Contents

1	Basic definitions Fe		ebruary 25,	5, 2019	2
	1.1	Reidemeister moves			4
	1.2	Seifert surface			4
	1.3	Seifert matrix			7
2	Alexander polynomial		March 4,	2019	8
	2.1	Existence of Seifert surface - second proof			8
	2.2	Alexander polynomial			9
	2.3	Decomposition of 3-sphere			11
	2.4	Dehn lemma and sphere theorem			11
3			March 11,	2019	13
4	Cor	acordance group	March 18,	2019	14
5			March 25,	2019	18
6			April 8,	2019	18
7			April 15,	2019	19
8			May 20,	2019	21
9			May 27,	2019	27
10			June 3,	2019	27
11	bala	ngan			29
12			May 6,	2019	29
13	bala	ngan			32

Lecture 1 Basic definitions

February 25, 2019

Definition 1.1

A knot K in S^3 is a smooth (PL - smooth) embedding of a circle S^1 in S^3 :

$$\varphi:S^1\hookrightarrow S^3$$

Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$.

Example 1.1

- Knots: (unknot), (trefoil).
- Not knots: (it is not an injection), (it is not smooth).

Definition 1.2

Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings φ_0 and φ_1 are isotopic, that is there exists a continues function

$$\begin{split} \Phi: S^1 \times [0,1] &\hookrightarrow S^3 \\ \Phi(x,t) &= \Phi_t(x) \end{split}$$

such that Φ_t is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and $\Phi_1 = \varphi_1$.

Theorem 1.1

Two knots K_0 and K_1 are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t : t \in [0,1]\}$ such that:

$$\begin{split} &\psi(t)=\psi_t \text{ is continius on } t \in [0,1] \\ &\psi_t:S^3 \hookrightarrow S^3, \\ &\psi_0=id, \\ &\psi_1(K_0)=K_1. \end{split}$$

Definition 1.3

A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2\pi]$ is a parametrisation of S^1 .

Definition 1.4

A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup ... \sqcup S^1}^k$ in S^3

Example 1.2

Links:

• a trivial link with 3 components:

- a hopf link:
- a Whitehead link:
- Borromean link:

Definition 1.5

A link diagram D_{π} is a picture over projection π of a link L in $\mathbb{R}^3(S^3)$ to $\mathbb{R}^2(S^2)$ such that:

- (1) $D_{\pi|_L}$ is non degenerate: \nearrow ,
- (2) the double points are not degenerate: \(\),
- (3) there are no triple point: X.

There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.

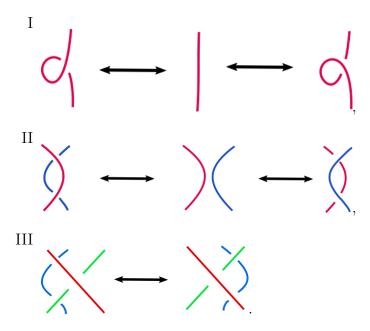
Every link admits a link diagram.

Let D be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).

We can distinguish two types of crossings: right-handed (\times) , called a positive crossing, and left-handed (\times) , called a negative crossing.

Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram as shown below:



Theorem 1.2 (Reidemeister, 1927)

Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).

Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by smoothing each crossing:

$$\begin{array}{c} \times & \rightarrow \\ \times & \rightarrow \\ \times & \rightarrow \\ \end{array}$$

We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in \mathbb{R}^3 (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface Σ such that $\partial \Sigma = L$.

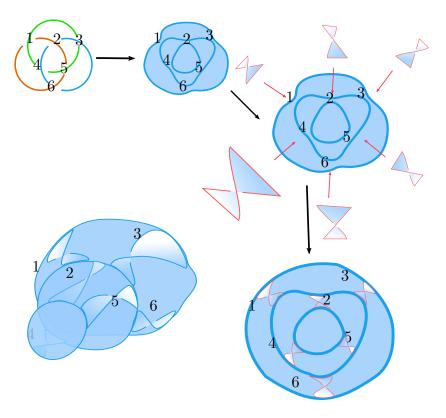


Figure 1: Constructing a Seifert surface.

Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: D_1 and D_2 ; now we glue both components on the boundaries: ∂D_1 and ∂D_2 .

Theorem 1.3 (Seifert)

Every link in S^3 bounds a surface Σ that is compact, connected and orientable. Such a surface is called a Seifert surface.

Definition 1.6

The three genus $g_3(K)$ (g(K)) of a knot K is the minimal genus of a Seifert surface Σ for K.

Corollary 1.1

A knot K is trivial if and only $g_3(K) = 0$.

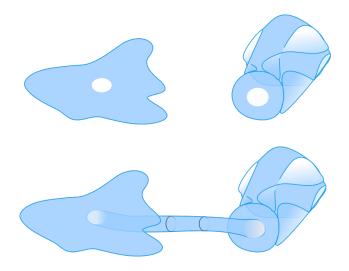


Figure 2: Connecting two surfaces.

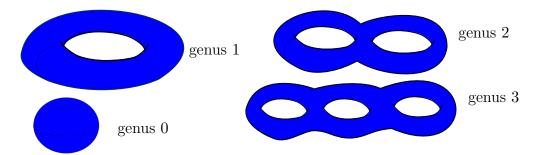


Figure 3: Genus of an orientable surface.

Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).

Definition 1.7

Suppose α and β are two simple closed curves in \mathbb{R}^3 . On a diagram L consider all crossings between α and β . Let N_+ be the number of positive crossings, N_- - negative. Then the linking number: $\operatorname{lk}(\alpha,\beta)=\frac{1}{2}(N_+-N_-)$.

