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A knot K in S3 is a smooth (PL - smooth) embedding of a circle S* in S3:

p: 81— 53
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Usually we think about a knot as an image of an embedding: K = ¢(S?).

Example 1.1

. Knots: O (unknot), @ (trefoil).

e Not knots: QQ (it is not an injection), \_/ (it is not smooth).

Definition 1.2
Two knots Ky = ¢y(SY), K; = p,(S1) are equivalent if the embeddings i,
and @, are isotopic, that is there exists a continues function

®: S % [0,1] < 53
D(z,t) = ¢y(x)

such that ®, is an embedding for any t € [0,1], &y = ¢, and P, = ;.

Theorem 1.1

Two knots Ky and K, are isotopic if and only if they are ambient isotopic,
i.e. there exists a family of self-diffeomorphisms W = {4, : t € [0,1]} such
that:

W(t) =1, is continius on t € [0, 1]

wt : S3 — ‘937
@b():ida
1/’1(K0) = K;.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding p(t) = (cost,sint,0),
where t € [0,27] is a parametrisation of St.
Definition 1.4
__k
A link with k - components is a (smooth) embedding of S* U ... U St in S3

Example 1.2
Links:



OO0
a trivial link with 3 components: _/,
a hopf link: @,

@5
a Whitehead link: \i()/ )

Borromean link: @

Definition 1.5
A link diagram D, is a picture over projection  of a link L in R3(S3) to R?
(S?) such that:

(1) D”‘L is non degenerate: >,

(2) the double points are not degenerate: K,

(3) there are no triple point: ><<

There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.

Every link admits a link diagram.

Let D be a diagram of an oriented link (to each component of a link we add
an arrow in the diagram).

We can distinguish two types of crossings: right-handed (X), called a pos-

itive crossing, and left-handed (;\’), called a negative crossing.

1.1 Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram
as shown below:



<\""’/:/>.

Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).

1.2 Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by
smoothing each crossing:

A= )(
X )(

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in R? (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive
and left-handed for a negative one. We get an orientable surface ¥ such that
0¥ = L.

Note: the obtained surface isn’t unique and in general doesn’t need to be

connected, but by taking connected sum of all components we can easily get
a connected surface (i.e. we take two disconnected components and cut a
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Figure 1: Constructing a Seifert surface.

disk in each of them: D; and D,; now we glue both components on the
boundaries: 0D, and 9D,.

Theorem 1.3 (Seifert)
Every link in S® bounds a surface ¥ that is compact, connected and orientable.
Such a surface is called a Seifert surface.

Definition 1.6
The three genus g5(K) (g(K)) of a knot K is the minimal genus of a Seifert
surface X2 for K.

Corollary 1.1
A knot K s trivial if and only g5(K) = 0.

Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (Andréas Juhasz, 2008).



Figure 2: Connecting two surfaces.

. genus 0 @

Figure 3: Genus of an orientable surface.

genus 2

genus 3

Definition 1.7

Suppose o and 3 are two simple closed curves in R3. On a diagram L consider
all crossings between o and 3. Let N, be the number of positive crossings,
N_ - negative. Then the linking number: lk(c, 8) = 2(N, — N_).

Let a and 3 be two disjoint simple cross curves in S3. Let v(3) be a tubular
neighbourhood of 8. The linking number can be interpreted via first ho-
mology group, where lk(a, 8) is equal to evaluation of « as element of first
homology group of the complement of j:

a € H,(S*\ v(B),Z) =~ Z.
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Example 1.3

e Hopf link:

«

lk(a7 ﬂ) =-1

e T(6,2) link:

(e}

Ik(a, B) = 3

Fact 1.1

1 1 .
93(2) = §b1(2) = §d1m[R H,(%,R),

where by is first Betti number of 3.

1.3 Seifert matrix

Let L be a link and X be an oriented Seifert surface for L. Choose a basis for
H,(3,Z) consisting of simple closed ay,...,qa,. Let af,...a;} be copies of
a; lifted up off the surface (push up along a vector field normal to ). Note
that elements «; are contained in the Seifert surface while all o] are don’t
intersect the surface. Let Ik(c;, o)) = {a;;}. Then the matrix S = {a;;}7
is called a Seifert matrix for L. Note that by choosing a different basis we
get a different matrix.

