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Lecture 1 Basic definitions February 25, 2019

Definition 1.1
A knot 𝐾 in 𝑆3 is a smooth (PL - smooth) embedding of a circle 𝑆1 in 𝑆3:

𝜑 ∶ 𝑆1 ↪ 𝑆3

Usually we think about a knot as an image of an embedding: 𝐾 = 𝜑(𝑆1).
Some basic examples and counterexamples are shown respectively in Figure 6
and Figure 2.

Figure 1: Knots examples: unknot (left) and trefoil (right).

Figure 2: Not-knots examples: an image of a function 𝑆1 ⟶ 𝑆3

that isn’t injective (left) and of a function that isn’t smooth
(right).

Definition 1.2
Two knots 𝐾0 = 𝜑0(𝑆1), 𝐾1 = 𝜑1(𝑆1) are equivalent if the embeddings 𝜑0
and 𝜑1 are isotopic, that is there exists a continues function

Φ ∶ 𝑆1 × [0, 1] ↪ 𝑆3,
Φ(𝑥, 𝑡) = Φ𝑡(𝑥)

such that Φ𝑡 is an embedding for any 𝑡 ∈ [0, 1], Φ0 = 𝜑0 and Φ1 = 𝜑1.

Theorem 1.1
Two knots 𝐾0 and 𝐾1 are isotopic if and only if they are ambient isotopic,
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i.e. there exists a family of self-diffeomorphisms Ψ = {𝜓𝑡 ∶ 𝑡 ∈ [0, 1]} such
that:

𝜓(𝑡) = 𝜓𝑡 is continius on 𝑡 ∈ [0, 1],
𝜓𝑡 ∶ 𝑆3 ↪ 𝑆3,
𝜓0 = 𝑖𝑑,
𝜓1(𝐾0) = 𝐾1.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding 𝜑(𝑡) = (cos 𝑡, sin 𝑡, 0),
where 𝑡 ∈ [0, 2𝜋] is a parametrisation of 𝑆1.

Definition 1.4

A link with 𝑘 - components is a (smooth) embedding of
𝑘

⏞⏞⏞⏞⏞𝑆1 ⊔ … ⊔ 𝑆1 in 𝑆3.

Example 1.1
Links:

• a trivial link with 3 components: ,

• a Hopf link: ,

• a Whitehead link: ,

• a Borromean link: .

Definition 1.5
A link diagram 𝐷𝜋 is a picture over projection 𝜋 of a link 𝐿 in ℝ3(𝑆3) to ℝ2

(𝑆2) such that:

(1) 𝐷𝜋|𝐿 is non degenerate,

(2) the double points are not degenerate,

(3) there are no triple point.
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By Definition 1.5 the following pictures can not be a part of a diagram: ,

, .
There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.

Lemma 1.1
Every link admits a link diagram.

Let 𝐷 be a diagram of an oriented link (to each component of a link we
add an arrow in the diagram). We can distinguish two types of crossings:
right-handed ( ), called a positive crossing, and left-handed ( ), called
a negative crossing.

Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram
as shown below:

I

,

II

,

III

.

Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).
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Seifert surface

Let 𝐷 be an oriented diagram of a link 𝐿. We change the diagram by
smoothing each crossing:

↦ ,
↦ .

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in ℝ3 (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive
and left-handed for a negative one. We get an orientable surface Σ such that
𝜕Σ = 𝐿.

1 2 3

6
4 5

1 2 3
4 5

6 1 2 3

4 5
6

1 2
3

4 5

6

4

3

5

1 2

6

Figure 3: Constructing a Seifert surface.

Note: the obtained surface isn’t unique and in general doesn’t need to be
connected, but by taking connected sum of all components we can easily get
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a connected surface (i.e. we take two disconnected components and cut a
disk in each of them: 𝐷1 and 𝐷2. Then we glue both components on the
boundaries: 𝜕𝐷1 and 𝜕𝐷2.

Figure 4: Connecting two surfaces.

Theorem 1.3 (Seifert)
Every link in 𝑆3 bounds a surface Σ that is compact, connected and orientable.
Such a surface is called a Seifert surface.

genus 0
 

genus 2
 genus 1

 

genus 3
 

Figure 5: Genus of an orientable surface.

Definition 1.6
The three genus 𝑔3(𝐾) (𝑔(𝐾)) of a knot 𝐾 is the minimal genus of a Seifert
surface Σ for 𝐾.
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Corollary 1.1
A knot 𝐾 is trivial if and only 𝑔3(𝐾) = 0.

Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (András Juhász, 2008).

Definition 1.7
Suppose 𝛼 and 𝛽 are two simple closed curves in ℝ3. On a diagram 𝐿 consider
all crossings between 𝛼 and 𝛽. Let 𝑁+ be the number of positive crossings,
𝑁− - negative. Then the linking number: lk(𝛼, 𝛽) = 1

2(𝑁+ − 𝑁−).

Definition 1.8
Let 𝛼 and 𝛽 be two disjoint simple closed curves in 𝑆3. Let 𝜈(𝛽) be a tubular
neighbourhood of 𝛽. The linking number can be interpreted via first homology
group, where lk(𝛼, 𝛽) is equal to evaluation of 𝛼 as element of first homology
group of the complement of 𝛽:

𝛼 ∈ 𝐻1(𝑆3 \ 𝜈(𝛽), ℤ) ≅ ℤ.

lk(𝛼, 𝛽) = 3

𝛼
 

𝛽
 

lk(𝛼, 𝛽) = −1
 

𝛼
  𝛽

 

Figure 6: Linking number of a Hopf link (left) and a torus link
𝑇 (6, 2) (right).

Fact 1.1
𝑔3(Σ) = 1

2𝑏1(Σ) = 1
2 dimℝ 𝐻1(Σ, ℝ), where 𝑏1 is first Betti number of a

surface Σ.
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Seifert matrix

Let 𝐿 be a link and Σ be an oriented Seifert surface for 𝐿. Choose a basis
for 𝐻1(Σ, ℤ) consisting of simple closed curves 𝛼1, … , 𝛼𝑛.
Let 𝛼+

1 , … 𝛼+
𝑛 be copies of 𝛼𝑖 lifted up off the surface (push up along a vector

field normal to Σ). Note that elements 𝛼𝑖 are contained in the Seifert surface
while all 𝛼+

𝑖 don’t intersect the surface.
Let lk(𝛼𝑖, 𝛼+

𝑗 ) = {𝑎𝑖𝑗}. Then the matrix 𝑆 = {𝑎𝑖𝑗}𝑛
𝑖,𝑗=1 is called a Seifert

matrix for 𝐿. Note that by choosing a different basis we get a different
matrix.

𝛼+
1 𝛼1𝛼1

𝛼2

Figure 7: A basis 𝛼1, 𝛼2 of the first homology group of a Seifert
surface and a copy of element 𝛼1 pushed up along vector normal
to the Seifert surface.

Theorem 1.4
The Seifert matrices 𝑆1 and 𝑆2 for the same link 𝐿 are S-equivalent, that is,
𝑆2 can be obtained from 𝑆1 by a sequence of following moves:

(1) 𝑉 → 𝐴𝑉 𝐴𝑇 , where 𝐴 is a matrix with integer coefficients,

(2) 𝑉 →
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 0
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

or 𝑉 →
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

,

(3) inverse of (2).
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Lecture 2 Alexander polynomial March 4, 2019

Existence of a Seifert surface - second proof

Proof. (Theorem 1.3)
Let 𝐾 ∈ 𝑆3 be a knot and 𝑁 = 𝜈(𝐾) be its tubular neighbourhood. Because
𝐾 and 𝑁 are homotopy equivalent, we get:

𝐻1(𝑆3 \ 𝑁) ≅ 𝐻1(𝑆3 \ 𝐾).

Let us consider a long exact sequence of cohomology of a pair (𝑆3, 𝑆3 \ 𝑁)
with integer coefficients:

ℤ

𝐻0(𝑆3) → 𝐻0(𝑆3 \ 𝑁) →

→ 𝐻1(𝑆3, 𝑆3 \ 𝑁) → 𝐻1(𝑆3) → 𝐻1(𝑆3 \ 𝑁) →

0

→ 𝐻2(𝑆3, 𝑆3 \ 𝑁) → 𝐻2(𝑆3) → 𝐻2(𝑆3 \ 𝑁) →

→ 𝐻3(𝑆3, 𝑆3 \ 𝑁) → 𝐻3(𝑆) → 0

ℤ

≅
≅

≅
≅

The tubular neighbourhood of the knot is homomorphic to 𝐷2 × 𝑆1. So its
boundary 𝜕𝑁 ≅ 𝑆1 × 𝑆1 and therefore: 𝐻1(𝑁, 𝜕𝑁) ≅ ℤ ⊕ ℤ. By excision
theorem we have:

𝐻∗(𝑆3, 𝑆3 \ 𝑁) ≅ 𝐻∗(𝑁, 𝜕𝑁).

Therefore:

𝐻1(𝑆3 \ 𝑁) ≅ 𝐻1(𝑆3 \ 𝐾) ≅ ℤ.
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Let us consider the following diagram:

𝐻1(𝑆3 \ 𝐾) 𝐻1(𝑁 \ 𝐾)

[𝑆3 \ 𝐾, 𝑆1] [𝑁 \ 𝐾, 𝑆1]

Θ̃ Θ

Σ = Θ̃−1(𝑋) is a surface, such that 𝜕Σ = 𝐾, so it is a Seifert surface.

Alexander polynomial

Definition 2.1
Let 𝑆 be a Seifert matrix for a knot 𝐾. The Alexander polynomial Δ𝐾(𝑡) is
a Laurent polynomial:

Δ𝐾(𝑡) ∶= det(𝑡𝑆 − 𝑆𝑇 ) ∈ ℤ[𝑡, 𝑡−1] ≅ ℤ[ℤ]

Theorem 2.1
Δ𝐾(𝑡) is well defined up to multiplication by ±𝑡𝑘, for 𝑘 ∈ ℤ.

Proof. We need to show that Δ𝐾(𝑡) doesn’t depend on 𝑆-equivalence rela-
tion.