Definition 1.8

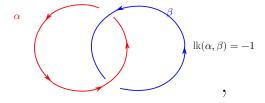
Let α and β be two disjoint simple cross curves in S^3 . Let $\nu(\beta)$ be a tubular neighbourhood of β . The linking number can be interpreted via first homology

group, where $lk(\alpha, \beta)$ is equal to evaluation of α as element of first homology group of the complement of β :

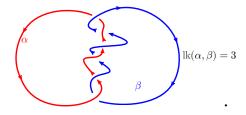
$$\alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.$$

Example 1.3

• Hopf link:



• T(6,2) link:



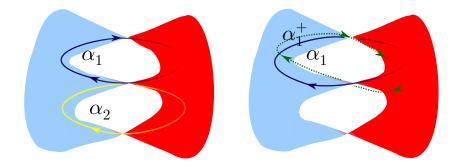
Fact 1.1

$$g_3(\Sigma) = \frac{1}{2} b_1(\Sigma) = \frac{1}{2} \dim_{\mathbb{R}} H_1(\Sigma, \mathbb{R}),$$

where b_1 is first Betti number of Σ .

Seifert matrix

Let L be a link and Σ be an oriented Seifert surface for L. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed $\alpha_1, \ldots, \alpha_n$. Let $\alpha_1^+, \ldots \alpha_n^+$ be copies of α_i lifted up off the surface (push up along a vector field normal to Σ). Note that elements α_i are contained in the Seifert surface while all α_i^+ are don't intersect the surface. Let $lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i,j=1}^n$ is called a Seifert matrix for L. Note that by choosing a different basis we get a different matrix.



Theorem 1.4

The Seifert matrices S_1 and S_2 for the same link L are S-equivalent, that is, S_2 can be obtained from S_1 by a sequence of following moves:

(1) $V \to AVA^T$, where A is a matrix with integer coefficients,

$$(2) \ V \to \begin{pmatrix} & & * & 0 \\ V & \vdots & \vdots \\ & & * & 0 \\ \hline * & \dots & * & 0 & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \quad or \quad V \to \begin{pmatrix} & & & * & 0 \\ V & \vdots & \vdots \\ & & * & 0 \\ \hline * & \dots & * & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}$$

(3) inverse of (2)

Lecture 2 Alexander polynomial

March 4, 2019

Existence of Seifert surface - second proof

Proof. (Theorem 1.3)

Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because K and N are homotopy equivalent, we get:

$$H^1(S^3 \setminus N) \cong H^1(S^3 \setminus K).$$

Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:

$$H^{0}(S^{3}) \rightarrow H^{0}(S^{3} \setminus N) \rightarrow$$

$$\rightarrow H^{1}(S^{3}, S^{3} \setminus N) \rightarrow H^{1}(S^{3}) \rightarrow H^{1}(S^{3} \setminus N) \rightarrow$$

$$\parallel 0$$

$$\parallel 0$$

$$\parallel 0$$

$$\parallel 0$$

$$\rightarrow H^{2}(S^{3}, S^{3} \setminus N) \rightarrow H^{2}(S^{3}) \rightarrow H^{2}(S^{3} \setminus N) \rightarrow$$

$$\rightarrow H^{3}(S^{3}, S^{3} \setminus N) \rightarrow H^{3}(S) \rightarrow 0$$

$$\parallel 0$$

$$\parallel$$

$$H^{1}(S^{3} \setminus N) \cong H^{1}(S^{3} \setminus K) \cong Z$$

$$H^{1}(S^{3} \setminus K) \longrightarrow H^{1}(N \setminus K)$$

$$\downarrow \Theta$$

$$\downarrow \Theta$$

$$[S^{3} \setminus K, S^{1}] \longrightarrow [N \setminus K, S^{1}]$$

 $\Sigma = \widetilde{\Theta}^{-1}(X)$ is a surface, such that $\partial \Sigma = K$, so it is a Seifert surface. \square

Alexander polynomial

Definition 2.1

Let S be a Seifert matrix for a knot K. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:

$$\Delta_K(t) := \det(tS - S^T) \in \mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$$

Theorem 2.1

 $\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.

Proof. We need to show that $\Delta_K(t)$ doesn't depend on S-equivalence relation.

(1) Suppose $S' = CSC^T$, $C \in GL(n, \mathbb{Z})$ (matrices invertible over \mathbb{Z}). Then $\det C = 1$ and:

$$\begin{split} \det(tS'-S'^T) &= \det(tCSC^T - (CSC^T)^T) = \\ \det(tCSC^T - CS^TC^T) &= \det C(tS-S^T)C^T = \det(tS-S^T) \end{split}$$

(2) Let

$$A := t \left(\begin{array}{c|cccc} S & \vdots & \vdots & \\ S & \vdots & \vdots & \\ & * & 0 \\ \hline * & \dots & * & 0 & 0 \\ 0 & \dots & 0 & 1 & 0 \\ \end{array} \right) - \left(\begin{array}{c|ccccc} S^T & \vdots & \vdots & \\ & * & 0 \\ \hline * & \dots & * & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \end{array} \right) = \left(\begin{array}{c|cccc} tS - S^T & \vdots & \vdots & \\ & * & 0 \\ \hline * & \dots & * & 0 & -1 \\ 0 & \dots & 0 & t & 0 \\ \end{array} \right)$$

Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.

