccc|cc}
& & & * & 0 \\
& S & & \vdots & \vdots \\
& & * & 0 \\
\hline * & \ldots & * & 0 & 0 \\
0 & \ldots & 0 & 1 & 0
\end{array}\right)-\left(\begin{array}{ccc|cc}
& & & * & 0 \\
& S^{T} & & \vdots & \vdots \\
& & & * & 0 \\
\hline * & \ldots & * & 0 & 1 \\
0 & \ldots & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc|cc}
t S & -S^{T} & * & 0 \\
& & \vdots \\
& & & 0 \\
\hline * & \ldots & * & 0 & -1 \\
0 & \ldots & 0 & t & 0
\end{array}\right)
$$

Using the Laplace expansion we get $\operatorname{det} A= \pm t \operatorname{det}\left(t S-S^{T}\right)$.

Example 2.1

If K is a trefoil then we can take $S=\left(\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right)$. Then
$\Delta_{K}(t)=\operatorname{det}\left(\begin{array}{cc}-t+1 & -t \\ 1 & -t+1\end{array}\right)=(t-1)^{2}+t=t^{2}-t+1 \neq 1 \Rightarrow$ trefoil is not trivial.
Fact 2.1
$\Delta_{K}(t)$ is symmetric.
Proof. Let S be an $n \times n$ matrix.

$$
\begin{aligned}
& \Delta_{K}\left(t^{-1}\right)=\operatorname{det}\left(t^{-1} S-S^{T}\right)=(-t)^{-n} \operatorname{det}\left(t S^{T}-S\right)= \\
& (-t)^{-n} \operatorname{det}\left(t S-S^{T}\right)=(-t)^{-n} \Delta_{K}(t)
\end{aligned}
$$

If K is a knot, then n is necessarily even, and so $\Delta_{K}\left(t^{-1}\right)=t^{-n} \Delta_{K}(t)$.

Lemma 2.1

$$
\frac{1}{2} \operatorname{deg} \Delta_{K}(t) \leq g_{3}(K), \text { where } \operatorname{deg}\left(a_{n} t^{n}+\cdots+a_{1} t^{l}\right)=k-l
$$

Proof. If Σ is a genus g - Seifert surface for K then $H_{1}(\Sigma)=\mathbb{Z}^{2 g}$, so S is an $2 g \times 2 g$ matrix. Therefore $\operatorname{det}\left(t S-S^{T}\right)$ is a polynomial of degree at most $2 g$.

Example 2.2

There are not trivial knots with Alexander polynomial equal 1, for example:

Lemma 2.2 (Dehn)
Let M be a 3-manifold and $D^{2} \xrightarrow{f} M^{3}$ be a map of a disk such that $f_{\mid \partial D^{2}}$ is an embedding. Then there exists an embedding $D^{2} \stackrel{g}{\hookrightarrow} M$ such that:

$$
g_{\mid \partial D^{2}}=f_{\mid \partial D^{2}}
$$

Lecture 3

Example 3.1

$$
\begin{aligned}
& F: \mathbb{C}^{2} \rightarrow \mathbb{C} \text { a polynomial } \\
& F(0)=0
\end{aligned}
$$

????????????
as a corollary we see that $K_{T}^{n,}$????
is not slice unless $m=0$.

Theorem 3.1

The map $j: \mathcal{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps K_{n} to a linear independent set. Moreover $\mathcal{C} \cong \mathbb{Z}$

Fact 3.1 (Milnor Singular Points of Complex Hypersurfaces)

An oriented knot is called negative amphichiral if the mirror image $m(K)$ of K is equivalent the reverse knot of $K: K^{r}$.

Problem 3.1

Prove that if K is negative amphichiral, then $K \# K=0$ in \mathcal{C}.

Example 3.2

Figure 8 knot is negative amphichiral.

Lecture 4 Concordance group
March 18, 2019

Definition 4.1

Two knots K and K^{\prime} are called (smoothly) concordant if there exists an annulus A that is smoothly embedded in $S^{3} \times[0,1]$ such that

$$
\partial A=K^{\prime} \times\{1\} \sqcup K \times\{0\} .
$$

Definition 4.2

A knot K is called (smoothly) slice if K is smoothly concordant to an unknot. A knot K is smoothly slice if and only if K bounds a smoothly embedded disk in B^{4}.

