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Lecture 1 Basic definitions February 25, 2019

Definition 1.1
A knot K in S3 is a smooth (PL - smooth) embedding of a circle St in S3:

p: St 83
Usually we think about a knot as an image of an embedding: K = ¢(S?).

Example 1.1

. Knots: O (unknot), @ (trefoil).

e Not knots: OQ (it is not an injection), \_/ (it is not smooth).

Definition 1.2
Two knots Ky = ¢o(S1), K; = p,(S1) are equivalent if the embeddings i,
and @, are isotopic, that is there exists a continues function

P : St x[0,1] = 53
O(x,t) = ()

such that ®, is an embedding for any t € [0,1], &5 = @, and &, = ¢;.

Theorem 1.1

Two knots K, and K, are isotopic if and only if they are ambient isotopic,
i.e. there ezists a family of self-diffeomorphisms ¥ = {4, : t € [0,1]} such
that:

W(t) =1, is continius on t € [0, 1]

% : 83 — 837
77bO:Z'd7
%(Ko) = K.

Definition 1.3
A knot is trivial (unknot) if it is equivalent to an embedding ¢(t) = (cost,sint,0),
where t € [0,27] is a parametrisation of St.

2



Definition 1.4
—
A link with k - components is a (smooth) embedding of ST U ... U St in S3

Example 1.2
Links:

OOC
a trivial link with 3 components: _/,
a hopf link: @,

@
a Whitehead link: \i()/ )

Definition 1.5
A link diagram D, is a picture over projection m of a link L in R3(S®) to R?
(S?) such that:

(1) Dy, is non degenerate: >,

<
(2) the double points are not degenerate: |,

(3) there are no triple point: ><<

There are under- and overcrossings (tunnels and bridges) on a link diagrams
with an obvious meaning.

Every link admits a link diagram.

Let D be a diagram of an oriented link (to each component of a link we add
an arrow in the diagram).

We can distinguish two types of crossings: right-handed (\/\'>, called a pos-

itive crossing, and left-handed (X), called a negative crossing.
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Reidemeister moves

A Reidemeister move is one of the three types of operation on a link diagram
as shown below:

<\‘_’/:/>.

Theorem 1.2 (Reidemeister, 1927 )
Two diagrams of the same link can be deformed into each other by a finite
sequence of Reidemeister moves (and isotopy of the plane).

Seifert surface

Let D be an oriented diagram of a link L. We change the diagram by
smoothing each crossing:

A= )(
X )(

We smooth all the crossings, so we get a disjoint union of circles on the plane.
Each circle bounds a disks in R? (we choose disks that don’t intersect). For
each smoothed crossing we add a twisted band: right-handed for a positive
and left-handed for a negative one. We get an orientable surface X such that
0¥ = L.



Figure 1: Constructing a Seifert surface.

Note: the obtained surface isn’t unique and in general doesn’t need to be
connected, but by taking connected sum of all components we can easily get
a connected surface (i.e. we take two disconnected components and cut a
disk in each of them: D; and D,; now we glue both components on the
boundaries: 0D, and 9D,.

Theorem 1.3 (Seifert)
Every link in S® bounds a surface ¥ that is compact, connected and orientable.
Such a surface is called a Seifert surface.

Definition 1.6
The three genus g3(K) (9(K)) of a knot K is the minimal genus of a Seifert
surface 3 for K.

Corollary 1.1
A knot K is trivial if and only g5(K) = 0.
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Figure 2: Connecting two surfaces.

. genus 0 @

Figure 3: Genus of an orientable surface.

genus 2

genus 3

Remark: there are knots that admit non isotopic Seifert surfaces of minimal
genus (Andrés Juhdsz, 2008).

Definition 1.7
Suppose a and 3 are two simple closed curves in R3. On a diagram L consider

all crossings between o and 3. Let N be the number of positive crossings,
N_ - negative. Then the linking number: lk(c, 8) = (N, — N_).

Definition 1.8
Let o and 3 be two disjoint simple cross curves in S®. Let v(8) be a tubular
neighbourhood of 3. The linking number can be interpreted via first homology
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group, where 1k(a, B) is equal to evaluation of o as element of first homology
group of the complement of (3:

o€ Hy(S*\v(B),2) = 7.