Theorem 1.4
The Seifert matrices S, and Sy for the same link L are S-equivalent, that is,
Sy can be obtained from S; by a sequence of following moves:
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(1) V.— AV AT where A is a matriz with integer coefficients,

* 0 * 0
V Do Vv P
(2) V- x 0 or V — * 0
¥ .. x/0 0 * ..oox 0 1
0 ... 0|10 0 .. 0/0 O
(3) inverse of (2)
Lecture 2 March 4, 2019

Theorem 2.1
For any knot K C S3 there exists a connected, compact and orientable surface
Y(K) such that 0X(K) = K

Proof. (7joke”)
Let K € S be a knot and N = v(K) be its tubular neighbourhood. Because
K and N are homotopy equivalent, we get:

HY(S*\ N) = H'(S%\ K).

Let us consider a long exact sequence of cohomology of a pair (53,53 \ N)
with integer coefficients:



Z
I

H°(S3) — HO°(S3\ N) —

— HY(S3,83\ N) —» HY(S3) — HY(S3\N)—
2l

0
I

— H?(S3,83\ N) — H?(S3) — H?(S3\N) —

— H3(S3,83\ N) — H3(S) — 0
2l
Z

H*(S3,8%\ N) = H*(N,dN)

Vadddddddddaaas

]

Definition 2.1
Let S be a Seifert matriz for a knot K. The Alexander polynomial A i (t) is
a Laurent polynomial:

Ap(t) == det(tS — ST) € Z[t,t 7] = 7[7]

Theorem 2.2
A (t) is well defined up to multiplication by +t*, for k € 7.

Proof. We need to show that Ay (t) doesn’t depend on S-equivalence rela-
tion.

(1) Suppose S" = CSCT, C € GL(n, Z) (matrices invertible over Z). Then
det C =1 and:

det(tS’ — §'T) = det(tCSCT — (CSCTT) =
det(tCSCT — CSTCT) = det C(tS — ST)CT = det(tS — ST)

9



* 0 * 0 * 0
S o ST : tS — ST |
A=t * 0 |— * 0 | = x 0
* ... x|0 0 * ... x|0 1 * *10 —1
0O ... 0|1 O 0O .. 0]0 O 0 Ot O

Using the Laplace expansion we get det A = +tdet(tS — ST).

Example 2.1

If K is a trefoil then we can take S = <_1 -1

0 _1). Then

—t+1 —t

A (t) = det ( 1 i 1) = (t—1)%2+t = t2—t+1 #+ 1 = trefoil is not trivial.

Fact 2.1
Ay (t) is symmetric.

Proof. Let S be an n X n matrix.

Ap(t1) =det(t 1S — ST) = (—t) ™ det(tST — 9) =
(—t) ™ det(tS — ST) = (—t) " Ax(t)

If K is a knot, then n is necessarily even, and so Ax(t71) =t A (t). O
Lemma 2.1

1

5 deg Ay (t) < g5(K), where deg(a, t" + - +at') =k — 1.

Proof. If ¥ is a genus g - Seifert surface for K then H,(X) = 729, s0 S is an
2g x 2g matrix. Therefore det(tS — ST) is a polynomial of degree at most
2g. 0

Example 2.2
There are not trivial knots with Alezander polynomial equal 1, for example:
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/\B
C /
\5 A
Lemma 2.2 (Dehn)
f
Let M be a 3-manifold and D?> — M3 be a map of a disk such that f|aD2 s

11n34 = 1.

g
an embedding. Then there exists an embedding D* < M such that:

g\am - f|az)2.

Lecture 3
Example 3.1
F:C? = C a polynomial
F(0)=0
PPPPVVPPVPP?

as a corollary we see that K7 7777
is not slice unless m = 0.

Theorem 3.1
The map j: C — Z°° is a surjection that maps K,, to a linear independent
set. Moreover C = 7
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Fact 3.1 (Milnor Singular Points of Complex Hypersurfaces)

An oriented knot is called negative amphichiral if the mirror image m(K) of
K is equivalent the reverse knot of K: K.