Example 2.1

If K is a trefoil then we can take $S = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$. Then

$$\Delta_K(t) = \det \begin{pmatrix} -t+1 & -t \\ 1 & -t+1 \end{pmatrix} = (t-1)^2 + t = t^2 - t + 1 \neq 1 \Rightarrow \textit{trefoil is not trivial}.$$

Fact 2.1

 $\Delta_K(t)$ is symmetric.

Proof. Let S be an $n \times n$ matrix.

$$\begin{split} &\Delta_K(t^{-1}) = \det(t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\ &(-t)^{-n} \det(tS - S^T) = (-t)^{-n} \Delta_K(t) \end{split}$$

If K is a knot, then n is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n}\Delta_K(t)$. \square

Lemma 2.1

$$\frac{1}{2}\deg \Delta_K(t) \leq g_3(K), \ \ \text{where} \ \deg(a_nt^n+\cdots+a_1t^l) = k-l.$$

Proof. If Σ is a genus g - Seifert surface for K then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so S is an $2g \times 2g$ matrix. Therefore $\det(tS - S^T)$ is a polynomial of degree at most 2g.

Example 2.2

There are not trivial knots with Alexander polynomial equal 1, for example:

 $\Delta_{11n34} \equiv 1.$

Decomposition of 3-sphere

We know that 3 - sphere can be obtained by gluing two solid tori: $S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2)$. So the complement of solid torus in S^3 is another solid torus.

Analytically it can be describes as follow. Take $(z_1,z_2)\in\mathbb{C}$ such that $\max(|z_1|,|z_2|)=1$. Define following sets: $S_1=\{(z_1,z_2)\in S^3:|z_1|=0\}\cong S^1\times D^2$ and $S_2=\{(z_1,z_2)\in S^3:|z_2|=1\}\cong D^2\times S^1$. The intersection $S_1\cap S_2=\{(z_1,z_2):|z_1|=|z_2|=1\}\cong S^1\times S^1$

Dehn lemma and sphere theorem

Lemma 2.2 (Dehn)

Let M be a 3-manifold and $D^2 \stackrel{f}{\to} M^3$ be a map of a disk such that $f\big|_{\partial D^2}$ is an embedding. Then there exists an embedding $D^2 \stackrel{g}{\longleftrightarrow} M$ such that:

$$g\big|_{\partial D^2} = f\big|_{\partial D^2.}$$

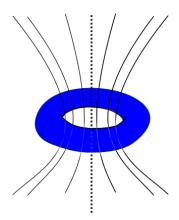


Figure 4: The complement of solid torus in S^3 is another solid torus.

Remark: Dehn lemma doesn't hold for dimension four.

Let M be connected, compact three manifold with boundary. Suppose $\pi_1(\partial M) \longrightarrow \pi_1(M)$ has non-trivial kernel. Then there exists a map $f: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $f\big|_{\partial D^2}$ is non-trivial loop in ∂M .

Theorem 2.2 (Sphere theorem)

Suppose $\pi_1(M) \neq 0$. Then there exists an embedding $f: S^2 \hookrightarrow M$ that is homotopy non-trivial.

Problem 2.1

Prove that S^3 K is Eilenberg-MacLane space of type $K(\pi,1)$.

Corollary 2.1

Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic (\mathbb{Z}). Then K is trivial.

Proof. Let N be a tubular neighbourhood of a knot K and $M=S^3\setminus N$ its complement. Then $\partial M=S^1\times S^1$. Let $f:\pi_1(\partial M)\longrightarrow \pi_1(M)$. If $\pi_1(M)$ is infinite cyclic group then the map f is non-trivial. Suppose $\lambda\in\ker(\pi_1(S^1\times S^1)\longrightarrow\pi_1(M)$. There is a map $g:(D^2,\partial D^2)\longrightarrow(M,\partial M)$ such that $g(\partial D^2)=\lambda$. By Dehn's lemma there exists an embedding $h:(D^2,\partial D^2)\longrightarrow(M,\partial M)$ such that $h\Big|_{\partial D^2}=f\Big|_{\partial D^2}$ and $h(\partial D^2)=\lambda$. Let Σ be a union of the annulus and the image of ∂D^2 .

????? g_3 ?

If $g(\Sigma) = 0$, then K is trivial.

Now we should proof that:

$$H_1(M) \cong \mathbb{Z} \Longrightarrow \lambda \in \ker(\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)).$$

Choose a meridian μ such that $lk(\mu, K) = 1$. Recall the definition of linking

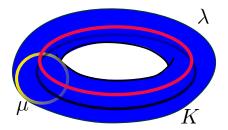


Figure 5: μ is a meridian and λ is a longitude.

number via homology group (Definition 1.8). $[\mu]$ represents the generator of $H_1(S^3 \setminus K, \mathbb{X})$. From definition of λ we know that λ is trivial in $H_1(M)$ (lk(λ, K) = 0, therefore $[\lambda]$ was trivial in $pi_1(M)$). If K is non-trivial then λ is non-trivial in $\pi_1(M)$, but it is trivial in $H_1(M)$.

Lecture 3

March 11, 2019

Example 3.1

$$F: \mathbb{C}^2 \to \mathbb{C}$$
 a polynomial $F(0) = 0$

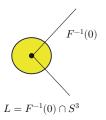
??????????

as a corollary we see that $K_T^{n, ????}$ is not slice unless m = 0.