Let $m(K)$ denote a mirror image of a knot K.

Fact 4.1

For any $K, K \# m(K)$ is slice.

Fact 4.2

Concordance is an equivalence relation.
Fact 4.3
If $K_{1} \sim K_{1}{ }^{\prime}$ and $K_{2} \sim K_{2}{ }^{\prime}$, then $K_{1} \# K_{2} \sim K_{1}{ }^{\prime} \# K_{2}{ }^{\prime}$.

Figure 4: Sketch for Fakt 4.3.

Fact 4.4

$K \# m(K) \sim$ the unknot.

Theorem 4.1

Let \mathcal{C} denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot. \mathcal{C} is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathcal{C}$ is $-\{K\}=\{m K\}$.

Fact 4.5

The figure eight knot is a torsion element in \mathcal{C} ($2 K \sim$ the unknot).
Problem 4.1 (open)
Are there in concordance group torsion elements that are not 2 torsion elements?

Remark: $K \sim K^{\prime} \Leftrightarrow K \#-K^{\prime}$ is slice.
Let Ω be an oriented four-manifold.
???????
Suppose Σ is a Seifert surface and V a Seifert form defined on $\Sigma:(\alpha, \beta) \mapsto \operatorname{lk}\left(\alpha, \beta^{+}\right)$.
Suppose $\alpha, \beta \in H_{1}(\Sigma, \mathbb{Z})$ (i.e. there are cycles).
??????????????
$\alpha, \beta \in \operatorname{ker}\left(H_{1}(\Sigma, \mathbb{Z}) \longrightarrow H_{1}(\Omega, \mathbb{Z})\right)$. Then there are two cycles $A, B \in \Omega$ such that $\partial A=\alpha$ and $\partial B=\beta$. Let B^{+}be a push off of B in the positive normal direction such that $\partial B^{+}=\beta^{+}$. Then $\operatorname{lk}\left(\alpha, \beta^{+}\right)=A \cdot B^{+}$

Lecture 5
April 8, 2019
X is a closed orientable four-manifold. Assume $\pi_{1}(X)=0$ (it is not needed to define the intersection form). In particular $H_{1}(X)=0 . H_{2}$ is free (exercise).

$$
H_{2}(X, \mathbb{Z}) \xrightarrow{\text { Poincaré duality }} H^{2}(X, \mathbb{Z}) \xrightarrow{\text { evaluation }} \operatorname{Hom}\left(H_{2}(X, \mathbb{Z}), \mathbb{Z}\right)
$$

Intersection form: $H_{2}(X, \mathbb{Z}) \times H_{2}(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular. Let A and B be closed, oriented surfaces in X.

Proposition 5.1

$A \cdot B$ doesn't depend of choice of A and B in their homology classes.

Lecture 6
March 11, 2019

Definition 6.1

A link L is fibered if there exists a map $\phi: S^{3} \backslash L \longleftarrow S^{1}$ which is locally trivial fibration.

Lecture 7

April 15, 2019

In other words:
Choose a basis $\left(b_{1}, \ldots, b_{i}\right)$
???
of $H_{2}\left(Y, \mathbb{Z}\right.$, then $A=\left(b_{i}, b_{y}\right)$
??
is a matrix of intersection form:

$$
\mathbb{Z}^{n} /_{A \mathbb{Z}^{n}} \cong H_{1}(Y, \mathbb{Z})
$$

In particular $|\operatorname{det} A|=\# H_{1}(Y, \mathbb{Z})$.
That means - what is happening on boundary is a measure of degeneracy.

$$
\begin{array}{cc}
H_{1}(Y, \mathbb{Z}) & \times H_{1}(Y, \mathbb{Z}) \\
\text { 2\| } & \longrightarrow \\
\mathbb{Z}^{n} / A \mathbb{Q} / \mathbb{Z}^{\text {2 }} \text { - a linking form } \\
& \mathbb{Z}^{n} / A \mathbb{Z} \\
& (a, b) \mapsto a A^{-1} b^{T}
\end{array}
$$

?????????????????????????????????
The intersection form on a four-manifold determines the linking on the boundary.