Problem 3.1
Prove that if K is negative amphichiral, then K#K =0 in C.

Example 3.2
Figure 8 knot is negative amphichiral.

Lecture 4 Concordance group March 18, 2019

Definition 4.1

A knot K is called (smoothly) slice if K is smoothly concordant to an unknot.
A knot K is smoothly slice if and only if K bounds a smoothly embedded disk
in B*.

Definition 4.2
Two knots K and K’ are called (smoothly) concordant if there exists an annu-
lus A that is smoothly embedded in S® x [0, 1] such that 0A = K’ x {1} U K x {0}.

S3 % [0,1]

K
S3x {0} I S3x {1}

Let m(K) denote a mirror image of a knot K.

12



Fact 4.1
For any K, K#m(K) is slice.

Fact 4.2
Concordance is an equivalence relation.

Fact 4.3
IfK, ~ K, and K, ~ K, then K, #K, ~ K,'#K,’.

Ky

Annulus A,

Annulus A, Ko/ |
K,

Figure 4: Sketch for Fakt 4.3.

Fact 4.4
K#m(K) ~ the unknot.

Theorem 4.1

Let € denote a set of all equivalent classes for knots and {0} denote class of
all knots concordant to a trivial knot. C is a group under taking connected
sums. The neutral element in the group is {0} and the inverse element of an

element {K} € C is —{K} = {mK}.

Fact 4.5
The figure eight knot is a torsion element in C (2K ~ the unknot).

Problem 4.1 (open)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments?

13



Remark: K ~ K’ < K# — K’ is slice.

Let © be an oriented
PoPPP?

Suppose X is a Seifert matrix with an intersection form («, 8) - lk(a, 87).

Suppose «, € H{(X,Z (i.e. there are cycles).
297927227722777

a,B € ker(H{(3,7Z) — H,(Q,7)). Then there are two cycles A,B € Q
such that A = o and 9B = 3. Let B be a push off of B in the positive
normal direction such that 9B = 7. Then lk(a,87) = A- B

Lecture 5 April 8, 2019

X is a closed orientable four-manifold. Assume 7, (X) = 0 (it is not needed to
define the intersection form). In particular H,(X) = 0. H, is free (exercise).

Poincaré duality evaluation

Hy(X,7) ————— = H%(X,7) 2 Hom(H,y (X, Z), Z)

Intersection form: Hy(X,Z) x Hy(X,Z) — Z - symmetric, non singular.
Let A and B be closed, oriented surfaces in X.

Proposition 5.1
A - B doesn’t depend of choice of A and B in their homology classes.

14



Lecture 6 March 11, 2019

Definition 6.1
A link L is fibered if there exists a map ¢ : S\ L «— S1 which is locally
trivial fibration.

Lecture 7 April 15, 2019

In other words:

Choose a basis (by, ..., b;)
777

of Hy(Y,Z, then A = (b;,b,)
77

is a matrix of intersection form:

L) ygn = H\(Y, Z).

In particular | det A |= #H, (Y, Z).
That means - what is happening on boundary is a measure of degeneracy.

H(Y,2) x H,(Y,2) — R/, -alinking form
2 2

“laz T az
(a,b) = aA~'bT

The intersection form on a four-manifold determines the linking on the
boundary.

Let K € S* be a knot, 3(K) its double branched cover. If V is a Seifert
matrix for K, then H,(3(K),Z) = Zn/AZ where A =V x VT n=rankV.

15



5 U5

Figure 5: Pushing the Seifert surface in 4-ball.

Let X be the fofgr—manifold obtained via the double branched cover of B*
branched along .