Theorem 3.1

The map $j: \mathcal{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps K_n to a linear independent set. Moreover $\mathcal{C} \cong \mathbb{Z}$

Fact 3.1 (Milnor Singular Points of Complex Hypersurfaces)



An oriented knot is called negative amphichiral if the mirror image m(K) of K is equivalent the reverse knot of K: K^r .

Problem 3.1

Prove that if K is negative amphichiral, then K#K=0 in \mathcal{C} .

Example 3.2

Figure 8 knot is negative amphichiral.

Definition 3.1

A link L is fibered if there exists a map $\phi: S^3 \setminus L \longleftarrow S^1$ which is locally trivial fibration.

Lecture 4 Concordance group

March 18, 2019

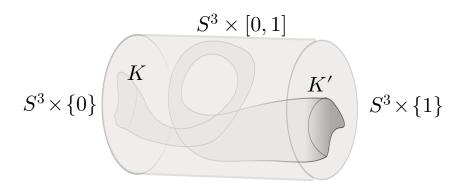
Definition 4.1

Two knots K and K' are called (smoothly) concordant if there exists an annulus A that is smoothly embedded in $S^3 \times [0,1]$ such that

$$\partial A = K' \times \{1\} \ \sqcup \ K \times \{0\}.$$

Definition 4.2

A knot K is called (smoothly) slice if K is smoothly concordant to an unknot. Put differently: a knot K is smoothly slice if and only if K bounds a smoothly embedded disk in B^4 .



Let m(K) denote a mirror image of a knot K.

Fact 4.1

For any K, K # m(K) is slice.

Fact 4.2

Concordance is an equivalence relation.

Fact 4.3

If $K_1 \sim {K_1}'$ and $K_2 \sim {K_2}'$, then ${K_1} \# {K_2} \sim {K_1}' \# {K_2}'$.

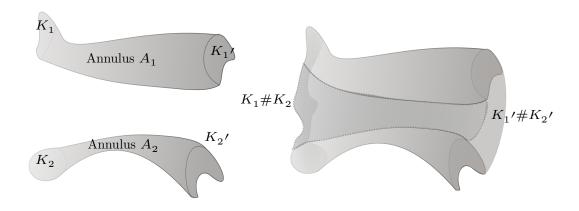


Figure 6: Sketch for Fact 4.3.

Fact 4.4

 $K \# m(K) \sim the unknot.$

Theorem 4.1

Let \mathcal{C} denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot. \mathcal{C} is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathcal{C}$ is $-\{K\} = \{mK\}$.

Fact 4.5

The figure eight knot is a torsion element in \mathcal{C} (2K ~ the unknot).

Problem 4.1 (open)

Are there in concordance group torsion elements that are not 2 torsion elements?

Remark: $K \sim K' \Leftrightarrow K\# - K'$ is slice.

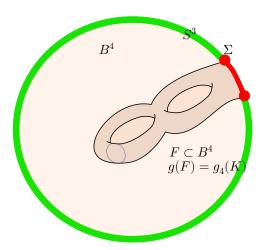


Figure 7: $Y = F \cup \Sigma$ is a smooth close surface.

Pontryagin-Thom construction tells us that there exists a compact three-manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$. Suppose Σ is a Seifert surface and V a Seifert form defined on $\Sigma \colon (\alpha,\beta) \mapsto \operatorname{lk}(\alpha,\beta^+)$. Suppose $\alpha,\beta \in H_1(\Sigma,\mathbb{Z})$, i.e. there are cycles and $\alpha,\beta \in \ker(H_1(\Sigma,\mathbb{Z}) \longrightarrow H_1(\Omega,\mathbb{Z}))$. Then there are two cycles $A,B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$. Let B^+ be a push off of B in the positive normal direction such that $\partial B^+ = \beta^+$. Then $\operatorname{lk}(\alpha,\beta^+) = A \cdot B^+$. But A and B are disjoint, so $\operatorname{lk}(\alpha,\beta^+) = 0$. Then the Seifert form is zero. ????????????????????

Let us consider following maps:

$$\Sigma \stackrel{\phi}{\longleftrightarrow} Y \stackrel{\psi}{\longleftrightarrow} \Omega.$$

Let ϕ_* and ψ_* be induced maps on the homology group. If an element $\gamma \in \ker(H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$. ???????????

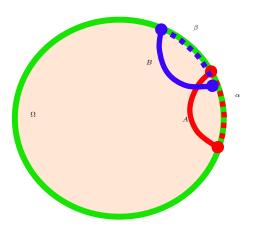
Proposition 4.1

$$\dim \ker(H_1(Y,\mathbb{Z}) \longrightarrow H_1(\Omega,\mathbb{Z})) = \frac{1}{2}b_1(Y),$$

where b_1 is first Betti number.

Proof.

$$\begin{split} 0 &\to H_3(\Omega) \to H_3(\Omega,Y) \to \\ \to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega,Y) \to \\ \to & H_1(Y) \to 1(\Omega) \to H_1(\Omega,Y) \to \\ \to & H_0(Y) \to H_0(\Omega) \to 0 \end{split}$$



Definition 5.1

The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that Σ is compact, orientable and $\partial \Sigma = K$.

Remark: 3 - genus is additive under taking connected sum, but 4 - genus is not.

Lecture 6 April 8, 2019

X is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$. H_2 is free (exercise).

$$H_2(X,\mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X,\mathbb{Z}) \xrightarrow{\text{evaluation}} \text{Hom}(H_2(X,\mathbb{Z}),\mathbb{Z})$$

Intersection form: $H_2(X,\mathbb{Z}) \times H_2(X,\mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular. Let A and B be closed, oriented surfaces in X.