(1) Suppose 𝑆′ = 𝐶𝑆𝐶𝑇 , 𝐶 ∈ GL(𝑛, ℤ) (matrices invertible over ℤ). Then
det 𝐶 = 1 and:

det(𝑡𝑆′ − 𝑆′𝑇 ) = det(𝑡𝐶𝑆𝐶𝑇 − (𝐶𝑆𝐶𝑇 )𝑇 ) =
det(𝑡𝐶𝑆𝐶𝑇 − 𝐶𝑆𝑇 𝐶𝑇 ) = det 𝐶(𝑡𝑆 − 𝑆𝑇 )𝐶𝑇 = det(𝑡𝑆 − 𝑆𝑇 )

(2) Let

𝐴 ∶= 𝑡
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 0
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

−
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆𝑇
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑡𝑆 − 𝑆𝑇
∗ 0
⋮ ⋮
∗ 0

∗ … ∗
0 … 0

0 −1
𝑡 0

⎞⎟⎟⎟⎟⎟⎟
⎠

Using the Laplace expansion we get det 𝐴 = ±𝑡 det(𝑡𝑆 − 𝑆𝑇 ).
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Example 2.1
If 𝐾 is a trefoil then we can take 𝑆 = (−1 −1

0 −1). Then

Δ𝐾(𝑡) = det (−𝑡 + 1 −𝑡
1 −𝑡 + 1) = (𝑡−1)2+𝑡 = 𝑡2−𝑡+1 ≠ 1 ⇒ trefoil is not trivial.

Fact 2.1
Δ𝐾(𝑡) is symmetric.

Proof. Let 𝑆 be an 𝑛 × 𝑛 matrix.

Δ𝐾(𝑡−1) = det(𝑡−1𝑆 − 𝑆𝑇 ) = (−𝑡)−𝑛 det(𝑡𝑆𝑇 − 𝑆) =
(−𝑡)−𝑛 det(𝑡𝑆 − 𝑆𝑇 ) = (−𝑡)−𝑛Δ𝐾(𝑡)

If 𝐾 is a knot, then 𝑛 is necessarily even, and so Δ𝐾(𝑡−1) = 𝑡−𝑛Δ𝐾(𝑡).

Lemma 2.1

1
2 deg Δ𝐾(𝑡) ≤ 𝑔3(𝐾), where 𝑑𝑒𝑔(𝑎𝑛𝑡𝑛 + ⋯ + 𝑎1𝑡𝑙) = 𝑘 − 𝑙.

Proof. If Σ is a genus 𝑔 - Seifert surface for 𝐾 then 𝐻1(Σ) = ℤ2𝑔, so 𝑆 is an
2𝑔 × 2𝑔 matrix. Therefore det(𝑡𝑆 − 𝑆𝑇 ) is a polynomial of degree at most
2𝑔.

Example 2.2
There are not trivial knots with Alexander polynomial equal 1, for example:

Δ11𝑛34 ≡ 1.
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Decomposition of 3-sphere

We know that 3 - sphere can be obtained by gluing two solid tori:

𝑆3 = 𝜕𝐷4 = 𝜕(𝐷2 × 𝐷2) = (𝐷2 × 𝑆1) ∪ (𝑆1 × 𝐷2).

So the complement of solid torus in 𝑆3 is another solid torus.
Analytically it can be describes as follow.
Take (𝑧1, 𝑧2) ∈ ℂ such that max(|𝑧1|, |𝑧2|) = 1. Define following sets:

𝑆1 = {(𝑧1, 𝑧2) ∈ 𝑆3 ∶ |𝑧1| = 0} ≅ 𝑆1 × 𝐷2,
𝑆2 = {(𝑧1, 𝑧2) ∈ 𝑆3 ∶ |𝑧2| = 1} ≅ 𝐷2 × 𝑆1.

The intersection 𝑆1 ∩ 𝑆2 = {(𝑧1, 𝑧2) ∶ |𝑧1| = |𝑧2| = 1} ≅ 𝑆1 × 𝑆1.

Figure 8: The complement of solid torus in 𝑆3 is another solid
torus.

Dehn lemma and sphere theorem

Lemma 2.2 (Dehn)

Let 𝑀 be a 3-manifold and 𝐷2 𝑓
→ 𝑀3 be a map of a disk such that 𝑓∣𝜕𝐷2 is

an embedding. Then there exists an embedding 𝐷2 𝑔
↪⟶ 𝑀 such that:

𝑔∣𝜕𝐷2 = 𝑓∣𝜕𝐷2.
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Remark: Dehn lemma doesn’t hold for dimension four.
Let 𝑀 be connected, compact three manifold with boundary. Suppose
𝜋1(𝜕𝑀) ⟶ 𝜋1(𝑀) has non-trivial kernel. Then there exists a map 𝑓 ∶
(𝐷2, 𝜕𝐷2) ⟶ (𝑀, 𝜕𝑀) such that 𝑓∣𝜕𝐷2 is non-trivial loop in 𝜕𝑀 .
Theorem 2.2 (Sphere theorem)
Suppose 𝜋1(𝑀) ≠ 0. Then there exists an embedding 𝑓 ∶ 𝑆2 ↪ 𝑀 that is
homotopy non-trivial.
Problem 2.1
Prove that 𝑆3 𝐾 is Eilenberg–MacLane space of type 𝐾(𝜋, 1).
Corollary 2.1
Suppose 𝐾 ⊂ 𝑆3 and 𝜋1(𝑆3 \ 𝐾) is infinite cyclic (ℤ). Then 𝐾 is trivial.
Proof. Let 𝑁 be a tubular neighbourhood of a knot 𝐾 and 𝑀 = 𝑆3 \ 𝑁
its complement. Then 𝜕𝑀 = 𝑆1 × 𝑆1. Let 𝑓 ∶ 𝜋1(𝜕𝑀) ⟶ 𝜋1(𝑀).
If 𝜋1(𝑀) is infinite cyclic group then the map 𝑓 is non-trivial. Suppose
𝜆 ∈ ker(𝜋1(𝑆1 × 𝑆1) ⟶ 𝜋1(𝑀)). There is a map 𝑔 ∶ (𝐷2, 𝜕𝐷2) ⟶ (𝑀, 𝜕𝑀)
such that 𝑔(𝜕𝐷2) = 𝜆.
By Dehn’s lemma there exists an embedding ℎ ∶ (𝐷2, 𝜕𝐷2) ↪⟶ (𝑀, 𝜕𝑀)
such that ℎ∣𝜕𝐷2 = 𝑓∣𝜕𝐷2 and ℎ(𝜕𝐷2) = 𝜆. Let Σ be a union of the an-
nulus and the image of 𝜕𝐷2. If 𝑔3(Σ) = 0, then 𝐾 is trivial.
Now we should proof that:

𝐻1(𝑀) ≅ ℤ ⟹ 𝜆 ∈ ker(𝜋1(𝑆1 × 𝑆1) ⟶ 𝜋1(𝑀)).
Choose a meridian 𝜇 such that lk(𝜇, 𝐾) = 1. Recall the definition of linking

𝜆

𝜇
𝐾

Figure 9: 𝜇 is a meridian and 𝜆 is a longitude.

number via homology group (Definition 1.8). [𝜇] represents the generator
of 𝐻1(𝑆3 \ 𝐾, ℤ). From definition of 𝜆 we know that 𝜆 is trivial in 𝐻1(𝑀)
(lk(𝜆, 𝐾) = 0, therefore [𝜆] was trivial in 𝑝𝑖1(𝑀)). If 𝐾 is non-trivial then
𝜆 is non-trivial in 𝜋1(𝑀), but it is trivial in 𝐻1(𝑀).
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Lecture 3 Examples of knot classes March 11, 2019

Algebraic knots

Suppose 𝐹 ∶ ℂ2 → ℂ is a polynomial and 𝐹(0) = 0. Let take a small
sphere 𝑆3 around zero. This sphere intersect set of roots of 𝐹 (zero set of
𝐹 ) transversally and by the implicit function theorem the intersection is a
manifold. The dimension of sphere is 3 and 𝐹 −1(0) has codimension 2. So
there is a subspace 𝐿 - compact one dimensional manifold without boundary.
That means that 𝐿 is a link in 𝑆3.

𝐹 −1(0)
𝐿 = 𝐹 −1(0) ∩ 𝑆3

Figure 10: The intersection of a sphere 𝑆3 and zero set of poly-
nomial 𝐹 is a link 𝐿.

Theorem 3.1
𝐿 is an unknot if and only if zero is a smooth point, i.e. ▽𝐹(0) ≠ 0 (provided
𝑆3 has a sufficiently small radius).

Remark: if 𝑆3 is large it can happen that 𝐿 is unlink, but 𝐹 −1(0) ∩ 𝐵4 is
”complicated”.
In other words: if we take sufficiently small sphere, the link is non-trivial if
and only if the point 0 is singular and the isotopy type of the link doesn’t
depend on the radius of the sphere. A link obtained is such a way is called
an algebraic link (in older books on knot theory there is another notion of
algebraic link with another meaning).

Example 3.1
Let 𝑝 and 𝑞 be coprime numbers such that 𝑝 < 𝑞 and 𝑝, 𝑞 > 1.
Zero is an isolated singular point (▽𝐹(0) = 0). 𝐹 is quasi - homogeneous
polynomial, so the isotopy class of the link doesn’t depend on the choice of
a sphere. Consider 𝑆3 = {(𝑧, 𝑤) ∈ ℂ ∶ max(|𝑧|, |𝑤|)} = 𝜀. The intersection
𝐹 −1(0) ∩ 𝑆3 is a torus 𝑇 (𝑝, 𝑞).
??????????????????? 𝐹(𝑧, 𝑤) = 𝑧𝑝 − 𝑤𝑞

.
𝐹 −1(0) = {𝑡 = 𝑡𝑞, 𝑤 = 𝑡𝑝}. For unknot 𝑡 = max(|𝑡|𝑝, |𝑡|𝑞) = 𝜀.
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as a corollary we see that 𝐾𝑛,
𝑇 ????

is not slice unless 𝑚 = 0.
𝑡 = 𝑟𝑒𝑖Θ, Θ ∈ [0, 2𝜋], 𝑟 = 𝜀 𝑖

𝑝

𝐹 −1(0)

𝐿 =
𝐹 −1(0) ∩ 𝑆3

𝐹 −1(0)

𝐿 =
𝐹 −1(0) ∩ 𝑆3

Figure 11: Sa.