Let $K \in S^{1}$ be a knot, $\Sigma(K)$ its double branched cover. If V is a Seifert matrix for K, then $H_{1}(\Sigma(K), \mathbb{Z}) \cong \mathbb{Z}^{n} / A \mathbb{Z}$ where $A=V \times V^{T}, n=\operatorname{rank} V$. Let X be the four-manifold obtained via the double branched cover of B^{4}

Figure 5: Pushing the Seifert surface in 4-ball.
branched along $\widetilde{\Sigma}$.

Fact 7.1

- X is a smooth four-manifold,
- $H_{1}(X, \mathbb{Z})=0$,
- $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}^{n}$
- The intersection form on X is $V+V^{T}$.

Figure 6: Cycle pushed in 4-ball.
Let $Y=\Sigma(K)$. Then:

$$
\begin{aligned}
H_{1}(Y, \mathbb{Z}) \times H_{1}(Y, \mathbb{Z}) & \longrightarrow \mathbb{Q} / \mathbb{Z} \\
(a, b) & \mapsto a A^{-1} b^{T}, \quad A=V+V^{T}
\end{aligned}
$$

????????????????????????????

$$
\begin{aligned}
& H_{1}(Y, \mathbb{Z}) \cong \mathbb{Z}^{n} / A \mathbb{Z} \\
A \longrightarrow B A C^{T} & \text { Smith normal form }
\end{aligned}
$$

???????????????????????
In general

Lecture 8
May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If $H_{1}(M, \mathbb{Z})=0$ then there exists a bilinear form - the intersection form on M :

$$
\begin{aligned}
& \underset{2 \|}{H_{2}(M, \mathbb{Z})} \quad \times \quad H_{2}(M, \mathbb{Z}) \longrightarrow \quad \mathbb{Z} \\
& \quad \mathbb{Z}^{n}
\end{aligned}
$$

Let us consider a specific case: M has a boundary $Y=\partial M$. Betti number $b_{1}(Y)=0, H_{1}(Y, \mathbb{Z})$ is finite. Then the intersection form can be degenerated in the sense that:

$$
\begin{array}{rlrl}
H_{2}(M, \mathbb{Z}) \times H_{2}(M, \mathbb{Z}) & \longrightarrow \mathbb{Z} & H_{2}(M, \mathbb{Z}) & \longrightarrow \operatorname{Hom}\left(H_{2}(M, \mathbb{Z}), \mathbb{Z}\right) \\
(a, b) & \mapsto \mathbb{Z} & a & \mapsto\left(a, _\right) H_{2}(M, \mathbb{Z})
\end{array}
$$

has coker precisely $H_{1}(Y, \mathbb{Z})$.
???????????????
Let $K \subset S^{3}$ be a knot, $X=S^{3} \backslash K$ - a knot complement, $\widetilde{X} \xrightarrow{\rho} X$ - an infinite cyclic cover (universal abelian cover).

$$
\pi_{1}(X) \longrightarrow \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]=H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}
$$

$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}\left[t, t^{-1}\right] \cong \mathbb{Z}[\mathbb{Z}]$ module.
$H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right)$ - Alexander module,

$$
H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \times H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \longrightarrow \mathbb{Q} / \mathbb{Z}\left[t, t^{-1}\right]
$$

Fact 8.1

$$
H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \cong \mathbb{Z}\left[t, t^{-1}\right]^{n} /\left(t V-V^{T}\right) \mathbb{Z}\left[t, t^{-1}\right]^{n}
$$

where V is a Seifert matrix.

Fact 8.2

$$
\begin{aligned}
H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) \times H_{1}\left(\widetilde{X}, \mathbb{Z}\left[t, t^{-1}\right]\right) & \longrightarrow \mathbb{Q} / \mathbb{Z}\left[t, t^{-1}\right] \\
(\alpha, \beta) & \mapsto \alpha^{-1}(t-1)\left(t V-V^{T}\right)^{-1} \beta
\end{aligned}
$$

Note that \mathbb{Z} is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing \mathbb{Z} by \mathbb{R}. We lose some date by doing this transition.