Example 1.3

e Hopf link:

«

Ik(a, B) = ~1

e T(6,2) link:

/ |
| €> Ik(or, B) = 3
5

Fact 1.1

1 1 .
g3(%) = §b1(2) = §dlmu3 H(%,R),

where by is first Betti number of 3.

Seifert matrix

Let L be a link and ¥ be an oriented Seifert surface for L. Choose a basis for
H,(X,Z) consisting of simple closed ay,...,a,,. Let af,...a; be copies of
«a; lifted up off the surface (push up along a vector field normal to ). Note
that elements «; are contained in the Seifert surface while all o] are don’t
intersect the surface. Let Ik(a;, ) = {a;;}. Then the matrix S = {a;;}7,_,
is called a Seifert matrix for L. Note that by choosing a different basis we

get a different matrix.



Theorem 1.4

The Seifert matrices S, and Sy for the same link L are S-equivalent, that is,
Sy can be obtained from S; by a sequence of following moves:

(1) V. — AV AT where A is a matriz with integer coefficients,

* 0

\%4 P

(2) V— * 0
* ... %[0 0

0 .. 0|1 O

(3) inverse of (2)

or

V-

Lecture 2 Alexander polynomial

Existence of Seifert surface - second proof

Proof. (Theorem 1.3)

Let K € S be a knot and N = v(K) be its tubular neighbourhood. Because

K and N are homotopy equivalent, we get:

Let us consider a long exact sequence of cohomology of a pair (52,53 \ N)

with integer coefficients:

HY(S3\ N) =~ H(S3\ K).

v

*

0

(e IERE

o

S =

March 4, 2019



Z
I

H°(S3) — HO°(S3\ N) —

— HY(S3,83\ N) —» HY(S3) — HY(S3\N)—
2l

0
I

— H?(S3,83\ N) — H?(S3) — H?(S3\N) —

— H3(S3,83\ N) — H3(S) — 0
2l
Z

N =D? x St
ON =81 x St
H'(N,ON)~7 @ Z

H*(S83,8%\ N) =~ H*(N,0N)

HY(S3\N)= HY(S}\K)>Z
HY(S3\ K) — HY(N\ K)
ok
[S3\ K,S'] —— [N\ K, S}

Y= @_1()() is a surface, such that 0¥ = K, so it is a Seifert surface. [

Alexander polynomial

Definition 2.1
Let S be a Seifert matriz for a knot K. The Alexander polynomial Ay (t) is
a Laurent polynomial:

Ap(t) == det(tS — ST) € 7]t,t 1] = 7[7]
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Theorem 2.1
A g (t) is well defined up to multiplication by +t*, for k € Z.

Proof. We need to show that Ay (t) doesn’t depend on S-equivalence rela-
tion.

(1) Suppose S = CSCT, C € GL(n,Z) (matrices invertible over Z). Then
det C' =1 and:

det(t5” — 8'T) = det (tCSCT — (CSCT)T) =
det (tCSCT — CSTCT) = det O(tS — ST)CT = det(tS — ST)

(2) Let
* 0 x 0 x 0
S Do ST Do tS—ST | :
A=t * 0 |— * 0 = * 0
* ... x|0 0 * ... x|0 1 * *0 —1
0O .. 0/1 O 0O .. 0]0 O 0 ot O

Using the Laplace expansion we get det A = +tdet(tS — ST).

Example 2.1

If K is a trefoil then we can take S = <_1 -1

0 _1). Then

—t+1 —t

A (t) = det ( 1 i 1) = (t—1)2+t = t2—t+1 # 1 = trefoil is not trivial.

Fact 2.1
A (t) is symmetric.

Proof. Let S be an n X n matrix.

A1) =det(t18 — ST) = (—t) ™ det(tST — 5) =
(—t) " det(tS — ST) = (—t) " A (t)

If K is a knot, then n is necessarily even, and so Ax(t71) =t A (¢). O

10



Lemma 2.1

1
2 deg Ay (t) < g5(K), where deg(a, t™ + -+ ayt') =k —1.