Theorem 3.2
Suppose 𝐿 is an algebraic link. 𝐿 = 𝐹 −1(0) ∩ 𝑆3. Let

𝜑 ∶ 𝑆3 \ 𝐿 ⟶ 𝑆1

𝜑(𝑧, 𝑤) = 𝐹(𝑧, 𝑤)
|𝐹(𝑧, 𝑤)| ∈ 𝑆1, (𝑧, 𝑤) ∉ 𝐹 −1(0).

The map 𝜑 is a locally trivial fibration.
???????

𝑟ℎ𝐷𝜑 ≡ 1
Definition 3.1
A map Π ∶ 𝐸 ⟶ 𝐵 is locally trivial fibration with fiber 𝐹 if for any 𝑏 ∈ 𝐵,
there is a neighbourhood 𝑈 ⊂ 𝐵 such that Π−1(𝑈) ≅ 𝑈×
????????????
Γ ?????????????
FIGURES
!!!!!!!!!!!!!!!!!!!!!!!!!!

Theorem 3.3
The map 𝑗 ∶ 𝒞 ⟶ ℤ∞ is a surjection that maps 𝐾𝑛 to a linear independent
set. Moreover 𝒞 ≅ ℤ

...
In general ℎ is defined only up to homotopy, but this means that

ℎ∗ ∶ 𝐻1(𝐹 , ℤ) ⟶ 𝐻1(𝐹 , ℤ)
is well defined
???????????
map.
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Theorem 3.4
Suppose 𝑆 is a Seifert matrix associated with 𝐹 then ℎ = 𝑆−1𝑆𝑇 .

Proof. TO WRITE REFERENCE!!!!!!!!!!!

Consequences:

(1) the Alexander polynomial is the characteristic polynomial of ℎ:

Δ𝐿(𝑡) = det(ℎ − 𝑡𝐼𝑑)

In particular Δ𝐿 is monic (i.e. the top coefficient is ±1), ????????????????

(2) S is invertible,

(3) 𝐹 minimize the genus (i.e. 𝐹 is minimal genus Seifert surface).
??????????????????

Definition 3.2
A link 𝐿 is fibered if there exists a map 𝜙 ∶ 𝑆3 \ 𝐿 ⟶ 𝑆1 which is locally
trivial fibration.

If 𝐿 is fibered then Theorem 3.4 holds and all its consequences.

Problem 3.1
If 𝐾1 and 𝐾2 are fibered knots, then also 𝐾1#𝐾2 is fibered.

?????????????????????

Problem 3.2
Prove that connected sum is well defined:
Δ𝐾1#𝐾2

= Δ𝐾1
+ Δ𝐾2

and 𝑔3(𝐾1#𝐾2) = 𝑔3(𝐾1) + 𝑔3(𝐾2).

Alternating knot

Definition 3.3
A knot (link) is called alternating if it admits an alternating diagram.
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𝜆

𝜇

𝜇

Figure 12: Example for a satellite knot: a Whitehead double of a
trefoil.
The pattern knot embedded non-trivially in an unknotted solid
torus 𝑇 (e.i. 𝐾 ⊄ 𝑆3 ⊂ 𝑇 ) on the left and the pattern in a
companion knot - trefoil - on the right.

Definition 3.4
A reducible crossing in a knot diagram is a crossing for which we can find a
circle such that its intersection with a knot diagram is exactly that crossing.
A knot diagram without reducible crossing is called reduced.

Fact 3.1
Any reduced alternating diagram has minimal number of crossings.

Definition 3.5
The writhe of the diagram is the difference between the number of positive
and negative crossings.

Fact 3.2 (Tait)
Any two diagrams of the same alternating knot have the same writhe.

Fact 3.3
An alternating knot has Alexander polynomial of the form: 𝑎1𝑡𝑛1 + 𝑎2𝑡𝑛2 +
⋯ + 𝑎𝑠𝑡𝑛𝑠, where 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑠 and 𝑎𝑖𝑎𝑖+1 < 0.
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Figure 13: Example: figure eight knot is an alternating knot.

Problem 3.3 (open)
What is the minimal 𝛼 ∈ ℝ such that if 𝑧 is a root of the Alexander polynomial
of an alternating knot, then ℜ(𝑧) > 𝛼.
Remark: alternating knots have very simple knot homologies.

Proposition 3.1
If 𝑇𝑝,𝑞 is a torus knot, 𝑝 < 𝑞, then it is alternating if and only if 𝑝 = 2.

Lecture 4 Concordance group March 18, 2019

Definition 4.1
Two knots 𝐾 and 𝐾′ are called (smoothly) concordant if there exists an
annulus 𝐴 that is smoothly embedded in 𝑆3 × [0, 1] such that

𝜕𝐴 = 𝐾′ × {1} ⊔ 𝐾 × {0}.

Definition 4.2
A knot 𝐾 is called (smoothly) slice if 𝐾 is smoothly concordant to an unknot.
Put differently: a knot 𝐾 is smoothly slice if and only if 𝐾 bounds a smoothly
embedded disk in 𝐵4.

Let 𝑚(𝐾) denote a mirror image of a knot 𝐾.

Fact 4.1
For any 𝐾, 𝐾#𝑚(𝐾) is slice.
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𝐾 𝐾′
𝑆3 ×{0} 𝑆3 ×{1}

𝑆3 × [0, 1]

Fact 4.2
Concordance is an equivalence relation.

Fact 4.3
If 𝐾1 ∼ 𝐾1

′ and 𝐾2 ∼ 𝐾2
′, then 𝐾1#𝐾2 ∼ 𝐾1

′#𝐾2
′.

𝐾1

𝐾1′Annulus 𝐴1

𝐾2

𝐾2′Annulus 𝐴2

𝐾1′#𝐾2′
𝐾1#𝐾2

Figure 14: Sketch for Fact 4.3.

Fact 4.4
𝐾#𝑚(𝐾) ∼ the unknot.

Theorem 4.1
Let 𝒞 denote a set of all equivalent classes for knots and [0] denote class of
all knots concordant to a trivial knot. 𝒞 is a group under taking connected
sums. The neutral element in the group is [0] and the inverse element of an
element [𝐾] ∈ 𝒞 is −[𝐾] = [𝑚𝐾].
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Fact 4.5
The figure eight knot is a torsion element in 𝒞 (2𝐾 ∼ the unknot).
Problem 4.1 (open)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments?
Remark: 𝐾 ∼ 𝐾′ ⇔ 𝐾# − 𝐾′ is slice.

𝐵4 

𝑔(𝐹) = 𝑔4(𝐾) 
𝐹 ⊂ 𝐵4 

𝑆3 

Σ

Figure 15: 𝑌 = 𝐹 ∪ Σ is a smooth closed surface.

Pontryagin-Thom construction tells us that there exists a compact oriented
three - manifold Ω ⊂ 𝐵4 such that 𝜕Ω = 𝑌 .
Suppose Σ is a Seifert surface and 𝑉 a Seifert form defined on Σ: (𝛼, 𝛽) ↦ lk(𝛼, 𝛽+).
Suppose 𝛼, 𝛽 ∈ 𝐻1(Σ, ℤ), i.e. there are cycles and

𝛼, 𝛽 ∈ ker(𝐻1(Σ, ℤ) ⟶ 𝐻1(Ω, ℤ)).
Then there are two cycles 𝐴, 𝐵 ∈ Ω such that 𝜕𝐴 = 𝛼 and 𝜕𝐵 = 𝛽. Let
𝐵+ be a push off of 𝐵 in the positive normal direction such that 𝜕𝐵+ = 𝛽+.
Then lk(𝛼, 𝛽+) = 𝐴 ⋅ 𝐵+. But 𝐴 and 𝐵 are disjoint, so lk(𝛼, 𝛽+) = 0. Then
the Seifert form is zero.
Let us consider following maps:

Σ
𝜙

↪⟶ 𝑌
𝜓

↪⟶ Ω.
Let 𝜙∗ and 𝜓∗ be induced maps on the homology group. If an element
𝛾 ∈ ker(𝐻1(Σ, ℤ) ⟶ 𝐻1(Ω, ℤ)), then 𝛾 ∈ ker 𝜙∗ or 𝛾 ∈ ker 𝜓∗.
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Proposition 4.1

dim ker(𝐻1(𝑌 , ℤ) ⟶ 𝐻1(Ω, ℤ)) = 1
2𝑏1(𝑌 ),

where 𝑏1 is first Betti number.

Proof. Consider the following long exact sequence for a pair (Ω, 𝑌 ):

0 → 𝐻3(Ω) → 𝐻3(Ω, 𝑌 ) →
→𝐻2(𝑌 ) → 𝐻2(Ω) → 𝐻2(Ω, 𝑌 ) →
→𝐻1(𝑌 ) → 𝐻1(Ω) → 𝐻1(Ω, 𝑌 ) →
→𝐻0(𝑌 ) → 𝐻0(Ω) → 0

By Poincaré duality we know that:

𝐻3(Ω, 𝑌 ) ≅ 𝐻0(Ω),
𝐻2(𝑌 ) ≅ 𝐻0(𝑌 ),
𝐻2(Ω) ≅ 𝐻1(Ω, 𝑌 ),

𝐻1(Ω, 𝑌 ) ≅ 𝐻1(Ω).

Therefore dimℚ
𝐻1(𝑌 )/𝑉 = dimℚ 𝑉 .

Suppose 𝑔(𝐾) = 0 (𝐾 is slice). Then 𝐻1(Σ, ℤ) ≅ 𝐻1(𝑌 , ℤ). Let 𝑔Σ be the
genus of Σ, dim 𝐻1(𝑌 , ℤ) = 2𝑔Σ. Then the Seifert form 𝑉 on a 𝐾 has a
subspace of dimension 𝑔Σ on which it is zero:

𝑉 =
𝑔Σ

⎧{
⎨{⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑔Σ
⏞0 … 0 ∗ … ∗
⋮ ⋮ ⋮ ⋮
0 … 0 ∗ … ∗
∗ … ∗ ∗ … ∗
⋮ ⋮ ⋮ ⋮
∗ … ∗ ∗ … ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠2𝑔Σ×2𝑔Σ
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Let 𝑉 = ( 0 𝐴
𝐵 𝐶). Then

𝑡𝑉 − 𝑉 𝑇 = ( 0 𝑡𝐴
𝑡𝐵 𝑡𝐶) − ( 0 𝐵𝑇

𝐴𝑇 𝐶𝑇 ) = ( 0 𝑡𝐴 − 𝐵𝑇

𝑡𝐵 − 𝐴𝑇 𝑡𝐶 − 𝐶𝑇 )

det(𝑡𝑉 − 𝑉 𝑇 ) = det(𝑡𝐴 − 𝐵𝑇 ) − det(𝑡𝐵 − 𝐴𝑇 )

Corollary 4.1
If 𝐾 is a slice knot then there exists 𝑓 ∈ ℤ[𝑡, 𝑡−1] such that

Δ𝐾(𝑡) = 𝑓(𝑡) ⋅ 𝑓(𝑡−1).