Proposition 6.1

 $A \cdot B$ doesn't depend of choice of A and B in their homology classes.

Proof. By Poincaré duality we know that:

$$\begin{split} H_3(\Omega,Y) &\cong H^0(\Omega), \\ H_2(Y) &\cong H^0(Y), \\ H_2(\Omega) &\cong H^1(\Omega,Y), \\ H_2(\Omega,Y) &\cong H^1(\Omega). \end{split}$$

Therefore $\dim_{\mathbb{Q}} H_1(Y)/_V = \dim_{\mathbb{Q}} V$.

Suppose g(K) = 0 (K is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let g_{Σ} be the genus of Σ , dim $H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form V on a K has a subspace of dimension g_{Σ} on which it is zero:

$$V = \begin{cases} \overbrace{\begin{pmatrix} 0 & \dots & 0 & * & \dots & * \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & * & \dots & * \\ * & \dots & * & * & \dots & * \\ \vdots & & \vdots & \vdots & & \vdots \\ * & \dots & * & * & \dots & * \end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}$$

Lecture 7

April 15, 2019

In other words: Choose a basis $(b_1,...,b_i)$??? of $H_2(Y,\mathbb{Z},$ then $A=(b_i,b_y)$??

is a matrix of intersection form:

$${\mathbb Z}^n \big/_{A{\mathbb Z}^n} \cong H_1(Y,{\mathbb Z}).$$

In particular | $\det A$ |= $\#H_1(Y, \mathbb{Z})$.

That means - what is happening on boundary is a measure of degeneracy.

????????????????????????????????

The intersection form on a four-manifold determines the linking on the boundary.

Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If V is a Seifert matrix for K, then $H_1(\Sigma(K), \mathbb{Z}) \cong \mathbb{Z}^n \big/_{A\mathbb{Z}}$ where $A = V \times V^T$, $n = \operatorname{rank} V$. Let X be the four-manifold obtained via the double branched cover of B^4

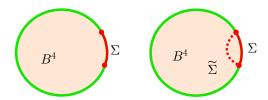


Figure 8: Pushing the Seifert surface in 4-ball.

branched along $\widetilde{\Sigma}$.

Fact 7.1

- X is a smooth four-manifold,
- $H_1(X, \mathbb{Z}) = 0$,
- $H_2(X,\mathbb{Z}) \cong \mathbb{Z}^n$
- The intersection form on X is $V + V^T$.

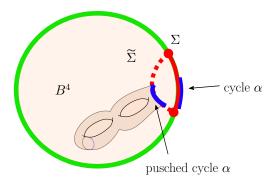


Figure 9: Cycle pushed in 4-ball.

Let $Y = \Sigma(K)$. Then:

$$H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) \longrightarrow \mathbb{Q}/\mathbb{Z}$$

 $(a, b) \mapsto aA^{-1}b^T, \qquad A = V + V^T.$

????????????????????????????

$$H_1(Y,\mathbb{Z})\cong ^{\mathbb{Z}^n}\big/_{A\mathbb{Z}}$$
 $A\longrightarrow BAC^T$ Smith normal form

???????????????????????

In general

Lecture 8

May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If $H_1(M,\mathbb{Z})=0$ then there exists a bilinear form - the intersection form on M:

$$\begin{array}{ccc} H_2(M,\mathbb{Z}) & \times & H_2(M,\mathbb{Z}) \longrightarrow & \mathbb{Z} \\ & & & & \\ \mathbb{Z}^n & & & & \end{array}$$

Let us consider a specific case: M has a boundary $Y = \partial M$. Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite. Then the intersection form can be degenerated in the sense that:

$$\begin{array}{ccc} H_2(M,\mathbb{Z})\times H_2(M,\mathbb{Z}) \longrightarrow \mathbb{Z} & & H_2(M,\mathbb{Z}) \longrightarrow \operatorname{Hom}(H_2(M,\mathbb{Z}),\mathbb{Z}) \\ & (a,b) \mapsto \mathbb{Z} & & a \mapsto (a,_)H_2(M,\mathbb{Z}) \end{array}$$

has coker precisely $H_1(Y, \mathbb{Z})$. ?????????????

Let $K \subset S^3$ be a knot,

 $X = S^3 \setminus K$ - a knot complement,

 $\widetilde{X} \stackrel{\rho}{\longrightarrow} X$ - an infinite cyclic cover (universal abelian cover).

$$\pi_1(X) \longrightarrow {^{\pi_1(X)}/_{[\pi_1(X),\,\pi_1(X)]}} = H_1(X,\mathbb{Z}) \cong \mathbb{Z}$$

 $C_*(\widetilde{X})$ has a structure of a $\mathbb{Z}[t,t^{-1}]\cong\mathbb{Z}[\mathbb{Z}]$ module. $H_1(\widetilde{X},\mathbb{Z}[t,t^{-1}])$ - Alexander module,

$$H_1(\widetilde{X},\mathbb{Z}[t,t^{-1}])\times H_1(\widetilde{X},\mathbb{Z}[t,t^{-1}])\longrightarrow \mathbb{Q}\big/_{\mathbb{Z}[t,\,t^{-1}]}$$

Fact 8.1

$$\begin{split} H_1(\widetilde{X},\mathbb{Z}[t,t^{-1}]) &\cong \mathbb{Z}[t,t^{-1}]^n \big/ (tV-V^T)\mathbb{Z}[t,t^{-1}]^n \ , \\ \text{where V is a Seifert matrix.} \end{split}$$