$$
\begin{aligned}
& \xi \in S^{1} \backslash\{ \pm 1\} \quad p_{\xi}=(t-\xi)\left(t-\xi^{-1}\right) t^{-1} \\
& \xi \in \mathbb{R} \backslash\{ \pm 1\} \quad q_{\xi}=(t-\xi)\left(t-\xi^{-1}\right) t^{-1} \\
& \xi \notin \mathbb{R} \cup S^{1} \quad q_{\xi}=(t-\xi)(t-\bar{\xi})\left(t-\xi^{-1}\right)\left(t-\bar{\xi}^{-1}\right) t^{-2} \\
& \Lambda=\mathbb{R}\left[t, t^{-1}\right] \\
& \text { Then: } H_{1}(\widetilde{X}, \Lambda) \cong \bigoplus_{\xi \in S^{1} \backslash\{ \pm 1\}}^{k \geq 0}< \\
& \left(\Lambda / p_{\xi}^{k}\right)^{n_{k}, \xi} \oplus \bigoplus_{\substack{\xi \notin S^{1} \\
l \geq 0}}\left(\Lambda / q_{\xi}^{l} n^{n_{l}, \xi}\right.
\end{aligned}
$$

We can make this composition orthogonal with respect to the Blanchfield paring.

Historical remark:

- John Milnor, On isometries of inner product spaces, 1969,
- Walter Neumann, Invariants of plane curve singularities, 1983,
- András Némethi, The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities, 1995,
- Maciej Borodzik, Stefan Friedl The unknotting number and classical invariants II, 2014.

Let $p=p_{\xi}, k \geq 0$.

$$
\begin{aligned}
\Lambda / p^{k} \Lambda \times \Lambda / p^{k} \Lambda & \longrightarrow \mathbb{Q}(t) / \Lambda \\
(1,1) & \mapsto \kappa \\
\text { Now: }\left(p^{k} \cdot 1,1\right) & \mapsto 0 \\
p^{k} \kappa=0 & \in \mathbb{Q}(t) / \Lambda \\
\text { therfore } p^{k} \kappa & \in \Lambda \\
\text { we have }(1,1) & \mapsto \frac{h}{p^{k}}
\end{aligned}
$$

h is not uniquely defined: $h \rightarrow h+g p^{k}$ doesn't affect paring.
Let $h=p^{k} \kappa$.

Example 8.1

$$
\begin{aligned}
& \phi_{0}((1,1))=\frac{+1}{p} \\
& \phi_{1}((1,1))=\frac{-1}{p}
\end{aligned}
$$

ϕ_{0} and ϕ_{1} are not isomorphic.
Proof. Let $\Phi: \Lambda / p^{k} \Lambda \longrightarrow \Lambda / p^{k} \Lambda$ be an isomorphism.
Let: $\Phi(1)=g \in \lambda$

$$
\begin{gathered}
\Lambda / p^{k} \Lambda \xrightarrow{\Phi} \Lambda / p^{k} \Lambda \\
\phi_{0}((1,1))=\frac{1}{p^{k}} \quad \phi_{1}((g, g))=\frac{1}{p^{k}} \quad(\Phi \text { is an isometry }) .
\end{gathered}
$$

Suppose for the paring $\phi_{1}((g, g))=\frac{1}{p^{k}}$ we have $\phi_{1}((1,1))=\frac{-1}{p^{k}}$. Then:

$$
\begin{aligned}
\frac{-g \bar{g}}{p^{k}}=\frac{1}{p^{k}} & \in \mathbb{Q}(t) / \Lambda \\
\frac{-g \bar{g}}{p^{k}}-\frac{1}{p^{k}} & \in \Lambda \\
-g \bar{g} & \equiv 1 \quad(\bmod p) \text { in } \Lambda \\
-g \bar{g}-1 & =p^{k} \omega \text { for some } \omega \in \Lambda
\end{aligned}
$$

evalueting at ξ :

$$
\overbrace{-g(\xi) g\left(\xi^{-1}\right)}^{>0}-1=0 \quad \Rightarrow \Leftarrow
$$

????????????????????

$$
\begin{aligned}
g & =\sum g_{i} t^{i} \\
\bar{g} & =\sum g_{i} t^{-i} \\
\bar{g}(\xi) & =\sum g_{i} \xi^{i} \quad \xi \in S^{1} \\
\bar{g}(\xi) & =g(\bar{\xi})
\end{aligned}
$$

Suppose $g=(t-\xi)^{\alpha} g^{\prime}$. Then $(t-\xi)^{k-\alpha}$ goes to 0 in $\Lambda / p^{k} \Lambda$.