Example 4.1
Figure eight knot is not slice.

Fact 4.6
If 𝐾 is slice, then the signature 𝜎(𝐾) ≡ 0:

𝑉 + 𝑉 𝑇 = ( 0 𝐴 + 𝐵𝑇

𝐵 + 𝐴𝑇 𝐶 + 𝐶𝑇 ) ⇒ 𝜎 = 0.

Lecture 5 Genus 𝑔 cobordism March 25, 2019

Slice knots and metabolic form

Theorem 5.1
If 𝐾 is slice, then 𝜎𝐾(𝑡) = sign((1 − 𝑡)𝑆 + (1 − ̄𝑡)𝑆𝑇 ) is zero except possibly
of finitely many points and 𝜎𝐾(−1) = sign(𝑆 + 𝑆𝑇 ) ≠ 0.

Lemma 5.1
If 𝑉 is a Hermitian matrix (𝑉 = 𝑉 𝑇 ) of size 2𝑛 × 2𝑛, 𝑉 = ( 0 𝐴

𝐴𝑇 𝐵) and

det 𝑉 ≠ 0 then 𝜎(𝑉 ) = 0.

23



Definition 5.1
A Hermitian form 𝑉 is metabolic if 𝑉 has structure ( 0 𝐴

𝐴𝑇 𝐵) with half-

dimensional null-space.

Theorem 5.1 can be also express as follow: non-degenerate metabolic hermi-
tian form has vanishing signature.

Proof. We note that det(𝑆 + 𝑆𝑇 ) ≠ 0. Hence det((1 − 𝑡)𝑆 + (1 − ̄𝑡)𝑆𝑇 ) is
not identically zero on 𝑆1, so it is non-zero except possibly at finitely many
points. We apply the Lemma 5.1.
Let 𝑡 ∈ 𝑆1 \ {1}. Then:

det((1 − 𝑡)𝑆 + (1 − ̄𝑡)𝑆𝑇 ) = det((1 − 𝑡)𝑆 + (𝑡 ̄𝑡 − ̄𝑡)𝑆𝑇 ) =
det((1 − 𝑡)(𝑆 − ̄𝑡 − 𝑆𝑇 )) = det((1 − 𝑡)(𝑆 − ̄𝑡𝑆𝑇 )).

As det(𝑆 + 𝑆𝑇 ) ≠ 0, so 𝑆 − ̄𝑡𝑆𝑇 ≠ 0.

Corollary 5.1
If 𝐾 ∼ 𝐾′ then for all but finitely many 𝑡 ∈ 𝑆1 \ {1} ∶ 𝜎𝐾(𝑡) = −𝜎𝐾′(𝑡).

Proof. If 𝐾 ∼ 𝐾′ then 𝐾#𝐾′ is slice.

𝜎−𝐾′(𝑡) = −𝜎𝐾′(𝑡)

The signature gives a homomorphism from the concordance group to ℤ. Re-
mark: if 𝑡 ∈ 𝑆1 is not algebraic over ℤ, then 𝜎𝐾(𝑡) ≠ 0 (we can use the
argument that 𝒞 ⟶ ℤ as well).

Four genus

Proposition 5.1 (Kawauchi inequality)
If there exists a genus 𝑔 surface as in Figure 16 then for almost all 𝑡 ∈ 𝑆1\{1}
we have |𝜎𝐾(𝑡) − 𝜎𝐾′(𝑡)| ≤ 2𝑔.

Lemma 5.2
If 𝐾 bounds a genus 𝑔 surface 𝑋 ∈ 𝐵4 and 𝑆 is a Seifert form then
𝑆 ∈ 𝑀2𝑛×2𝑛 has a block structure ( 0 𝐴

𝐵 𝐶), where 0 is (𝑛 − 𝑔) × (𝑛 − 𝑔)
submatrix.
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𝐾
𝐾′

Figure 16: 𝐾 and 𝐾′ are connected by a genus 𝑔 surface.

𝑋 ⊂ 𝐵4 

Σ

Figure 17: There exists a 3 - manifold Ω such that 𝜕Ω = 𝑋 ∪ Σ.

Proof. Let 𝐾 be a knot and Σ its Seifert surface as in Figure 17. There
exists a 3 - submanifold Ω such that 𝜕Ω = 𝑌 = 𝑋 ∪ Σ (by Thom-Pontryagin
construction). If 𝛼, 𝛽 ∈ ker(𝐻1(Σ) ⟶ 𝐻1(Ω)), then lk(𝛼, 𝛽+) = 0. Now
we have to determine the size of the kernel. We know that dim 𝐻1(Σ) = 2𝑛.
When we glue Σ (genus 𝑛) and 𝑋 (genus 𝑔) along a circle we get a surface
of genus 𝑛 + 𝑔. Therefore dim 𝐻1(𝑌 ) = 2𝑛 + 2𝑔. Then:

dim(ker(𝐻1(𝑌 ) ⟶ 𝐻1(Ω)) = 𝑛 + 𝑔.

So we have 𝐻1(𝑊) of dimension 2𝑛 + 2𝑔 - the image of 𝐻1(𝑌 ) with a sub-
space corresponding to the image of 𝐻1(Σ) with dimension 2𝑛 and a subspace
corresponding to the kernel of 𝐻1(𝑌 ) ⟶ 𝐻1(Ω) of size 𝑛 + 𝑔. We consider
minimal possible intersection of this subspaces that corresponds to the ker-
nel of the composition 𝐻1(Σ) ⟶ 𝐻1(𝑌 ) ⟶ 𝐻1(Ω). As the first map is
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injective, elements of the kernel of the composition have to be in the kernel
of the second map. So we can calculate:

dim ker(𝐻1(Σ) ⟶ 𝐻1(Ω)) = 2𝑛 + 𝑛 + 𝑔 − 2𝑛 − 2𝑔 = 𝑛 − 𝑔.

Corollary 5.2
If 𝑡 is not a root of det(𝑡𝑆 − 𝑆𝑇 ), then |𝜎𝐾(𝑡)| ≤ 2𝑔.

Fact 5.1
If there exists cobordism of genus 𝑔 between 𝐾 and 𝐾′ like shown in Figure
18, then 𝐾# − 𝐾′ bounds a surface of genus 𝑔 in 𝐵4.

𝐾 𝐾′

𝐾 𝐾′

Figure 18: If 𝐾 and 𝐾′ are connected by a genus 𝑔 surface, then
𝐾# − 𝐾′ bounds a genus 𝑔 surface.

Definition 5.2
The (smooth) four genus 𝑔4(𝐾) is the minimal genus of the surface Σ ∈ 𝐵4

such that Σ is compact, orientable and 𝜕Σ = 𝐾.

Remarks:

(1) 3 - genus is additive under taking connected sum, but 4 - genus is not,
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(2) for any knot 𝐾 we have 𝑔4(𝐾) ≤ 𝑔3(𝐾).

Example 5.1

• Let 𝐾 = 𝑇 (2, 3). 𝜎(𝐾) = −2, therefore 𝑇 (2, 3) isn’t a slice knot.

• Let 𝐾 be a trefoil and 𝐾′ a mirror of a trefoil. 𝑔4(𝐾′) = 1, but
𝑔4(𝐾#𝐾′) = 0, so we see that 4-genus isn’t additive,

• the equality:
𝑔4(𝑇 (𝑝, 𝑞)) = 1

2(𝑝 − 1)(𝑔 − 1)

was conjecture in the ’70 and proved by P. Kronheimer and T. Mrówka
(1994).

Proposition 5.2
𝑔4(𝑇 (𝑝, 𝑞)# − 𝑇 (𝑟, 𝑠)) is in general hopelessly unknown.

Proposition 5.3
Supremum of the signature function of the knot is bounded almost everywhere
by two times 4 - genus:

ess sup |𝜎𝐾(𝑡)| ≤ 2𝑔4(𝐾).

Topological genus

Definition 5.3
A knot 𝐾 is called topologically slice if 𝐾 bounds a topological locally flat
disc in 𝐵4 (i.e. the disk has tubular neighbourhood).

Theorem 5.2 (Freedman, ’82)
If Δ𝐾(𝑡) = 1, then 𝐾 is topologically slice (but not necessarily smoothly
slice).

Theorem 5.3 (Powell, 2015)
If 𝐾 is genus 𝑔 (topologically flat) cobordant to 𝐾′, then

|𝜎𝐾(𝑡) − 𝜎𝐾′(𝑡)| ≤ 2𝑔

if 𝑔top
4 (𝐾) ≥ ess sup |𝜎𝐾(𝑡)|.
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The proof for smooth category was based on following equality:

dim ker(𝐻1(𝑌 ) ⟶ 𝐻1(Ω)) = 1
2 dim 𝐻1(𝑌 ).

For this equality we assumed that there exists a 3 - dimensional manifold
Ω (as shown in Figure 17) which was guaranteed by Pontryagin-Thom Con-
struction.
Pontryagin-Thom Construction relays on taking Ω as preimage of regular
value:

𝐻1(𝐵4 \ 𝑌 , ℤ) = [𝐵4 \ 𝑌 , 𝑆1],
what relies on Sard’s theorem, that the set of regular values has positive
measure. But Sard’s theorem doesn’t work for topologically locally flat cat-
egory. So there was a gap in the proof for topological locally flat category -
the existence of Ω.
Remark: unless 𝑝 = 2 or 𝑝 = 3 ∧ 𝑞 = 4:

𝑔top
4 (𝑇 (𝑝, 𝑞)) < 𝑞4(𝑇 (𝑝, 𝑞)).