Fact 8.2

$$\begin{split} H_1(\widetilde{X},\mathbb{Z}[t,t^{-1}]) \times H_1(\widetilde{X},\mathbb{Z}[t,t^{-1}]) &\longrightarrow \mathbb{Q} \big/_{\mathbb{Z}[t,t^{-1}]} \\ (\alpha,\beta) &\mapsto \alpha^{-1}(t-1)(tV-V^T)^{-1}\beta \end{split}$$

Note that \mathbb{Z} is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing \mathbb{Z} by \mathbb{R} . We lose some date by doing this transition.

$$\begin{split} \xi &\in S^1 \setminus \{\pm 1\} \quad p_\xi = (t-\xi)(t-\xi^{-1})t^{-1} \\ \xi &\in \mathbb{R} \setminus \{\pm 1\} \quad q_\xi = (t-\xi)(t-\xi^{-1})t^{-1} \\ \xi &\notin \mathbb{R} \cup S^1 \quad q_\xi = (t-\xi)(t-\bar{\xi})(t-\xi^{-1})(t-\bar{\xi}^{-1})t^{-2} \\ \Lambda &= \mathbb{R}[t,t^{-1}] \end{split}$$
 Then:
$$H_1(\widetilde{X},\Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1\} \\ k > 0}} (\Lambda \middle/ p_\xi^k)^{n_k,\xi} \oplus \bigoplus_{\substack{\xi \notin S^1 \\ k > 0}} (\Lambda \middle/ q_\xi^l)^{n_l,\xi} \end{split}$$

We can make this composition orthogonal with respect to the Blanchfield paring.

Historical remark:

- John Milnor, On isometries of inner product spaces, 1969,
- Walter Neumann, Invariants of plane curve singularities, 1983,
- András Némethi, The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities, 1995,
- Maciej Borodzik, Stefan Friedl *The unknotting number and classical invariants II*, 2014.

Let $p = p_{\xi}, k \ge 0$.

$$\begin{array}{c} \Lambda \big/_{p^k\Lambda} \times \Lambda \big/_{p^k\Lambda} \longrightarrow^{\mathbb{Q}(t)} \big/_{\Lambda} \\ (1,1) \mapsto \kappa \\ \text{Now: } (p^k \cdot 1,1) \mapsto 0 \\ p^k \kappa = 0 \in {\mathbb{Q}(t)} \big/_{\Lambda} \\ \text{therfore } p^k \kappa \in \Lambda \\ \text{we have } (1,1) \mapsto \frac{h}{p^k} \end{array}$$

h is not uniquely defined: $h \to h + gp^k$ doesn't affect paring. Let $h = p^k \kappa$.

Example 8.1

$$\phi_0((1,1)) = \frac{+1}{p}$$
$$\phi_1((1,1)) = \frac{-1}{p}$$

 ϕ_0 and ϕ_1 are not isomorphic.

Proof. Let $\Phi: \Lambda/p^k \Lambda \longrightarrow \Lambda/p^k \Lambda$ be an isomorphism.

Let:
$$\Phi(1) = g \in \lambda$$

$$\begin{array}{c} \Lambda \Big/_{p^k\Lambda} \xrightarrow{\Phi} \Lambda \Big/_{p^k\Lambda} \\ \phi_0((1,1)) = \frac{1}{p^k} \qquad \qquad \phi_1((g,g)) = \frac{1}{p^k} \quad (\Phi \text{ is an isometry}). \end{array}$$

Suppose for the paring $\phi_1((g,g)) = \frac{1}{p^k}$ we have $\phi_1((1,1)) = \frac{-1}{p^k}$. Then:

$$\begin{split} &\frac{-g\bar{g}}{p^k} = \frac{1}{p^k} \in \mathbb{Q}(t) \big/ \Lambda \\ &\frac{-g\bar{g}}{p^k} - \frac{1}{p^k} \in \Lambda \\ &-g\bar{g} \equiv 1 \pmod{p} \text{ in } \Lambda \\ &-g\bar{g} - 1 = p^k \omega \text{ for some } \omega \in \Lambda \end{split}$$

evaluating at ξ :

$$\overbrace{-g(\xi)g(\xi^{-1})}^{>0}-1=0\quad\Rightarrow\Leftarrow\quad$$

????????????????????

$$\begin{split} g &= \sum g_i t^i \\ \bar{g} &= \sum g_i t^{-i} \\ \bar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1 \\ \bar{g}(\xi) &= g\bar{(\xi)} \end{split}$$

Suppose $g=(t-\xi)^{\alpha}g'.$ Then $(t-\xi)^{k-\alpha}$ goes to 0 in $^{\Lambda}/_{p^k\Lambda}.$

Theorem 8.1

Every sesquilinear non-degenerate pairing

$$^{\Lambda}/_{p^k} \times ^{\Lambda}/_p \longleftrightarrow \frac{h}{p^k}$$

is isomorphic either to the pairing with h = 1 or to the paring with h = -1 depending on sign of $h(\xi)$ (which is a real number).

Proof. There are two steps of the proof:

- 1. Reduce to the case when h has a constant sign on S^1 .
- 2. Prove in the case, when h has a constant sign on S^1 .

Lemma 8.1

If P is a symmetric polynomial such that $P(\eta) \geq 0$ for all $\eta \in S^1$, then P can be written as a product $P = g\bar{g}$ for some polynomial g.