Theorem 8.1

Every sesquilinear non-degenerate pairing

$$
\Lambda / p^{k} \times \Lambda / p \leftrightarrow \frac{h}{p^{k}}
$$

is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).

Proof. There are two steps of the proof:

1. Reduce to the case when h has a constant sign on S^{1}.
2. Prove in the case, when h has a constant sign on S^{1}.

Lemma 8.1

If P is a symmetric polynomial such that $P(\eta) \geq 0$ for all $\eta \in S^{1}$, then P can be written as a product $P=g \bar{g}$ for some polynomial g.

Sketch of proof. Induction over $\operatorname{deg} P$.
Let $\zeta \notin S^{1}$ be a root of $P, P \in \mathbb{R}\left[t, t^{-1}\right]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial P is divisible by $(t-\zeta),(t-\bar{\zeta}),\left(t^{-1}-\zeta\right)$ and $\left(t^{-1}-\bar{\zeta}\right)$. Therefore:

$$
\begin{aligned}
& P^{\prime}=\frac{P}{(t-\zeta)(t-\bar{\zeta})\left(t^{-1}-\zeta\right)\left(t^{-1}-\bar{\zeta}\right)} \\
& P^{\prime}=g^{\prime} \bar{g}
\end{aligned}
$$

We set $g=g^{\prime}(t-\zeta)(t-\bar{\zeta})$ and $P=g \bar{g}$. Suppose $\zeta \in S^{1}$. Then $(t-\zeta)^{2} \mid P$ (at least - otherwise it would change sign). Therefore:

$$
\begin{aligned}
& P^{\prime}=\frac{P}{(t-\zeta)^{2}\left(t^{-1}-\zeta\right)^{2}} \\
& g=(t-\zeta)\left(t^{-1}-\zeta\right) g^{\prime} \quad \text { etc. }
\end{aligned}
$$

The map $(1,1) \mapsto \frac{h}{p^{k}}=\frac{g \bar{g} h}{p^{k}}$ is isometric whenever g is coprime with P.

Lemma 8.2

Suppose A and B are two symmetric polynomials that are coprime and that $\forall z \in S^{1}$ either $A(z)>0$ or $B(z)>0$. Then there exist symmetric polynomials P, Q such that $P(z), Q(z)>0$ for $z \in S^{1}$ and $P A+Q B \equiv 1$.

Idea of proof. For any z find an interval $\left(a_{z}, b_{z}\right)$ such that if $P(z) \in\left(a_{z}, b_{z}\right)$ and $P(z) A(z)+Q(z) B(z)=1$, then $Q(z)>0, x(z)=\frac{a z+b z}{i}$ is a continues function on S^{1} approximating z by a polynomial. ??????????????????????????

$$
\begin{array}{r}
(1,1) \mapsto \frac{h}{p^{k}} \mapsto \frac{g \bar{g} h}{p^{k}} \\
g \bar{g} h+p^{k} \omega=1
\end{array}
$$

Apply Lemma 8.2 for $A=h, B=p^{2 k}$. Then, if the assumptions are satisfied,

$$
\begin{array}{r}
P h+Q p^{2 k}=1 \\
p>0 \Rightarrow p=g \bar{g} \\
p=(t-\xi)(t-\bar{\xi}) t^{-1} \\
\text { so } p \geq 0 \text { on } S^{1} \\
p(t)=0 \Leftrightarrow t=\xi \text { ort }=\bar{\xi} \\
h(\xi)>0 \\
h(\bar{\xi})>0 \\
g \bar{g} h+Q p^{2 k}=1 \\
g \bar{g} h \equiv 1 \quad \bmod p^{2 k} \\
g \bar{g} \equiv 1 \quad \bmod p^{k}
\end{array}
$$

???????????????????????????????
If P has no roots on S^{1} then $B(z)>0$ for all z, so the assumptions of Lemma 8.2 are satisfied no matter what A is.
?????????????????

$$
\begin{aligned}
& \left(\Lambda / p_{\xi}^{k} \times \Lambda / p_{\xi}^{k}\right) \longrightarrow \frac{\epsilon}{p_{\xi}^{k}}, \quad \xi \in S^{1} \backslash\{ \pm 1\} \\
& \left(\Lambda / q_{\xi}^{k} \times \Lambda / q_{\xi}^{k}\right) \longrightarrow \frac{1}{q_{\xi}^{k}}, \quad \xi \notin S^{1}
\end{aligned}
$$

???????????????????? 1 ?? epsilon?