From the category of cobordant knots (or topologically cobordant knots)
there exists a map to ℤ given by signature function. To any element 𝐾 we
can associate a form

(1 − 𝑡)𝑆 + (1 − ̄𝑡)𝑆𝑇 ) ∈ 𝑊(ℤ[𝑡, 𝑡−1]).

This association is not well define because id depends on the choice of Seifert
form. However, different choices lead ever to congruent forms (𝑆 ↦ 𝐶𝑆𝐶𝑇 )
or induced the change on the form by adding or subtracting a hyperbolic
element.

Definition 5.4
The Witt group 𝑊 of ℤ[𝑡, 𝑡−1] elements are classes of non-degenerate forms
over ℤ[𝑡, 𝑡−1] under the equivalence relation 𝑉 ∼ 𝑊 if 𝑉 ⊕ −𝑊 is metabolic.

If 𝑆 differs from 𝑆′ by a row extension, then (1 − 𝑡)𝑆 + (1 − ̄𝑡−1)𝑆𝑇 is Witt
equivalence to (1 − 𝑡)𝑆′ + (1 − 𝑡−1)𝑆𝑇 .
A form is meant as hermitian with respect to this involution: 𝐴𝑇 = 𝐴 ∶
(𝑎, 𝑏) = ̄(𝑎, 𝑏).
𝑊(ℤ𝑝) = ℤ2 ⊕ ℤ2 or ℤ4
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???????????????????????
∑ 𝑎𝑔𝑡𝑗 ⟶ ∑ 𝑎𝑔𝑡−1

Theorem 5.4 (Levine ’68)

𝑊(ℤ[𝑡±1]) ⟶ ℤ∞
2 ⊕ ℤ∞

4 ⊕ ℤ

Lecture 6 April 8, 2019

𝑋 is a closed orientable four-manifold. For simplicity assume 𝜋1(𝑋) = 0 (it
is not needed to define the intersection form). In particular 𝐻1(𝑋) = 0. 𝐻2
is free (exercise).

𝐻2(𝑋, ℤ)
Poincaré duality
−−−−−−−−−→ 𝐻2(𝑋, ℤ) evaluation−−−−−−→ Hom(𝐻2(𝑋, ℤ), ℤ).

Intersection form: 𝐻2(𝑋, ℤ)×𝐻2(𝑋, ℤ) ⟶ ℤ is symmetric and non singular.
Let 𝐴 and 𝐵 be closed, oriented surfaces in 𝑋.
???????????????????????

𝑥 ∈ 𝐴 ∩ 𝐵
𝑇𝑋𝐴 ⊕ 𝑇𝑋𝐵 = 𝑇𝑋𝑋
{𝜖1, … , 𝜖𝑛} = 𝐴 ∩ 𝐶

𝐴 ⋅ 𝐵 =
𝑛

∑
𝑖=1

𝜖𝑖

Proposition 6.1
Intersection form 𝐴⋅𝐵 doesn’t depend of choice of 𝐴 and 𝐵 in their homology
classes:

[𝐴], [𝐵] ∈ 𝐻2(𝑋, ℤ).
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𝐴

Figure 19: 𝑇𝑋𝐴 + 𝑇𝑋𝐵 = 𝑇𝑋𝑋

Fundamental cycle

If 𝑀 is an 𝑚 - dimensional close, connected and orientable manifold, then
𝐻𝑚(𝑀, ℤ) and the orientation of 𝑀 determined a cycle [𝑀] ∈ 𝐻𝑚(𝑀, ℤ),
called the fundamental cycle.

Example 6.1
If 𝜔 is an 𝑚 - form then:

∫
𝑀

𝜔 = [𝜔]([𝑀]), [𝜔] ∈ 𝐻𝑚
Ω (𝑀), [𝑀] ∈ 𝐻𝑚(𝑀).

Example 6.2
Künneth ?????????????????????????
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𝛼 ⋅ 𝛽 = −𝛽 ⋅ 𝛼
𝛽

𝛼

Figure 20: 𝛽 cross 3 times the disk bounded by 𝛼. 𝑇𝑋𝛼 + 𝑇𝑋𝛽 =
𝑇𝑋Σ

Let 𝑋 = 𝑆2 × 𝑆2. We know that:

𝐻2(𝑆2, ℤ) = ℤ
𝐻1(𝑆2, ℤ) = 0
𝐻0(𝑆2, ℤ) = ℤ

We can construct a long exact sequence for a pair:

𝐻2(𝜕𝑋) → 𝐻2(𝑋) → 𝐻2(𝑋, 𝜕𝑋) →
→𝐻1(𝜕𝑋) → 𝐻1(𝑋) → 𝐻1(𝑋, 𝜕𝑋) →

????????????????????
Simple case 𝐻1(𝜕𝑋)
????????????
is torsion. 𝐻2(𝜕𝑋) is torsion free (by universal coefficient theorem),
???????????????????????
therefore it is 0.
?????????????????????
We know that 𝑏1(𝑋) = 𝑏2(𝑋). Therefore by Poincaré duality:

𝑏1(𝑋) = dimℚ 𝐻1(𝑋, ℚ) PD= dimℚ 𝐻2(𝑋, ℚ) = dimℚ 𝐻2(𝑋, ℚ) = 𝑏2(𝑋)

???????????????????????????????
𝐻2(𝑋, ℤ) is torsion free and 𝐻2(𝑋1, ℚ) = 0, therefore 𝐻2(𝑋, ℤ) = 0. The
map 𝐻2(𝑋, ℤ) ⟶ 𝐻2(𝑋, 𝜕𝑋, ℤ) is a monomorphism.
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??????????
(because it is an isomorphism after tensoring by ℚ.
Suppose 𝛼1, … , 𝛼𝑛 is a basis of 𝐻2(𝑋, ℤ). Let 𝐴 be the intersection matrix
in this basis. Then:

1. A has integer coefficients,

2. det 𝐴 ≠ 0,

3. | det 𝐴| = |𝐻1(𝜕𝑋, ℤ)| = | coker 𝐻2(𝑋) ⟶ 𝐻2(𝑋, 𝜕𝑋)|.

???????????????????

If 𝐶𝑈𝐶𝑇 = 𝑊 , then for (𝑎
𝑏) = 𝐶−1(1

0) we have:

(𝑎
𝑏)𝑊(𝑎

𝑏) = (1
0)𝑈(1

0) = 1 ∉ 2ℤ.

Theorem 6.1 (Whitehead)
Any non-degenerate form

𝐴 ∶ ℤ4 × ℤ4 ⟶ ℤ

can be realized as an intersection form of a simple connected 4-dimensional
manifold.

??????????????????????????

Theorem 6.2 (Donaldson, 1982)
If 𝐴 is an even definite intersection form of a smooth 4-manifold then it is
diagonalizable over ℤ.

?????????????????????????? ?????????????????????????? ??????????????????????????
??????????????????????????

Definition 6.1
even define

Suppose 𝑋 us 4 -manifold with a boundary such that 𝐻1(𝑋) = 0.

32



Proof. Obviously:

𝐻1(𝜕𝑋, ℤ) = coker 𝐻2(𝑋) ⟶ 𝐻2(𝑋, 𝜕𝑋) = 𝐻2(𝑋, 𝜕𝑋)/𝐻2(𝑋).

Let 𝐴 be an 𝑛 × 𝑛 matrix. 𝐴 determines a
??????????????/

ℤ𝑛 ⟶ Hom(ℤ𝑛, ℤ)
𝑎 ↦ (𝑏 ↦ 𝑏𝑇 𝐴𝑎)

| coker 𝐴| = | det 𝐴|

all homomorphisms 𝑏 = (𝑏1, … , 𝑏𝑛)???????
?????????

Lecture 7 Linking form April 15, 2019

???????????????????

Theorem 7.1
Suppose that 𝐾 ⊂ 𝑆3 is a slice knot (i.e. 𝐾 bound a disk in 𝐵4). Then if
𝐹 is a Seifert surface of 𝐾 and 𝑉 denotes the associated Seifet matrix, then
there exists 𝑃 ∈ GL𝑔(ℤ) such that:
??????????????? T ????????

𝑃 𝑉 𝑃 −1 = ( 0 𝐴
𝐵 𝐶) , 𝐴, 𝐶, 𝐶 ∈ 𝑀𝑔×𝑔(ℤ) (1)

In other words you can find rank 𝑔 direct summand 𝒵 of 𝐻1(𝐹)
????????????
such that for any 𝛼, 𝛽 ∈ ℒ the linking number lk(𝛼, 𝛽+) = 0.
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Definition 7.1
An abstract Seifert matrix (i. e.

Choose a basis (𝑏1, ..., 𝑏𝑖)
???
of 𝐻2(𝑌 , ℤ, then 𝐴 = (𝑏𝑖, 𝑏𝑦)
??
is a matrix of intersection form:

ℤ𝑛/𝐴ℤ𝑛 ≅ 𝐻1(𝑌 , ℤ).

In particular | det 𝐴| = #𝐻1(𝑌 , ℤ).
That means - what is happening on boundary is a measure of degeneracy.

𝐻1(𝑌 , ℤ) × 𝐻1(𝑌 , ℤ) ⟶ ℚ/ℤ - a linking form

ℤ𝑛/𝐴ℤ
ℤ𝑛/𝐴ℤ

≅ ≅

(𝑎, 𝑏) ↦ 𝑎𝐴−1𝑏𝑇

?????????????????????????????????
The intersection form on a four-manifold determines the linking on the
boundary.

Fact 7.1
Let 𝐾 ∈ 𝑆1 be a knot, Σ(𝐾) its double branched cover. If 𝑉 is a Seifert
matrix for 𝐾, then

𝐻1(Σ(𝐾), ℤ) ≅ ℤ𝑛/𝐴ℤ ,

where 𝐴 = 𝑉 × 𝑉 𝑇 and 𝑛 = rank 𝑉 .

Let 𝑋 be the four-manifold obtained via the double branched cover of 𝐵4

branched along Σ̃.

Fact 7.2

• 𝑋 is a smooth four-manifold,
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𝐵4 Σ

 

𝐵4 
Σ̃

Σ

Figure 21: Pushing the Seifert surface in 4-ball.

• 𝐻1(𝑋, ℤ) = 0,

• 𝐻2(𝑋, ℤ) ≅ ℤ𝑛

• The intersection form on 𝑋 is 𝑉 + 𝑉 𝑇 .