Proof. If ¥ is a genus g - Seifert surface for K then H,;(X) = 7?9, s0 S is an
2g x 2g matrix. Therefore det(tS — ST) is a polynomial of degree at most
2g. ]

Example 2.2
There are not trivial knots with Alexander polynomial equal 1, for example:

o

Decomposition of 3-sphere

We know that 3 - sphere can be obtained by gluing two solid tori: S3 =
OD* = 9(D? x D?) = (D? x SY)u (St x D?). So the complement of solid
torus in S? is another solid torus.

Analytically it can be describes as follow. Take (z;, 25) € C such that max(|
21 |, 25 |) = 1. Define following sets: S; = {(z1,25) € S3 :| z; |= 0} =
Sl x D* and Sy = {(21,2) € S3:| 25 |= 1} = D? x S1. The intersection
S1N Sy ={(21,29) :| 21 [=] 22 [= 1} = ST x §*

Dehn lemma and sphere theorem
Lemma 2.2 (Dehn)
!
Let M be a 3-manifold and D* = M3 be a map of a disk such that f| is

oD?2
g
an embedding. Then there exists an embedding D> < M such that:

g‘am - f‘am.

11



Figure 4: The complement of solid torus in S? is another solid torus.

Remark: Dehn lemma doesn’t hold for dimension four.

Let M be connected, compact three manifold with boundary. Suppose
m(OM) — 7 (M) has non-trivial kernel. Then there exists a map f :
(D?,0D?) — (M,0M) such that f‘aD2 is non-trivial loop in IM.

Theorem 2.2 (Sphere theorem)
Suppose m (M) # 0. Then there exists an embedding f : S < M that is
homotopy non-trivial.

Problem 2.1
Prove that S3 K is Filenberg-MacLane space of type K(m,1).

Corollary 2.1
Suppose K C S and 7,(S3\ K) is infinite cyclic (Z). Then K is trivial,

Proof. Let N be a tubular neighbourhood of a knot K and M = S3\ N
its complement. Then M = S!' x S'. Let f : 7 (OM) — 7 (M).
If m(M) is infinite cyclic group then the map f is non-trivial. Suppose
A € ker(m; (St x 81) — 7 (M). Thereisamap g : (D?,0D?) — (M,0M)
such that g(0D?) = X. By Dehn’s lemma there exists an embedding h : (D%, D?) — (M,0M

such that h|8D2 = f‘aDQ and h(0D?) = \. Let X be a union of the annulus
and the image of 9D?.
7777 gg?

If g(3) =0, then K is trivial.
Now we should proof that:

H, (M) =7 = X € ker(m(S! x S1) — m,(M)).

12



Choose a meridian g such that lk(u, K) = 1. Recall the definition of linking
A

H K

Figure 5: p is a meridian and A is a longitude.

number via homology group (Definition 1.8). [u] represents the generator
of H,(S?\ K,X). From definition of A we know that X is trivial in H, (M)
(Ik(A, K) = 0, therefore [A] was trivial in pi;(M)). If K is non-trivial then

A is non-trivial in 7, (M), but it is trivial in H,(M). O
Lecture 3 March 11, 2019
Example 3.1

F :C? — C a polynomial
F0)=0
Valdaddddddade

as a corollary we see that K 7777
is not slice unless m = 0.

Theorem 3.1
The map j: C — Z*° is a surjection that maps K,, to a linear independent
set. Moreover € = 7

Fact 3.1 (Milnor Singular Points of Complex Hypersurfaces)

13



L=F10)nss

An oriented knot is called negative amphichiral if the mirror image m(K) of
K is equivalent the reverse knot of K: K.

Problem 3.1
Prove that if K is negative amphichiral, then K#K =0 in C.

Example 3.2
Figure 8 knot is negative amphichiral.

Definition 3.1
A link L is fibered if there exists a map ¢ : S\ L <+— St which is locally
trivial fibration.