Sketch of proof. Induction over $\deg P$.

Let $\zeta \notin S^1$ be a root of $P, P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial P is divisible by $(t-\zeta), (t-\overline{\zeta}), (t^{-1}-\zeta)$ and $(t^{-1}-\overline{\zeta})$. Therefore:

$$\begin{split} P' &= \frac{P}{(t-\zeta)(t-\bar{\zeta})(t^{-1}-\zeta)(t^{-1}-\bar{\zeta})} \\ P' &= g'\bar{g} \end{split}$$

We set $g = g'(t - \zeta)(t - \overline{\zeta})$ and $P = g\overline{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid P$ (at least - otherwise it would change sign). Therefore:

$$P' = \frac{P}{(t - \zeta)^2 (t^{-1} - \zeta)^2}$$

$$g = (t - \zeta)(t^{-1} - \zeta)g' \text{ etc.}$$

The map $(1,1)\mapsto \frac{h}{p^k}=\frac{g\bar{g}h}{p^k}$ is isometric whenever g is coprime with P. \square

Lemma 8.2

Suppose A and B are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either A(z) > 0 or B(z) > 0. Then there exist symmetric polynomials P, Q such that P(z), Q(z) > 0 for $z \in S^1$ and $PA + QB \equiv 1$.

$$\begin{split} (1,1) \mapsto \frac{h}{p^k} \mapsto \frac{g\bar{g}h}{p^k} \\ g\bar{g}h + p^k\omega = 1 \end{split}$$

Apply Lemma 8.2 for A = h, $B = p^{2k}$. Then, if the assumptions are satisfied,

$$Ph + Qp^{2k} = 1$$

$$p > 0 \Rightarrow p = g\bar{g}$$

$$p = (t - \xi)(t - \bar{\xi})t^{-1}$$
so $p \ge 0$ on S^1

$$p(t) = 0 \Leftrightarrow t = \xi ort = \bar{\xi}$$

$$h(\xi) > 0$$

$$h(\bar{\xi}) > 0$$

$$g\bar{g}h + Qp^{2k} = 1$$

$$g\bar{g}h \equiv 1 \mod p^{2k}$$

$$q\bar{q} \equiv 1 \mod p^k$$

???????????????????????????????

If P has no roots on S^1 then B(z) > 0 for all z, so the assumptions of Lemma 8.2 are satisfied no matter what A is.

?????????????????

$$\begin{split} &(^{\Lambda}\big/_{p_{\xi}^{k}}\times^{\Lambda}\big/_{p_{\xi}^{k}}) \longrightarrow \frac{\epsilon}{p_{\xi}^{k}}, \quad \xi \in S^{1} \setminus \{\pm 1\} \\ &(^{\Lambda}\big/_{q_{\xi}^{k}}\times^{\Lambda}\big/_{q_{\xi}^{k}}) \longrightarrow \frac{1}{q_{\xi}^{k}}, \quad \xi \not \in S^{1} \end{split}$$

?????????????? 1 ?? epsilon?

Theorem 8.2

(Matumoto, Borodzik-Conway-Politarczyk) Let K be a knot,

$$H_1(\widetilde{X},\Lambda)\times H_1(\widetilde{X},\Lambda) = \bigoplus_{\substack{k,\xi,\epsilon\\\xi inS^1}} (^{\Lambda}\big/p_{\xi}^k,\epsilon)^{n_k,\xi,\epsilon} \oplus \bigoplus_{k,\eta} (^{\Lambda}\big/p_{\xi}^k)^{m_k}$$

$$\begin{split} Let \; \delta_{\sigma}(\xi) &= \lim_{\varepsilon \to 0^+} \sigma(e^{2\pi i \varepsilon} \xi) - \sigma(e^{-2\pi i \varepsilon} \xi), \\ then \; \sigma_j(\xi) &= \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \to 0} \sigma(e^{2\pi i \varepsilon} \xi) + \sigma(e^{-2\pi i \varepsilon} \xi) \end{split}$$

The jump at ξ is equal to $2\sum_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum_{k_i \text{ even}} \epsilon_i$.

Lecture 9 May 27, 2019

••••

Definition 9.1

A square hermitian matrix A of size n.

field of fractions

Lecture 10 June 3, 2019

Theorem 10.1

Let K be a knot and u(K) its unknotting number. Let g_4 be a minimal four genus of a smooth surface S in B^4 such that $\partial S = K$. Then:

$$u(K) \geq g_4(K)$$

Proof. Recall that if u(K) = u then K bounds a disk Δ with u ordinary double points.

Remove from Δ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface S has Euler characteristic $\chi(S)=1-2u$. Therefore $g_4(S)=u$.

222222222

Example 10.1

The knot 8_{20} is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{2\pi i}{6}}) = +1$.

Surgery

Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for H_1 we can set $\alpha = [S^1 \times \{ \mathrm{pt} \}]$ and $\beta = [\{ \mathrm{pt} \} \times S^1]$. Suppose $\phi : S^1 \times S^1 \longrightarrow S^1 \times S^1$ is a diffeomorphism. Consider an induced map on homology group:

$$\begin{split} H_1(S^1\times S^1,\mathbb{Z}) \ni \phi_*(\alpha) &= p\alpha + q\beta, \quad p,q \in \mathbb{Z}, \\ \phi_*(\beta) &= r\alpha + s\beta, \quad r,s \in \mathbb{Z}, \\ \phi_* &= \begin{pmatrix} p & q \\ r & s \end{pmatrix} \end{split}$$

As ϕ_* is diffeomorphis, it must be invertible over \mathbb{Z} . Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \mathrm{SL}(2,\mathbb{Z})$.