𝐵4 

Σ
Σ̃

pusched cycle 𝛼

cycle 𝛼

Figure 22: Cycle pushed in 4-ball.

Let 𝑌 = Σ(𝐾). Then:

𝐻1(𝑌 , ℤ) × 𝐻1(𝑌 , ℤ) ⟶ ℚ/ℤ
(𝑎, 𝑏) ↦ 𝑎𝐴−1𝑏𝑇 , 𝐴 = 𝑉 + 𝑉 𝑇 .

????????????????????????????
We have a primary decomposition of 𝐻1(𝑌 , ℤ) = 𝑈 (as a group). For any
𝑝 ∈ ℙ we define 𝑈𝑝 to be the subgroup of elements annihilated by the same
power of 𝑝. We have 𝑈 = ⨁𝑝 𝑈𝑝.
Example 7.1

If 𝑈 = ℤ3 ⊕ ℤ45 ⊕ ℤ15 ⊕ ℤ75 then
𝑈3 = ℤ3 ⊕ ℤ9 ⊕ ℤ3 ⊕ ℤ3 and
𝑈5 = (𝑒) ⊕ ℤ5 ⊕ ℤ5 ⊕ ℤ25.

35



Lemma 7.1
Suppose 𝑥 ∈ 𝑈𝑝1

, 𝑦 ∈ 𝑈𝑝2
and 𝑝1 ≠ 𝑝2. Then < 𝑥, 𝑦 >= 0.

Proof.

𝑥 ∈ 𝑈𝑝1

𝐻1(𝑌 , ℤ) ≅ ℤ𝑛/𝐴ℤ
𝐴 ⟶ 𝐵𝐴𝐶𝑇 Smith normal form

???????????????????????
In general

Lecture 8 May 6, 2019

Definition 8.1
Let 𝑋 be a knot complement. Then 𝐻1(𝑋, ℤ) ≅ ℤ and there exists an

epimorphism 𝜋1(𝑋)
𝜙
↠ ℤ.

The infinite cyclic cover of a knot complement 𝑋 is the cover associated with
the epimorphism 𝜙.

𝑋 −↠ 𝑋

Double branched cover.

Let 𝐾 ⊂ 𝑆3 be a knot and Σ its Seifert surface. Let us consider a knot
complement 𝑆3 \ 𝑁(𝐾). Formal sums ∑ 𝜙𝑖(𝑡)𝑎𝑖 + ∑ 𝜙𝑗(𝑡)𝛼𝑗
finitely generated as a ℤ[𝑡, 𝑡−1] module.
Let 𝑣𝑖𝑗 = lk(𝑎𝑖, 𝑎+

𝑗 ). Then 𝑉 = {𝑣𝑖𝑗}𝑛
𝑖,𝑗=1 is the Seifert matrix associ-

ated to the surface Σ and the basis 𝑎1, … , 𝑎𝑛. Therefore 𝑎+
𝑘 = ∑𝑗 𝑣𝑗𝑘𝛼𝑗.
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𝑆0 𝑁0 𝑆1 𝑁1𝑁−1

𝑡−1𝛼1, 𝑡−1𝛼2, … , 𝑡−1𝛼𝑛

𝑡𝑎1, 𝑡𝑎2, … , 𝑡𝑎𝑛𝑎1, 𝑎2, … , 𝑎𝑛

𝑎𝑗 𝑎+
𝑖

𝛼1, 𝛼2, … , 𝛼𝑛

Figure 23: Infinite cyclic cover of a knot complement.

Then lk(𝑎𝑖, 𝑎+
𝑘 ) = lk(𝑎+

𝑘 , 𝑎𝑖) = ∑𝑗 𝑣𝑗𝑘 lk(𝛼𝑗, 𝑎𝑖) = 𝑣𝑖𝑘. We also notice that
lk(𝑎𝑖, 𝑎−

𝑗 ) = lk(𝑎+
𝑖 , 𝑎𝑗) = 𝑣𝑖𝑗 and 𝑎−

𝑗 = ∑𝑘 𝑣𝑘𝑗𝑡−1𝛼𝑗.
The homology of 𝑋 is generated by 𝑎1, … , 𝑎𝑛 and relations. Let now 𝐻 =
𝐻1(𝑋). Can we define a paring?
Let 𝑐, 𝑑 ∈ 𝐻(𝑋) (see Figure 25), Δ an Alexander polynomial. We know that
Δ𝑐 = 0 ∈ 𝐻1(𝑋) (Alexander polynomial annihilates all possible elements).
Let consider a surface 𝐹 such that 𝜕𝐹 = 𝑐. Now consider intersection points
𝐹 ⋅ 𝑑. This points can exist in any 𝑁𝑘 or 𝑆𝑘.

1
Δ ∑

𝑗∈ℤ𝑡−𝑗
(𝐹 ⋅ 𝑡𝑗𝑑) ∈ ℚ[𝑡, 𝑡−1]/ℤ[𝑡, 𝑡−1]

?????????????
There is at least one paper where the structure of (Alexander module?) is
calculated from a specific knot (?minimal number of generators?)
C. Kearton, S. M. J. Wilson

Fact 8.1
Let 𝐴 be a matrix over principal ideal domain 𝑅. Than there exist matrices
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lk(𝛼𝑗, 𝑎𝑖) = 𝛿𝑖𝑗

𝑎1, … , 𝑎𝑛 - generators of 𝐻1(𝑆)
𝐾

𝑁

𝛼1, … , 𝛼𝑛 - dual generators of 𝐻1(𝑁)

𝑆

Σ × (−1, 1)

Figure 24: The double cover of the 3-sphere branched over a knot
𝐾.

𝐶, 𝐷 and 𝐸 such that 𝐴 = 𝐶𝐷𝐸,

𝐷 =
⎡
⎢
⎢
⎢
⎣

𝑑1 0 ⋯ ⋯ 0
0 𝑑2 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑑𝑛−1 0
0 ⋯ ⋯ 0 𝑑𝑛

⎤
⎥
⎥
⎥
⎦

,

where 𝑑𝑖+1|𝑑𝑖, and matrices 𝐶 and 𝐸 are invertible over 𝑅.
𝐷 is called a Smith normal form of the matrix 𝐴.

Definition 8.2
The ℤ[𝑡, 𝑡−1] module 𝐻1(𝑋) is called the Alexander module of a knot 𝐾.

Let 𝑅 be a PID, 𝑀 a finitely generated 𝑅 module. Let us consider

𝑅𝑘 𝐴⟶ 𝑅𝑛 −↠ 𝑀,

where 𝐴 is a 𝑘 × 𝑛 matrix, assume 𝑘 ≥ 𝑛. The order of 𝑀 is the gcd of all
determinants of the 𝑛 × 𝑛 minors of 𝐴. If 𝑘 = 𝑛 then ord 𝑀 = det 𝐴.
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Theorem 8.1
Order of 𝑀 doesn’t depend on 𝐴.

For knots the order of the Alexander module is the Alexander polynomial.

Theorem 8.2

∀𝑥 ∈ 𝑀 ∶ (ord 𝑀)𝑥 = 0.

𝑀 is well defined up to a unit in 𝑅.
??????????????????
General picture : 𝐾, 𝑋 knot complement...

𝐻1(𝑋, ℤ) = ℤ
𝐻1(𝑋, ℤ[𝑡, 𝑡−1])

𝜋1(𝑋)

Definition 8.3
The Nakanishi index of a knot is the minimal number of generators of 𝐻1(𝑋).

Remark about notation: sometimes one writes 𝐻1(𝑋; ℤ[𝑡, 𝑡−1]) (what is also
notation for twisted homology) instead of 𝐻1(𝑋).
?????????????????????
Σ?(𝐾) → 𝑆3 ?????
𝐻1(Σ?(𝐾), ℤ) = ℎ
𝐻 × 𝐻 ⟶ ℚ/ℤ...

𝑆0 𝑁0

𝑐

𝑁−1

𝑑

Figure 25: 𝑐, 𝑑 ∈ 𝐻1(𝑋).
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Blanchfield pairing

Lecture 9 May 20, 2019

Let 𝑀 be compact, oriented, connected four-dimensional manifold. If 𝐻1(𝑀, ℤ) = 0
then there exists a bilinear form - the intersection form on 𝑀 :

𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) ⟶ ℤ

ℤ𝑛
≅

Let us consider a specific case: 𝑀 has a boundary 𝑌 = 𝜕𝑀 . Betti number
𝑏1(𝑌 ) = 0, 𝐻1(𝑌 , ℤ) is finite. Then the intersection form can be degenerated
in the sense that:

𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) ⟶ ℤ 𝐻2(𝑀, ℤ) ⟶ Hom(𝐻2(𝑀, ℤ), ℤ)
(𝑎, 𝑏) ↦ ℤ 𝑎 ↦ (𝑎, _) ∈ 𝐻2(𝑀, ℤ)

has coker precisely 𝐻1(𝑌 , ℤ).
???????????????
Let 𝐾 ⊂ 𝑆3 be a knot, 𝑋 = 𝑆3 \ 𝐾 a knot complement and 𝑋

𝜌
−−→ 𝑋 an

infinite cyclic cover (universal abelian cover).
𝐶∗(𝑋) has a structure of a ℤ[𝑡, 𝑡−1] ≅ ℤ[ℤ] module.
Let 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) be the Alexander module of the knot 𝐾 with an inter-
section form:

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) × 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ⟶ ℚ/ℤ[𝑡, 𝑡−1]
Fact 9.1

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ≅ ℤ[𝑡, 𝑡−1]𝑛/(𝑡𝑉 − 𝑉 𝑇 )ℤ[𝑡, 𝑡−1]𝑛 ,
where 𝑉 is a Seifert matrix.