Lecture 4 Concordance group March 18, 2019

Definition 4.1
Two knots K and K’ are called (smoothly) concordant if there exists an
annulus A that is smoothly embedded in S3 x [0,1] such that

0A =K' x {1} U K x{0}.
Definition 4.2
A knot K is called (smoothly) slice if K is smoothly concordant to an unknot.

Put differently: a knot K is smoothly slice if and only if K bounds a smoothly
embedded disk in B*.

14



S3 % [0,1]

S3x {0} S3x {1}

Let m(K) denote a mirror image of a knot K.

Fact 4.1
For any K, K#m(K) is slice.

Fact 4.2
Concordance is an equivalence relation.

Fact 4.3
IfK, ~ K, and Ky ~ K, then K, #K, ~ K, #K,'.

I HK

Figure 6: Sketch for Fact 4.3.

Fact 4.4
K#m(K) ~ the unknot.
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Theorem 4.1

Let € denote a set of all equivalent classes for knots and {0} denote class of
all knots concordant to a trivial knot. C is a group under taking connected
sums. The neutral element in the group is {0} and the inverse element of an

element {K} € C is —{K} = {mK}.

Fact 4.5
The figure eight knot is a torsion element in € (2K ~ the unknot).

Problem 4.1 (open)
Are there in concordance group torsion elements that are not 2 torsion ele-
ments?

Remark: K ~ K’ < K# — K’ is slice.

Figure 7: Y = F'U X is a smooth close surface.

Pontryagin-Thom construction tells us that there exists a compact three -
manifold Q C B* such that 9Q =Y. Suppose ¥ is a Seifert surface and V a
Seifert form defined on X: (o, 8) > lk(«, 7). Suppose o, 8 € H{(2,7), i.e.
there are cycles and «a, 8 € ker(H{(X,Z) — H,(£,Z)). Then there are two
cycles A, B € Q such that 94 = v and OB = 3. Let B" be a push off of B in
the positive normal direction such that 9B = 8. Then lk(«, 57) = A- B*.

But A and B are disjoint, so lk(a, 8) = 0. Then the Seifert form is zero.
27972727222272727
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Let us consider following maps:

¢ P
e Y «— Q.

Let ¢, and 1, be induced maps on the homology group. If an element
v € ker(H{(X,Z) — H,(Q,7)), then v € ker ¢, or vy € ker),.
PPPPIVPPIVPT?

Proposition 4.1

1
dimker(H,(Y,Z) — H{(2,2)) = §bl(Y),
where by is first Betti number.

Proof.

0— H3(Q) — Hy(Q,Y) —
—Hy(Y) = Hy(Q2) —» Hy(QY) —
—H,(Y)—>1(Q) - H(Q,Y) —
—Hy(Y)— Hy(Q2) =0

17



Lecture 5 March 25, 2019

Definition 5.1
The (smooth) four genus g,(K) is the minimal genus of the surface ¥ € B*
such that X3 is compact, orientable and 0% = K.

Remark: 3 - genus is additive under taking connected sum, but 4 - genus is
not.

Lecture 6 April 8, 2019

X is a closed orientable four-manifold. Assume 7, (X) = 0 (it is not needed to
define the intersection form). In particular H,(X) = 0. H, is free (exercise).

Poincaré duality evaluation

Hy(X,7) ———— H%(X,7) 22 Hom(Hy (X, Z), 7)

Intersection form: Hy(X,Z) x Hy(X,Z) — Z - symmetric, non singular.
Let A and B be closed, oriented surfaces in X.

Proposition 6.1
A - B doesn’t depend of choice of A and B in their homology classes.

Proof. By Poincaré duality we know that:

Therefore dimg H,(Y) / V= dimg V.

Suppose g(K) = 0 (K is slice). Then H,(3,7Z) = H,(Y,Z). Let g5, be the
genus of 3, dim H,(Y,Z) = 2g5;. Then the Seifert form V on a K has a
subspace of dimension gy, on which it is zero:

18



gx

0 0 = *
9% {
V= 0 ... 0
295 X295,
O
Lecture 7 April 15, 2019

In other words:

Choose a basis (by, ..., b;)
77

of Hy(Y,Z, then A = (b;,b,)
s

is a matrix of intersection form:

z [ azn = Hi(Y,2).