Theorem 8.2

(Matumoto, Conway-Borodzik-Politarczyk) Let K be a knot,

$$
\begin{gathered}
H_{1}(\widetilde{X}, \Lambda) \times H_{1}(\widetilde{X}, \Lambda)=\bigoplus_{\substack{k, \xi, \epsilon \\
\xi i n S^{1}}}\left(\Lambda / p_{\xi}^{k}, \epsilon\right)^{n_{k}, \xi, \epsilon} \oplus \bigoplus_{k, \eta}\left(\Lambda / p_{\xi}^{k}\right)^{m_{k}} \\
\text { Let } \delta_{\sigma}(\xi)=\lim _{\varepsilon \rightarrow 0^{+}} \sigma\left(e^{2 \pi i \varepsilon} \xi\right)-\sigma\left(e^{-2 \pi i \varepsilon} \xi\right), \\
\text { then } \sigma_{j}(\xi)=\sigma(\xi)-\frac{1}{2} \lim _{\varepsilon \rightarrow 0} \sigma\left(e^{2 \pi i \varepsilon} \xi\right)+\sigma\left(e^{-2 \pi i \varepsilon} \xi\right)
\end{gathered}
$$

The jump at ξ is equal to $2 \sum_{k_{i} \text { odd }} \epsilon_{i}$. The peak of the signature function is equal to $\sum_{k_{i} \text { even }} \epsilon_{i}$.

Lecture 9

May 27, 2019

Definition 9.1

A square hermitian matrix A of size n.
field of fractions

Lecture 10
June 3, 2019

Theorem 10.1

Let K be a knot and $u(K)$ its unknotting number. Let $g_{4}(K)$ be a minimal four genus of a smooth surface S in B^{4} such that $\partial S=K$. Then:

$$
u(K) \geq g_{4}(K)
$$

Proof. Recall that if $u(K)=u$ then K bounds a disk Δ with u ordinary double points.
Remove from Δ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface S has Euler characteristic $\chi(S)=1-2 u$. Therefore $g_{4}(S)=u$.

???????????????????

Example 10.1

The knot 8_{20} is slice: $\sigma \equiv 0$ almost everywhere but $\sigma\left(e^{\frac{2 \pi i}{6}}\right)=+1$.

Surgery

Recall that $H_{1}\left(S^{1} \times S^{1}, \mathbb{Z}\right)=\mathbb{Z}^{3}$. As generators for H_{1} we can set $\alpha=\left[S^{1} \times\{\mathrm{pt}\}\right]$ and $\beta=\left[\{\mathrm{pt}\} \times S^{1}\right]$. Suppose $\phi: S^{1} \times S^{1} \longrightarrow S^{1} \times S^{1}$ is a diffeomorphism. Consider an induced map on homology group:

$$
\begin{array}{rlrl}
H_{1}\left(S^{1} \times S^{1}, \mathbb{Z}\right) \ni \phi_{*}(\alpha) & =p \alpha+q \beta, & & p, q \in \mathbb{Z}, \\
\phi_{*}(\beta) & =r \alpha+s \beta, & r, s \in \mathbb{Z}, \\
\phi_{*} & =\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) &
\end{array}
$$

As ϕ_{*} is diffeomorphis, it must be invertible over \mathbb{Z}. Then for a direction preserving diffeomorphism we have $\operatorname{det} \phi_{*}=1$. Therefore $\phi_{*} \in \operatorname{SL}(2, \mathbb{Z})$.

Theorem 10.2

Every such a matrix can be realized as a torus.
Proof. (I) Geometric reason

$$
\begin{aligned}
\phi_{t}: S^{1} \times S^{1} & \longrightarrow S^{1} \times S^{1} \\
S^{1} \times\{\mathrm{pt}\} & \longrightarrow\{\mathrm{pt}\} \times S^{1} \\
\{\mathrm{pt}\} \times S^{1} & \longrightarrow S^{1} \times\{\mathrm{pt}\} \\
(x, y) & \mapsto(-y, x)
\end{aligned}
$$