Fact 9.2

𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) × 𝐻1(𝑋, ℤ[𝑡, 𝑡−1]) ⟶ ℚ/ℤ[𝑡, 𝑡−1]
(𝛼, 𝛽) ↦ 𝛼−1(𝑡 − 1)(𝑡𝑉 − 𝑉 𝑇 )−1𝛽
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Note that ℤ[𝑡, 𝑡−1] is not PID. Therefore we don’t have primary decomposi-
tion of this module. We can simplify this problem by replacing ℤ by ℝ. We
lose some date by doing this transition, but we can

𝜉 ∈ 𝑆1 \ {±1} 𝑝𝜉 = (𝑡 − 𝜉)(𝑡 − 𝜉−1)𝑡−1

𝜉 ∈ ℝ \ {±1} 𝑞𝜉 = (𝑡 − 𝜉)(𝑡 − 𝜉−1)𝑡−1

𝜉 ∉ ℝ ∪ 𝑆1 𝑞𝜉 = (𝑡 − 𝜉)(𝑡 − ̅𝜉)(𝑡 − 𝜉−1)(𝑡 − ̅𝜉−1)𝑡−2

Let Λ = ℝ[𝑡, 𝑡−1]. Then:

𝐻1(𝑋, Λ) ≅ ⨁
𝜉∈𝑆1\{±1}

𝑘≥0

(Λ/𝑝𝑘
𝜉
)𝑛𝑘,𝜉 ⊕ ⨁

𝜉∉𝑆1
𝑙≥0

(Λ/𝑞𝑙
𝜉
)𝑛𝑙,𝜉

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:
• John Milnor, On isometries of inner product spaces, 1969,

• Walter Neumann, Invariants of plane curve singularities , 1983,

• András Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

• Maciej Borodzik, Stefan Friedl The unknotting number and classical
invariants II, 2014.

Let 𝑝 = 𝑝𝜉, 𝑘 ≥ 0.

Λ/𝑝𝑘Λ × Λ/𝑝𝑘Λ ⟶ ℚ(𝑡)/Λ
(1, 1) ↦ 𝜅

Now: (𝑝𝑘 ⋅ 1, 1) ↦ 0
𝑝𝑘𝜅 = 0 ∈ ℚ(𝑡)/Λ

therfore 𝑝𝑘𝜅 ∈ Λ

we have (1, 1) ↦ ℎ
𝑝𝑘
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ℎ is not uniquely defined: ℎ → ℎ + 𝑔𝑝𝑘 doesn’t affect paring.
Let ℎ = 𝑝𝑘𝜅.

Example 9.1

𝜙0((1, 1)) = +1
𝑝

𝜙1((1, 1)) = −1
𝑝

𝜙0 and 𝜙1 are not isomorphic.

Proof. Let Φ ∶ Λ/𝑝𝑘Λ ⟶ Λ/𝑝𝑘Λ be an isomorphism.
Let: Φ(1) = 𝑔 ∈ 𝜆

Λ/𝑝𝑘Λ
Φ−−−→Λ/𝑝𝑘Λ

𝜙0((1, 1)) = 1
𝑝𝑘 𝜙1((𝑔, 𝑔)) = 1

𝑝𝑘 (Φ is an isometry).

Suppose for the paring 𝜙1((𝑔, 𝑔)) = 1
𝑝𝑘 we have 𝜙1((1, 1)) = −1

𝑝𝑘 . Then:

−𝑔 ̅𝑔
𝑝𝑘 = 1

𝑝𝑘 ∈ ℚ(𝑡)/Λ
−𝑔 ̅𝑔
𝑝𝑘 − 1

𝑝𝑘 ∈ Λ

−𝑔 ̅𝑔 ≡ 1 (mod 𝑝) in Λ
−𝑔 ̅𝑔 − 1 = 𝑝𝑘𝜔 for some 𝜔 ∈ Λ

evalueting at 𝜉:
>0

⏞⏞⏞⏞⏞− 𝑔(𝜉)𝑔(𝜉−1) −1 = 0 ⇒⇐

????????????????????
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𝑔 = ∑ 𝑔𝑖𝑡𝑖

̅𝑔 = ∑ 𝑔𝑖𝑡−𝑖

̅𝑔(𝜉) = ∑ 𝑔𝑖𝜉𝑖 𝜉 ∈ 𝑆1

̅𝑔(𝜉) = ̅𝑔(𝜉)

Suppose 𝑔 = (𝑡 − 𝜉)𝛼𝑔′. Then (𝑡 − 𝜉)𝑘−𝛼 goes to 0 in Λ/𝑝𝑘Λ.

Theorem 9.1
Every sesquilinear non-degenerate pairing

Λ/𝑝𝑘 × Λ/𝑝 ⟶ ℎ
𝑝𝑘

is isomorphic either to the pairing wit ℎ = 1 or to the paring with ℎ = −1
depending on sign of ℎ(𝜉) (which is a real number).
Proof. There are two steps of the proof:

1. Reduce to the case when ℎ has a constant sign on 𝑆1.

2. Prove in the case, when ℎ has a constant sign on 𝑆1.
Lemma 9.1
If 𝑃 is a symmetric polynomial such that 𝑃(𝜂) ≥ 0 for all 𝜂 ∈ 𝑆1, then 𝑃
can be written as a product 𝑃 = 𝑔 ̅𝑔 for some polynomial 𝑔.
Sketch of proof. : Induction over deg 𝑃 .
Let 𝜁 ∉ 𝑆1 be a root of 𝑃 , 𝑃 ∈ ℝ[𝑡, 𝑡−1]. Assume 𝜁 ∉ ℝ. We know that
polynomial 𝑃 is divisible by (𝑡−𝜁), (𝑡− ̅𝜁), (𝑡−1 −𝜁) and (𝑡−1 − ̅𝜁). Therefore:

𝑃 ′ = 𝑃
(𝑡 − 𝜁)(𝑡 − ̅𝜁)(𝑡−1 − 𝜁)(𝑡−1 − ̅𝜁)

𝑃 ′ = 𝑔′ ̅𝑔
We set 𝑔 = 𝑔′(𝑡 − 𝜁)(𝑡 − ̅𝜁) and 𝑃 = 𝑔 ̅𝑔. Suppose 𝜁 ∈ 𝑆1. Then (𝑡 − 𝜁)2|𝑃
(at least - otherwise it would change sign). Therefore:

𝑃 ′ = 𝑃
(𝑡 − 𝜁)2(𝑡−1 − 𝜁)2

𝑔 = (𝑡 − 𝜁)(𝑡−1 − 𝜁)𝑔′ etc.

The map (1, 1) ↦ ℎ
𝑝𝑘 = 𝑔 ̅𝑔ℎ

𝑝𝑘 is isometric whenever 𝑔 is coprime with 𝑃 .
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Lemma 9.2
Suppose 𝐴 and 𝐵 are two symmetric polynomials that are coprime and that
∀𝑧 ∈ 𝑆1 either 𝐴(𝑧) > 0 or 𝐵(𝑧) > 0. Then there exist symmetric polyno-
mials 𝑃 , 𝑄 such that 𝑃(𝑧), 𝑄(𝑧) > 0 for 𝑧 ∈ 𝑆1 and 𝑃𝐴 + 𝑄𝐵 ≡ 1.

Idea of proof. For any 𝑧 find an interval (𝑎𝑧, 𝑏𝑧) such that if 𝑃(𝑧) ∈ (𝑎𝑧, 𝑏𝑧)
and 𝑃(𝑧)𝐴(𝑧) + 𝑄(𝑧)𝐵(𝑧) = 1, then 𝑄(𝑧) > 0, 𝑥(𝑧) = 𝑎𝑧+𝑏𝑧

𝑖 is a continues
function on 𝑆1 approximating 𝑧 by a polynomial .
??????????????????????????

(1, 1) ↦ ℎ
𝑝𝑘 ↦ 𝑔 ̅𝑔ℎ

𝑝𝑘

𝑔 ̅𝑔ℎ + 𝑝𝑘𝜔 = 1

Apply Lemma 9.2 for 𝐴 = ℎ, 𝐵 = 𝑝2𝑘. Then, if the assumptions are satisfied,

𝑃ℎ + 𝑄𝑝2𝑘 = 1
𝑝 > 0 ⇒ 𝑝 = 𝑔 ̅𝑔

𝑝 = (𝑡 − 𝜉)(𝑡 − ̅𝜉)𝑡−1

so 𝑝 ≥ 0 on 𝑆1

𝑝(𝑡) = 0 ⇔ 𝑡 = 𝜉𝑜𝑟𝑡 = ̅𝜉
ℎ(𝜉) > 0
ℎ( ̅𝜉) > 0

𝑔 ̅𝑔ℎ + 𝑄𝑝2𝑘 = 1
𝑔 ̅𝑔ℎ ≡ 1 mod 𝑝2𝑘

𝑔 ̅𝑔 ≡ 1 mod 𝑝𝑘

???????????????????????????????
If 𝑃 has no roots on 𝑆1 then 𝐵(𝑧) > 0 for all 𝑧, so the assumptions of Lemma
9.2 are satisfied no matter what 𝐴 is.

?????????????????
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Λ/𝑝𝑘
𝜉

× Λ/𝑝𝑘
𝜉

⟶ 𝜖
𝑝𝑘

𝜉
, 𝜉 ∈ 𝑆1 \ {±1}

Λ/𝑞𝑘
𝜉

× Λ/𝑞𝑘
𝜉

⟶ 1
𝑞𝑘

𝜉
, 𝜉 ∉ 𝑆1

??????????????????? 1 ?? epsilon?

Theorem 9.2 (Matumoto, Borodzik-Conway-Politarczyk)
Let 𝐾 be a knot,

𝐻1(𝑋, Λ) × 𝐻1(𝑋, Λ) = ⨁
𝑘,𝜉,𝜖
𝜉∈𝑆1

(Λ/𝑝𝑘
𝜉
, 𝜖)𝑛𝑘,𝜉,𝜖 ⊕ ⨁

𝑘,𝜂
(Λ/𝑝𝑘

𝜉
)𝑚𝑘 and

𝛿𝜎(𝜉) = lim
𝜀→0+

𝜎(𝑒2𝜋𝑖𝜀𝜉) − 𝜎(𝑒−2𝜋𝑖𝜀𝜉),

then 𝜎𝑗(𝜉) = 𝜎(𝜉) − 1
2 lim

𝜀→0
𝜎(𝑒2𝜋𝑖𝜀𝜉) + 𝜎(𝑒−2𝜋𝑖𝜀𝜉)

The jump at 𝜉 is equal to 2 ∑
𝑘𝑖 odd

𝜖𝑖.

The peak of the signature function is equal to ∑
𝑘𝑖 even

𝜖𝑖.