Fact 7.1

e X is a smooth four-manifold,
e Hi(X,Z) =0,
e Hy(X,7)=27"
e The intersection form on X is V + V7.
Let Y = X(K). Then:
H\(Y,2) x H,(Y,2) — 8/,
(a,b) = aA~tbT, A=V +VT
H (Y, 2)=%"/

A — BACT Smith normal form
20222272727202222727272

In general

Lecture 8 May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If H;(M,Z) =0
then there exists a bilinear form - the intersection form on M:

16



Hy(M,7) x Hy(M,Z)— Z
2
Zn

Let us consider a specific case: M has a boundary Y = OM. Betti number
b,(Y) =0, H (Y, Z) is finite. Then the intersection form can be degenerated
in the sense that:
Hy,(M,7) x Hy(M,Z) — Z H,(M,7) — Hom(Hy(M,Z),7)
(aab>F+ VA ar—>(a,4)]7é(AI,Z)

has coker precisely H, (Y, Z).
Vdddddddddddddas

Let K C S2 be a knot,
X = S3\ K - a knot complement,

~ P
X — X - an infinite cyclic cover (universal abelian cover).

m(X) — X)) —H(X,Z)~7

(71 (X)), 71 (X))]

C,(X) has a structure of a Z[t,t!] = Z[Z] module.

~

H,(X,Z[t,t7]) - Alexander module,

H,(X,Z[t,t7™]) x H\(X,Z]t,t7]) — Q/Z[t,t_l]

Fact 8.1

H, (X, z[t, 1)) = 21 tl]n/(tv —Vvhzjt, e

where V' is a Seifert matriz.

Fact 8.2

H,(X,Z[t,t7]) x H (X, Z[t,t7]) — Q/Z[t 1
(a,B) = at(t—1)tV —VvH)~13
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Note that Z is not PID. Therefore we don’t have primer decomposition of
this moduli. We can simplify this problem by replacing Z by R. We lose
some date by doing this transition.

eSI\{*1l} p=0—- -t
EERN{£1} g =(—- -t

EERUS' qe=(t— )t —E)(t—& )t —E Nt

A =R[t, t71]
Then: B (X, 0= B A/ oo GO/ me
gesN\[x1) 16 ggst
k>0 >0

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:
e John Milnor, On isometries of inner product spaces, 1969,
o Walter Neumann, Invariants of plane curve singularities , 1983,

o Andras Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

o Maciej Borodzik, Stefan Friedl The unknotting number and classical
invariants 11, 2014.

Let p =pg, k > 0.

A/p’fA % A/pkA — 80/,
(L) =k
Now: (p*-1,1) =0
p’% =0€ Q(t)/
therfore pFr € A

A

h
we have (1,1) = —
p

18



h is not uniquely defined: h — h + gp* doesn’t affect paring.
Let h = pFk.

Example 8.1
1
bo((1,1)) = *7
61((1,1)) = _?1

@y and ¢, are not isomorphic.

Proof. Let ® : A/pkA — A/p"“A be an isomorphism.
Let: (1) =g € A

A ® A
/MA__%/MA

1 1 . .
o0((1,1) = = 01((9,9)) = (@ s an sometry).
Suppose for the paring ¢,((g,9)) = # we have ¢,((1,1)) = Z&. Then:
—g9 1 ¢
Z_ Loy,
—99 1
ot

—gg=1 (mod p) in A
—gg — 1 = pFw for some w € A

evalueting at &:

>0
—— |

— 989§ —1=0 =«

270727272222222227772
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g€ =) _g& ¢es
9(&) = 9(§)
Suppose g = (t — &)%g’. Then (t — &)~ goes to 0 in A/pkA’
Theorem 8.1
Fvery sesquilinear non-degenerate pairing
A A h
X — —
s isomorphic either to the pairing wit h = 1 or to the paring with h = —1

depending on sign of h(§) (which is a real number).
Proof. There are two steps of the proof:

1. Reduce to the case when h has a constant sign on S*.

2. Prove in the case, when h has a constant sign on S*.

Lemma 8.1
If P is a symmetric polynomial such that P(n) > 0 for all n € S*, then P
can be written as a product P = gg for some polynomial g.