Theorem 10.2

Every such a matrix can be realized as a torus.

Proof. (I) Geometric reason

$$\begin{split} \phi_t : S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\ S^1 \times \{ \mathrm{pt} \} &\longrightarrow \{ \mathrm{pt} \} \times S^1 \\ \{ \mathrm{pt} \} \times S^1 &\longrightarrow S^1 \times \{ \mathrm{pt} \} \\ (x,y) &\mapsto (-y,x) \end{split}$$

(II)

Lecture 11 balagan

Lecture 12

May 6, 2019

Definition 12.1

Let X be a knot complement. Then $H_1(X,\mathbb{Z})\cong\mathbb{Z}$ and there exists an epimorphism $\pi_1(X)\stackrel{\phi}{\twoheadrightarrow}\mathbb{Z}$.

The infinite cyclic cover of a knot complement X is the cover associated with the epimorphism ϕ .

 $\widetilde{X} \longrightarrow X$

Formal sums $\sum \phi_i(t)a_i + \sum \phi_j(t)\alpha_j$ finitely generated as a $\mathbb{Z}[t,t^{-1}]$ module.

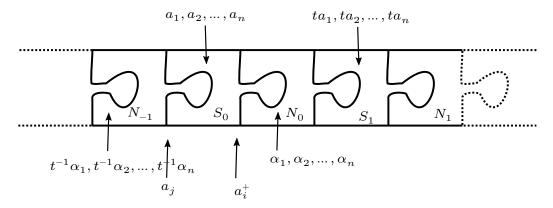


Figure 10: Infinite cyclic cover of a knot complement.

Let $v_{ij} = \operatorname{lk}(a_i, a_j^+)$. Then $V = \{v_i j\}_{i,j=1}^n$ is the Seifert matrix associated to the surface Σ and the basis a_1, \ldots, a_n . Therefore $a_k^+ = \sum_j v_{jk} \alpha_j$. Then $\operatorname{lk}(a_i, a_k^+) = \operatorname{lk}(a_k^+, a_i) = \sum_j v_{jk} \operatorname{lk}(\alpha_j, a_i) = v_{ik}$. We also notice that $\operatorname{lk}(a_i, a_j^-) = \operatorname{lk}(a_i^+, a_j) = v_{ij}$ and $a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$. The homology of \widetilde{X} is generated by a_1, \ldots, a_n and relations.

Definition 12.2

The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$.

Remark about notation: sometimes one writes $H_1(X;\mathbb{Z}[t,t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.

 $H_1(\Sigma_?(K), \mathbb{Z}) = h$

 $H \times H \longrightarrow \mathbb{Q}/\mathbb{Z}$

. . .

Let now $H = H_1(\widetilde{X})$. Can we define a paring?

Let $c,d\in H(\widetilde{X})$ (see Figure 12), Δ an Alexander polynomial. We know that $\Delta c=0\in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface F such that $\partial F=c$. Now consider intersection points $F\cdot d$. This points can exist in any N_k or S_k .

$$\frac{1}{\Delta} \sum_{i \in \mathbb{Z} t^{-j}} (F \cdot t^j d) \in \mathbb{Q}[t, t^{-1}] /_{\mathbb{Z}[t, t^{-1}]}$$

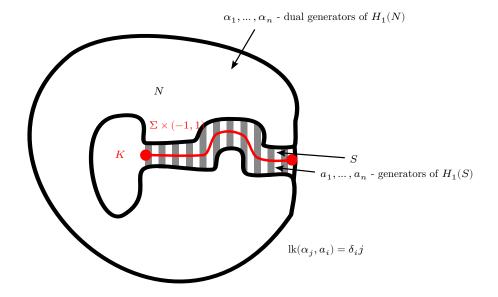


Figure 11: A knot complement.

????????????

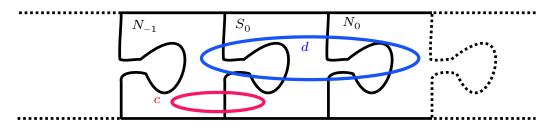


Figure 12: $c, d \in H_1(\widetilde{X})$.

Definition 12.3

The $\mathbb{Z}[t,t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot K.

Let R be a PID, M a finitely generated R module. Let us consider

$$R^k \xrightarrow{A} R^n \longrightarrow M,$$

where A is a $k \times n$ matrix, assume $k \ge n$. The order of M is the gcd of all determinants of the $n \times n$ minors of A. If k = n then ord $M = \det A$.

Theorem 12.1

Order of M doesn't depend on A.

For knots the order of the Alexander module is the Alexander polynomial.

Theorem 12.2

$$\forall x \in M : (\operatorname{ord} M)x = 0.$$

M is well defined up to a unit in R.

Blanchfield pairing

Lecture 13 balagan

Theorem 13.1

Let H_p be a p - torsion part of H. There exists an orthogonal decomposition of H_p :

$$H_p = H_{p,1} \oplus \cdots \oplus H_{p,r_p}.$$

 $H_{p,i}$ is a cyclic module:

$$H_{p,i} = \mathbb{Z}[t, t^{-1}] / p^{k_i} \mathbb{Z}[t, t^{-1}]$$

The proof is the same as over \mathbb{Z} .