?????????????????
(𝜂𝑘,𝜉+

𝑙
− 𝜂𝑘,𝜉−

𝑙

Lecture 10 May 27, 2019

???????
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Theorem 10.1
Such a pairing is isometric to a pairing:

[1] × [1] → 𝜖
𝑝𝑘

𝜉
, 𝜖 ∈ ±1

?????????????
[1] = 1 ∈ Λ/𝑝𝑘

𝜉Λ
????????

Theorem 10.2
The jump of the signature function at 𝜉 is equal to 2 ∑

𝑘𝑖 odd
𝜖𝑖.

The peak of the signature function is equal to ∑
𝑘𝑖 even

𝜖𝑖.

(Λ/𝑝𝑘1Λ, 𝜖1) ⊕ ⋯ ⊕ (Λ/𝑝𝑘𝑛Λ, 𝜖𝑛)

Definition 10.1
A matrix 𝐴 is called Hermitian if 𝐴(𝑡) = 𝐴(𝑡)𝑇

Theorem 10.3 (Borodzik-Friedl 2015, Borodzik-Conway-Politarczyk 2018)
A square Hermitian matrix 𝐴(𝑡) of size 𝑛 with coefficients in ℤ[𝑡, 𝑡−1] (or
ℝ[𝑡, 𝑡−1] ) represents the Blanchfield pairing if:

𝐻1(�̄�, Λ) = Λ𝑛/𝐴Λ𝑛,
(𝑥, 𝑦) ↦ 𝑥𝑇 𝐴−1𝑦 ∈ Ω/Λ

𝐻1(𝑋, Λ) × 𝐻1(𝑋, Λ) ⟶ Ω/Λ,

where Λ = ℤ[𝑡, 𝑡−1] or ℝ[𝑡, 𝑡−1], Ω = ℚ(𝑡) or ℝ(𝑡)
????????

field of fractions ??????

𝐻1(Σ(𝐾), ℤ) = ℤ𝑛/(𝑉 + 𝑉 𝑇 )ℤ𝑛

𝐻1(Σ(𝐾), ℤ) × 𝐻1(Σ(𝐾), ℤ) ⟶= ℚ/ℤ
(𝑎, 𝑏) ↦ 𝑎(𝑉 + 𝑉 𝑇 )−1𝑏
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???????????????????
???????????????????

𝑦 ↦ 𝑦 + 𝐴𝑧
𝑥𝑇 𝐴−1(𝑦 + 𝐴𝑧) = 𝑥𝑇 𝐴−1𝑦 + 𝑥𝑇 𝟙𝑧 = 𝑥𝑇 𝐴−1𝑦 ∈ Ω/Λ

𝑥𝑇 𝟙𝑧 ∈ Λ
𝐻1(𝑋, Λ) = Λ𝑛/(𝑉 𝑡 − 𝑉 )Λ𝑛

(𝑎, 𝑏) ↦ 𝑎𝑇 (𝑉 𝑡 − 𝑉 𝑇 )−1(𝑡 − 1)𝑏

(Blanchfield ’59)

Theorem 10.4 (Kearton ’75, Friedl, Powell ’15)
There exits a matrix 𝐴 representing the Blanchfield paring over ℤ[𝑡, 𝑡−1]. The
size of 𝐴 is a size of Seifert form.

Remark:

1. Over ℝ we can take 𝐴 to be diagonal.

2. The jump of signature function at 𝜉 is equal to

lim
𝑡→0+

sign 𝐴(𝑒𝑖𝑡𝜉) − sign 𝐴(𝑒−𝑖𝑡𝜉).

3. The minimal size of a matrix 𝐴 that presents a Blanchfield paring (over
ℤ[𝑡, 𝑡−1]) for a knot 𝐾 is a knot invariant.

The unknotting number

Let 𝐾 be a knot and 𝐷 a knot diagram. A crossing change is a modification
of a knot diagram by one of following changes

↦ ,
↦ .

The unknotting number 𝑢(𝐾) is a number of crossing changes needed to turn
a knot into an unknot, where the minimum is taken over all diagrams of a
given knot.
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Definition 10.2
A Gordian distance 𝐺(𝐾, 𝐾′) between knots 𝐾 and 𝐾′ is the minimal number
of crossing changes required to turn 𝐾 into 𝐾′.

Problem 10.1
Prove that:

𝐺(𝐾, 𝐾′′) ≤ 𝐺(𝐾, 𝐾′) + 𝐺(𝐾′, 𝐾′′).
Open problem:

𝑢(𝐾#𝐾′) = 𝑢(𝐾) + 𝑢(𝐾′).
Lemma 10.1 (Scharlemann ’84)
Unknotting number one knots are prime.

Tools to bound unknotting number

Theorem 10.5
For any symmetric polynomial Δ ∈ ℤ[𝑡, 𝑡−1] such that Δ(1) = 1, there exists
a knot 𝐾 such that:

1. 𝐾 has unknotting number 1,

2. Δ𝐾 = Δ.

Let us consider a knot 𝐾 and its Seifert surface Σ.
the Seifert form for 𝐾−

the Seifert form for 𝐾+
𝑆− + 𝑆+ differs from by a term in the bottom right corner

Let 𝐴 be a symmetric 𝑛 × 𝑛 matrix over ℝ. Let 𝐴1, … , 𝐴𝑛 be minors of
𝐴.
Let 𝜖0 = 1 If

Lecture 11 Surgery June 3, 2019

Theorem 11.1
Let 𝐾 be a knot and 𝑢(𝐾) its unknotting number. Let 𝑔4 be a minimal four

48



genus of a smooth surface 𝑆 in 𝐵4 such that 𝜕𝑆 = 𝐾. Then:

𝑢(𝐾) ≥ 𝑔4(𝐾)

Proof. Recall that if 𝑢(𝐾) = 𝑢 then 𝐾 bounds a disk Δ with 𝑢 ordinary
double points.
???????????????

𝜒(𝐷2) = 1
𝜒(Δ) = 1 − 𝑢

𝛾 = 0 ∈ 𝜋1(𝐵4 \ 𝑆)

??????????????
Remove from Δ the two self intersecting disks and glue the Seifert surface for
the Hopf link. The reality surface 𝑆 has Euler characteristic 𝜒(𝑆) = 1 − 2𝑢.
Therefore 𝑔4(𝑆) = 𝑢.

Example 11.1
The knot 820 is slice: 𝜎 ≡ 0 almost everywhere but 𝜎(𝑒2𝜋𝑖

6 ) = +1.

Surgery

Recall that 𝐻1(𝑆1×𝑆1, ℤ) = ℤ2. As generators for 𝐻1 we can set 𝛼 = [𝑆1 × {pt}]
and 𝛽 = [{pt} ×𝑆1]. Suppose 𝜙 ∶ 𝑆1 × 𝑆1 ⟶ 𝑆1 × 𝑆1 is a diffeomorphism.
Consider an induced map on the homology group:

𝐻1(𝑆1 × 𝑆1, ℤ) ∋ 𝜙∗(𝛼) = 𝑝𝛼 + 𝑞𝛽, 𝑝, 𝑞 ∈ ℤ,
𝜙∗(𝛽) = 𝑟𝛼 + 𝑠𝛽, 𝑟, 𝑠 ∈ ℤ,

𝜙∗ = (𝑝 𝑞
𝑟 𝑠) .

As 𝜙∗ is diffeomorphis, it must be invertible over ℤ. Then for a direction
preserving diffeomorphism we have det 𝜙∗ = 1. Therefore 𝜙∗ ∈ SL(2, ℤ).
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Theorem 11.2
Every such a matrix can be realized as a torus.

Proof. (I) Geometric reason

𝜙𝑡 ∶ 𝑆1 × 𝑆1 ⟶ 𝑆1 × 𝑆1

𝑆1 × {pt} ⟶ {pt} ×𝑆1

{pt} ×𝑆1 ⟶ 𝑆1 × {pt}
(𝑥, 𝑦) ↦ (−𝑦, 𝑥)

(II)

𝜑∗(𝜆) = 𝜆 + 𝜇

𝜇

𝜆

𝜇

Figure 26: Dehn twist.

Sketch of proof. We will show that each diffeomorphism is isotopic to (𝑝 𝑞
𝑟 𝑠).

Diff+(𝑆1 × 𝑆1)/Iso(𝑆1 × 𝑆1) = MCG(𝑆1 × 𝑆1) = SL(2, ℤ)

𝜆

𝜇 𝐾

𝑁(𝐾) = 𝐷2 × 𝑆1

Figure 27: Choice of meridian and longitude.
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Let 𝑁 = 𝐷2 × 𝑆 be a tubular neighbourhood of a knot 𝐾. Consider its
boundary 𝜕𝑁 = 𝑆1 × 𝑆1. There exists a simple closed curve 𝜇 ⊂ 𝜕𝑁 (a
meridian) that bounds a disk in 𝑁 . We choose another simple closed curve
𝜆 (a longitude) so that lk(𝜆, 𝐾) = 0.
????????
𝜆𝜇 = 1 intersection
𝜋0(GL(2, ℝ)
???????????
In other words a homotopy class: [𝜆] = 0 in 𝐻1(𝑆3 \ 𝑁, ℤ).

Lecture 12 Surgery June 10, 2019

Consider a surgery

Lecture 13 Mess June 17, 2019

Fact 13.1 (Milnor Singular Points of Complex Hypersurfaces)

An oriented knot is called negative amphichiral if the mirror image 𝑚(𝐾) of
𝐾 is equivalent the reverse knot of 𝐾: 𝐾𝑟.

Problem 13.1
Prove that if 𝐾 is negative amphichiral, then 𝐾#𝐾 = 0 in 𝒞.

Example 13.1
Figure 8 knot is negative amphichiral.
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Theorem 13.1
Let 𝐻𝑝 be a 𝑝 - torsion part of 𝐻. There exists an orthogonal decomposition
of 𝐻𝑝:

𝐻𝑝 = 𝐻𝑝,1 ⊕ ⋯ ⊕ 𝐻𝑝,𝑟𝑝
.

𝐻𝑝,𝑖 is a cyclic module:

𝐻𝑝,𝑖 = ℤ[𝑡, 𝑡−1]/𝑝𝑘𝑖ℤ[𝑡, 𝑡−1]

The proof is the same as over ℤ.

Ω 

𝛼

𝛽

𝐵

𝐴
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