Sketch of proof. Induction over deg P.
Let ¢ ¢ S* be a root of P, P € R[t,t"']. Assume ¢ ¢ R. We know that
polynomial P is divisible by (t—(), (t—C), (t71—¢) and (¢t 1 —(). Therefore:

P

(t=QOt = =" =)
P =g'g

4

We set g = ¢'(t — ¢)(t —¢) and P = gg. Suppose ¢ € S*. Then (t —()? | P
(at least - otherwise it would change sign). Therefore:

P

P =
(t—C)2(t =)
g=0t—-Q " =Qg" etc.
The map (1,1) — 1% = % is isometric whenever ¢ is coprime with P. [

20



Lemma 8.2

Suppose A and B are two symmetric polynomials that are coprime and that
Vz € St either A(z) > 0 or B(z) > 0. Then there exist symmetric polyno-
mials P, Q such that P(z),Q(z) > 0 for z € S* and PA+ QB = 1.

Idea of proof. For any z find an interval (a,,b,) such that if P(z) € (a,,b,)
and P(2)A(z) + Q(z)B(z) = 1, then Q(z) > 0, z(2) = 2H2 is a continues
function on S! approximating z by a polynomial .
Valddddddddddddddddddddddaas

99N
Pk
ggh + pFw =1

h
(1,1) —~ oF =

Apply Lemma 8.2 for A = h, B = p?*. Then, if the assumptions are satisfied,

Ph+Qp** =1
p>0=p=gg

p=(t—=t—-Ht!

sop>0on St
pt)=0<t==Cort=¢€
h(§) >0

h(€) >0

ggh + Qp** =1
ggh =1 mod p**
gg=1 mod p*

2020222279722222222727272222727

If P has no roots on S! then B(z) > 0 for all z, so the assumptions of Lemma
8.2 are satisfied no matter what A is. ]

29297272797272277
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My x M) = g €€8"\ ()
A A 1 1
( /q’gx /qéz)—>q§, §¢ S

Theorem 8.2
(Matumoto, Conway-Borodzik-Politarczyk) Let K be a knot,

H(X4) x H(Z8) = @ (e amsca D/
ko

k7§76
&insSt

Let 50(5) — lim 0'(627Ti5€) . 0'(6727”55),

e—0"

then aj(g) = o(€) — %&1:5% 0'(627”65) + 0(6727@55)

The jump at & is equal to 2 Y, ¢€,. The peak of the signature function is

k; odd
equal to > €.
k;even
O]
Lecture 9 May 27, 2019

Definition 9.1
A square hermitian matrix A of size n.

field of fractions
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Lecture 10 June 3, 2019

Theorem 10.1
Let K be a knot and u(K) its unknotting number. Let g,(K) be a minimal
four genus of a smooth surface S in B* such that 0S = K. Then:

u(K) = g4(K)

Proof. Recall that if u(K) = u then K bounds a disk A with u ordinary
double points.

Remove from A the two self intersecting and glue the Seifert surface for the
Hopf link. The reality surface S has Euler characteristic x(S) = 1 — 2u.

Therefore g,(S) = u . O

2090000020020902022%

Example 10.1

The knot 84 is slice: o = 0 almost everywhere but a(e2 -

) = +1.

Surgery
Recall that Hy(S*x S, 7) = 73. As generators for H; we can set o = [S x {pt}]

and B = [{pt} x S]. Suppose ¢ : S* x St — St x St is a diffeomorphism.
Consider an induced map on homology group:

H, (S' x S1.,7) > ¢, (o) =pa+4qB, p,q€,

-9

As ¢, is diffeomorphis, it must be invertible over Z. Then for a direction
preserving diffeomorphism we have det ¢, = 1. Therefore ¢, € SL(2,7).

23



Lecture 11 balagan

Proof. By Poincaré duality we know that:

Therefore dimQ H,(Y) / = dimQ V. ]

Vv

Suppose g(K) = 0 (K is slice). Then H,(X,7Z) =~ H,(Y,Z). Let gy be
the genus of ¥, dim H,(Y,Z) = 2g5,. Then the Seifert form V on a 4 -
manifolds???

has a subspace of dimension gy, on which it is zero:

gs
e N
0 ... 0 % .. =«
[ : . :
V= 0O ... 0 % .. =«
* * % *
* * %k *

295 %295,
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