In particular | det A |= #H, (Y, Z).
That means - what is happening on boundary is a measure of degeneracy.

H(Y,2) x H,(Y,2) — R/, -alinking form
2 2

“laz az
(a,b) = aA~pT
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2P0P222222222227272222222222772

The intersection form on a four-manifold determines the linking on the
boundary.

Let K € St be a knot, X(K) its double branched cover. If V is a Seifert
matrix for K, then H,(3(K),Z) = Zn/AZ where A =V x VT n=rankV.
Let X be the four-manifold obtained via the double branched cover of B*

Figure 8: Pushing the Seifert surface in 4-ball.

branched along .

Fact 7.1

e X is a smooth four-manifold,

H,(X,Z)=0,

Hy(X,7) = 7"

The intersection form on X is V 4+ VT,

<~ cycle a

pusched cycle «

Figure 9: Cycle pushed in 4-ball.
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Let Y = ¥(K). Then:

H\(Y,2) x Hy(Y,7) — ¥/,
(a,b) = aA~tbT, A=V +VT,

2707022222020222727272727272

~ "
H\(Y,2)=%"/ A7
A — BACT Smith normal form

292079727972222222727277

In general

Lecture 8 May 20, 2019

Let M be compact, oriented, connected four-dimensional manifold. If H;(M,Z) =0
then there exists a bilinear form - the intersection form on M:

Hy(M,7) x Hy(M,7)— 7
2
Z’)’L

Let us consider a specific case: M has a boundary Y = OM. Betti number
b (Y) =0, H (Y,Z) is finite. Then the intersection form can be degenerated
in the sense that:

Hy(M,Z) x Hy(M,Z) — 7  H,(M,Z) —s Hom(Hy(M,Z),Z)
(a,b) = Z ar (a, YHy(M,Z)

has coker precisely H,(Y,Z).
227927227727727

Let K C S3 be a knot,
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X = S3\ K - a knot complement,

&~ P
X — X - an infinite cyclic cover (universal abelian cover).

m(X) — X)) —H/(X,Z)~7Z

(701 (X)), 71 (X))]

C,(X) has a structure of a Z[t, '] = Z[Z] module.
H,(X,Z[t,t71]) - Alexander module,

H (X, Z[t,t7Y]) x H)(X,Z[t,t71]) — Q/Z[t’ -

Fact 8.1

Hy (X, Z[t,t 1) = 21t t_l]n/(tv —Vvhzjt,t

where V' is a Seifert matrix.

Fact 8.2

H(X,Z[t,t ) x H)(X, Z[t,t7]) — Q/Z[t,t—l]
(o, ) > a Lt — 1)tV — VT)~13

Note that Z is not PID. Therefore we don’t have primer decomposition of
this moduli. We can simplify this problem by replacing Z by R. We lose
some date by doing this transition.

ESI\{*1} p=(—rt—& !
EERN{£l} ¢ =(—- -t

EERUST qo=(—t—t—&Ht—&H?

A =R[t,t71]
Then: Hy(X,A) = @ (A/pk)n’“"f @ @ (A/ql )t
gesh\ (1) 1€ ggst 6
k>0 >0

We can make this composition orthogonal with respect to the Blanchfield
paring.

Historical remark:
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e John Milnor, On isometries of inner product spaces, 1969,
o Walter Neumann, Invariants of plane curve singularities , 1983,

o Andréas Némethi, The real Seifert form and the spectral pairs of isolated
hypersurfaceenumerate singularities, 1995,

e Maciej Borodzik, Stefan Friedl The unknotting number and classical

invariants 11, 2014.

Let p = pe, k> 0.
Yyea My = 2
(L) >k
Now: (p*-1,1) =0
p’% =0e€ Q<t)/
therfore pFr € A

A

h
we have (1,1) = —
p

h is not uniquely defined: h — h + gp”* doesn’t affect paring.
Let h = p*k.