Lecture 11 balagan

Proof. By Poincaré duality we know that:

$$
\begin{aligned}
H_{3}(\Omega, Y) & \cong H^{0}(\Omega), \\
H_{2}(Y) & \cong H^{0}(Y), \\
H_{2}(\Omega) & \cong H^{1}(\Omega, Y), \\
H_{2}(\Omega, Y) & \cong H^{1}(\Omega) .
\end{aligned}
$$

Therefore $\operatorname{dim}_{\mathbb{Q}} H_{1}(Y) / V=\operatorname{dim}_{\mathbb{Q}} V$.
Suppose $g(K)=0$ (K is slice). Then $H_{1}(\Sigma, \mathbb{Z}) \cong H_{1}(Y, \mathbb{Z})$. Let g_{Σ} be the genus of $\Sigma, \operatorname{dim} H_{1}(Y, \mathbb{Z})=2 g_{\Sigma}$. Then the Seifert form V on a 4 manifolds???
?????
has a subspace of dimension g_{Σ} on which it is zero:

$$
V=g_{\Sigma}\left\{\left(\begin{array}{cccccc}
\overbrace{0} & \ldots & 0 & * & \ldots & * \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & * & \ldots & * \\
* & \ldots & * & * & \ldots & * \\
\vdots & & \vdots & \vdots & & \vdots \\
* & \ldots & * & * & \ldots & *
\end{array}\right)_{2 g_{\Sigma} \times 2 g_{\Sigma}}\right.
$$

May 6, 2019

Definition 12.1

Let X be a knot complement. Then $H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism $\pi_{1}(X) \xrightarrow{\phi} \mathbb{Z}$.
The infinite cyclic cover of a knot complement X is the cover associated with the epimorphism ϕ.

$$
\widetilde{X} \longrightarrow X
$$

Formal sums $\sum \phi_{i}(t) a_{i}+\sum \phi_{j}(t) \alpha_{j}$
finitely generated as a $\mathbb{Z}\left[t, t^{-1}\right]$ module.
Let $v_{i j}=\operatorname{lk}\left(a_{i}, a_{j}^{+}\right)$. Then $V=\left\{v_{i} j\right\}_{i, j=1}^{n}$ is the Seifert matrix associated to the surface Σ and the basis a_{1}, \ldots, a_{n}. Therefore $a_{k}^{+}=\sum_{j} v_{j k} \alpha_{j}$. Then $\operatorname{lk}\left(a_{i}, a_{k}^{+}\right)=\operatorname{lk}\left(a_{k}^{+}, a_{i}\right)=\sum_{j} v_{j k} \operatorname{lk}\left(\alpha_{j}, a_{i}\right)=v_{i k}$. We also notice that $\operatorname{lk}\left(a_{i}, a_{j}^{-}\right)=\operatorname{lk}\left(a_{i}^{+}, a_{j}\right)=v_{i j}$ and $a_{j}^{-}=\sum_{k} v_{k j} t^{-1} \alpha_{j}$. The homology of \widetilde{X} is generated by a_{1}, \ldots, a_{n} and relations.

Definition 12.2

The $\mathbb{Z}\left[t, t^{-1}\right]$ module $H_{1}(\widetilde{X})$ is called the Alexander module of knot K.

Figure 7: Infinite cyclic cover of a knot complement.

Let R be a PID, M a finitely generated R module. Let us consider

$$
R^{k} \xrightarrow{A} R^{n} \longrightarrow M,
$$

where A is a $k \times n$ matrix, assume $k \geq n$. The order of M is the gcd of all determinants of the $n \times n$ minors of A. If $k=n$ then $\operatorname{ord} M=\operatorname{det} A$.

Theorem 12.1

Order of M doesn't depend on A.
For knots the order of the Alexander module is the Alexander polynomial.

Theorem 12.2

$$
\forall x \in M:(\operatorname{ord} M) x=0
$$

M is well defined up to a unit in R.

Blanchfield pairing

Lecture 13 balagan

Theorem 13.1

Let H_{p} be a p-torsion part of H. There exists an orthogonal decomposition of H_{p} :

$$
H_{p}=H_{p, 1} \oplus \cdots \oplus H_{p, r_{p}}
$$

Figure 8: A knot complement.
$H_{p, i}$ is a cyclic module:

$$
H_{p, i}=\mathbb{Z}\left[t, t^{-1}\right] / p^{k_{i}} \mathbb{Z}\left[t, t^{-1}\right]
$$

The proof is the same as over \mathbb{Z}.