Example 8.1
+1
$o((1,1)) = =
o((1,1)) ’
1

¢1((1,1)) = _7

@y and ¢, are not isomorphic.
A A : .
Proof. Let @ : /pkA — /pkA be an isomorphism.
Let: ®(1) =g € A
A ® A
/pkA — /pk:A
1 1

Gol(1.1)) = - 61((0.9)) = (@ s an isometry).
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Suppose for the paring ¢,((g,9)) = # we have ¢,((1,1)) = p,}. Then:

—_gﬁziew)/A

pk  pk
—g7 1
e
p p

—gg=1 (mod p)in A
—gg — 1 = pFw for some w € A

evalueting at &:

>0
— e

— 909 —1=0 =<«

O
PIVV00NNNNIVD0000T?
9= Zgiti
9= Zgit_i
g€ => g ¢es
9(&) = 9(§)
Suppose g = (t —&)%g’. Then (t — &)*~ goes to 0 in A/pkA‘
Theorem 8.1
Fuvery sesquilinear non-degenerate pairing
A A h
X — —
s isomorphic either to the pairing wit h = 1 or to the paring with h = —1

depending on sign of h(§) (which is a real number).
Proof. There are two steps of the proof:
1. Reduce to the case when h has a constant sign on S?.

2. Prove in the case, when h has a constant sign on S*.

24



Lemma 8.1
If P is a symmetric polynomial such that P(n) > 0 for all n € S, then P
can be written as a product P = gg for some polynomial g.

Sketch of proof. Induction over deg P.
Let ¢ ¢ S* be a root of P, P € R[t,t"]. Assume ¢ ¢ R. We know that
polynomial P is divisible by (t—¢), (t—C), (t71—¢) and (t "' —(). Therefore:

We set g = ¢/ (t — ¢)(t — ¢) and P = gg. Suppose ¢ € S*. Then (t —()? | P
(at least - otherwise it would change sign). Therefore:

, P
P =t o
g=(t— Ot — o etc.

The map (1,1) — ]% = gpf;kh is isometric whenever ¢ is coprime with P. [

Lemma 8.2

Suppose A and B are two symmetric polynomials that are coprime and that
Vz € St either A(z) > 0 or B(z) > 0. Then there exist symmetric polyno-
mials P, Q such that P(z),Q(z) >0 for z € S* and PA+ QB = 1.

Idea of proof. For any z find an interval (a,,b,) such that if P(z) € (a,,b,)
and P(z)A(2) + Q(2)B(z) = 1, then Q(2) > 0, z(z) = %2 is a continues
function on S! approximating z by a polynomial .
Vadddddddddddddddddddddadas

h gh
(1,1) |—>—k|—>—ggk

p p
ggh +pfw =1

25



Apply Lemma 8.2 for A = h, B = p?*. Then, if the assumptions are satisfied,
Ph+Qp* =1
p>0=p=g9

p=(t=t—-OHt!

sop>0on St
pt)=0st==Cort=¢
h(€§) >0

hE) >0

g9gh+ Qp* =1
ggh =1 mod p**
gg=1 mod pF
POVPTVINNVTVNNLVNN0NV0007?
If P has no roots on S! then B(z) > 0 for all z, so the assumptions of Lemma
8.2 are satisfied no matter what A is. ]

Vadddddddddddddadai

A x M) = e €€ STz

1
M — g €8S

Theorem 8.2
(Matumoto, Borodzik-Conway-Politarczyk) Let K be a knot,

H(X ) x (X0 = B O/ pamsca @/ m
kg ¢ koo 1E
&inS?t

Let §,,(€) = lim o(e®™€€) — (e 2™e¢),

e—0t

then 0,(§) = o(§) — L lim o (e2™¢) + o (e 2mEg)

J 2 e—0

26



The jump at € is equal to 2 Y €,. The peak of the signature function is
k; odd

equal to > €.

k;even

Lecture 9 May 27, 2019

Definition 9.1
A square hermitian matriz A of size n.

field of fractions

Lecture 10 June 3, 2019

Theorem 10.1
Let K be a knot and u(K) its unknotting number. Let g, be a minimal four
genus of a smooth surface S in B* such that 0S = K. Then:

u(K) > g,4(K)

Proof. Recall that if u(K) = u then K bounds a disk A with w ordinary
double points.

Remove from A the two self intersecting and glue the Seifert surface for the
Hopf link. The reality surface S has Euler characteristic x(S) = 1 — 2u.

Therefore g,(S) = u . O

27



2090020020900220229

Example 10.1 _
The knot 8y is slice: 0 =0 almost everywhere but 0(6231) = +1.

Surgery

Recall that Hy(S*xSY,7Z) = Z3. As generators for H; we can set o = [S1 x {pt}]
and 8 = [{pt} xS]. Suppose ¢ : S* x St — St x St is a diffeomorphism.
Consider an induced map on homology group:
Hy(S' x §,2) 5 ¢,(a) =pa+qB, pq€Z,
¢.(8) =ra+sp, rsel,

_ (P g
¢*_<7‘ s)

As ¢, is diffeomorphis, it must be invertible over Z. Then for a direction
preserving diffeomorphism we have det ¢, = 1. Therefore ¢, € SL(2,7).
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Theorem 10.2
FEvery such a matriz can be realized as a torus.

Proof.  (I) Geometric reason
¢, St x St — St x St
St x {pt} — {pt} x5!
{pt} xSt — St x {pt}

(il?,y) = (_yax)
(IT)
O
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Lecture 12 May 6, 2019

Definition 12.1
Let X be a knot complement. Then H{(X,Z) = Z and there exists an

epimorphism my (X) —d)» Z.
The infinite cyclic cover of a knot complement X is the cover associated with
the epimorphism ¢.
X—X
Formal sums Y~ ¢, (t)a; + > ¢,(t)a;
finitely generated as a Z[t,t~!] module.
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Figure 10: Infinite cyclic cover of a knot complement.

Let v;; = lk(a;,aj). Then V. = {v;j}7",_; is the Seifert matrix associ-
ated to the surface ¥ and the basis ay, ..., a,. Therefore a} = ZJ VL
Then lk(a,,a)) = lk(af,a;) = > Vi Ik(ay, 2) = v;;,. We also notice that
Ik(a;, a;) = lk(a; ,aj) = v and a; = Y, vt oy

The homology of X is generated by aq, ..., a,, and relations.

Definition 12.2 "
The Nakanishi indez of a knot is the minimal number of generators of Hy(X).

Remark about notation: sometimes one writes H; (X; Z[t,t~!]) (what is also

notation for twisted homology) instead of H,(X).
Vaddddddddddaddddddadd

H1<E?(K>’Z) =h
}foi_*Q/z

Let now H = H,(X). Can we define a paring?
Let c,d € H (X ) (see Figure 12), A an Alexander polynomial. We know that

Ac =0 € H,(X) (Alexander polynomial annihilates all possible elements).
Let consider a surface F' such that 0F = ¢. Now consider intersection points
F' - d. This points can exist in any IV, or S),.

—Z i) e Qlt 1

jeZtI

/Ztt]
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Qq, ..., a, - dual generators of H,(N)

N

,a,, - generators of Hy(S)

ay, ...

lk(aj7 a;)=198;j

Figure 11: A knot complement.
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Figure 12: ¢,d € H,(X).

Definition 12.3 "
The Z[t, 1] module H,(X) is called the Alexander module of knot K.

Let R be a PID, M a finitely generated R module. Let us consider
A
RF — R™ —» M,

where A is a k X n matrix, assume k > n. The order of M is the gcd of all
determinants of the n x n minors of A. If k = n then ord M = det A.
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Theorem 12.1
Order of M doesn’t depend on A.

For knots the order of the Alexander module is the Alexander polynomial.

Theorem 12.2

Vo e M : (ord M)x = 0.

M is well defined up to a unit in R.

Blanchfield pairing
Lecture 13 balagan

Theorem 13.1
Let H, be a p - torsion part of H. There exists an orthogonal decomposition

of H,:
Hp = Hp71 @ @ Hp,rp‘

H, ; is a cyclic module:

_Z[t, Y
Hp,z - /p’fiz[tffl]

The proof is the same as over Z.
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