\begin{definition} A knot $K$ in $S^3$ is a smooth (PL - smooth) embedding of a circle $S^1$ in $S^3$: \begin{align*} \varphi: S^1 \hookrightarrow S^3 \end{align*} \end{definition} \noindent Usually we think about a knot as an image of an embedding: $K = \varphi(S^1)$. Some basic examples and counterexamples are shown respectively in \autoref{fig:unknot} and \autoref{fig:notknot}. \begin{example} \begin{figure}[h] \includegraphics[width=0.08\textwidth] {unknot.png} \caption{Knots examples: unknot (left) and trefoil (right).} \label{fig:unknot} \end{figure} \begin{figure}[h] \includegraphics[width=0.08\textwidth] {unknot.png} \caption{Knots examples: unknot (left) and trefoil (right).} \label{fig:notknot} \end{figure} \begin{itemize} \item Knots: \includegraphics[width=0.08\textwidth]{unknot.png} (unknot), \includegraphics[width=0.08\textwidth]{trefoil.png} (trefoil). \item Not knots: \includegraphics[width=0.12\textwidth]{not_injective_knot.png} (it is not an injection), \includegraphics[width=0.08\textwidth]{not_smooth_knot.png} (it is not smooth). \end{itemize} \end{example} \begin{definition} %\hfill\\ Two knots $K_0 = \varphi_0(S^1)$, $K_1 = \varphi_1(S^1)$ are equivalent if the embeddings $\varphi_0$ and $\varphi_1$ are isotopic, that is there exists a continues function \begin{align*} &\Phi: S^1 \times [0, 1] \hookrightarrow S^3, \\ &\Phi(x, t) = \Phi_t(x) \end{align*} such that $\Phi_t$ is an embedding for any $t \in [0,1]$, $\Phi_0 = \varphi_0$ and $\Phi_1 = \varphi_1$. \end{definition} \begin{theorem} Two knots $K_0$ and $K_1$ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $\Psi = \{\psi_t: t \in [0, 1]\}$ such that: \begin{align*} &\psi(t) = \psi_t \text{ is continius on $t\in [0,1]$},\\ &\psi_t: S^3 \hookrightarrow S^3,\\ & \psi_0 = id ,\\ & \psi_1(K_0) = K_1. \end{align*} \end{theorem} \begin{definition} A knot is trivial (unknot) if it is equivalent to an embedding $\varphi(t) = (\cos t, \sin t, 0)$, where $t \in [0, 2 \pi] $ is a parametrisation of $S^1$. \end{definition} \begin{definition} A link with k - components is a (smooth) embedding of $\overbrace{S^1 \sqcup \ldots \sqcup S^1}^k$ in $S^3$. \end{definition} \begin{example} Links: \begin{itemize} \item a trivial link with $3$ components: \includegraphics[width=0.2\textwidth]{3unknots.png}, \item a Hopf link: \includegraphics[width=0.13\textwidth]{Hopf.png}, \item a Whitehead link: \includegraphics[width=0.13\textwidth]{WhiteheadLink.png}, \item a Borromean link: \includegraphics[width=0.1\textwidth]{BorromeanRings.png}. \end{itemize} \end{example} % % % \begin{definition} A link diagram $D_{\pi}$ is a picture over projection $\pi$ of a link $L$ in $\mathbb{R}^3$($S^3$) to $\mathbb{R}^2$ ($S^2$) such that: \begin{enumerate}[label={(\arabic*)}] \item $D_{\pi |_L}$ is non degenerate: \includegraphics[width=0.05\textwidth]{LinkDiagram1.png}, \item the double points are not degenerate: \includegraphics[width=0.03\textwidth]{LinkDiagram2.png}, \item there are no triple point: \includegraphics[width=0.05\textwidth]{LinkDiagram3.png}. \end{enumerate} \end{definition} \noindent There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning. \begin{fact} Every link admits a link diagram. \end{fact} \noindent Let $D$ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram). We can distinguish two types of crossings: right-handed $\left(\PICorientpluscross\right)$, called a positive crossing, and left-handed $\left(\PICorientminuscross\right)$, called a negative crossing. \subsection{Reidemeister moves} A Reidemeister move is one of the three types of operation on a link diagram as shown below: \begin{enumerate}[label=\Roman*] \item\hfill\\ \includegraphics[width=0.6\textwidth]{rm1.png}, \item\hfill\\\includegraphics[width=0.6\textwidth]{rm2.png}, \item\hfill\\\includegraphics[width=0.4\textwidth]{rm3.png}. \end{enumerate} \begin{theorem} [Reidemeister, 1927 ] Two diagrams of the same link can be deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane). \end{theorem} % % % %The number of Reidemeister Moves Needed for Unknotting %Joel Hass, Jeffrey C. Lagarias %(Submitted on 2 Jul 1998) % Piotr Sumata, praca magisterska % proof - transversality theorem (Thom) %Singularities of Differentiable Maps %Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M. \subsection{Seifert surface} \noindent Let $D$ be an oriented diagram of a link $L$. We change the diagram by smoothing each crossing: \begin{align*} \PICorientpluscross \mapsto \PICorientLRsplit,\\ \PICorientminuscross \mapsto \PICorientLRsplit. \end{align*} We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $\mathbb{R}^3$ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $\Sigma$ such that $\partial \Sigma = L$.\\ \begin{figure}[h] \fontsize{15}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.8\textwidth}{!}{\input{images/seifert_alg.pdf_tex}} \caption{Constructing a Seifert surface.} \label{fig:SeifertAlg} } \end{figure} \noindent Note: the obtained surface isn't unique and in general doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $D_1$ and $D_2$. Then we glue both components on the boundaries: $\partial D_1$ and $\partial D_2$. \begin{figure}[h] \begin{center} \includegraphics[width=0.6\textwidth]{seifert_connect.png} \end{center} \caption{Connecting two surfaces.} \label{fig:SeifertConnect} \end{figure} \begin{theorem}[Seifert] \label{theo:Seifert} Every link in $S^3$ bounds a surface $\Sigma$ that is compact, connected and orientable. Such a surface is called a Seifert surface. \end{theorem} % \begin{figure}[h] \fontsize{12}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{1\textwidth}{!}{\input{images/torus_1_2_3.pdf_tex}} \caption{Genus of an orientable surface.} \label{fig:genera} } \end{figure} % % \begin{definition} The three genus $g_3(K)$ ($g(K)$) of a knot $K$ is the minimal genus of a Seifert surface $\Sigma$ for $K$. \end{definition} \begin{corollary} A knot $K$ is trivial if and only $g_3(K) = 0$. \end{corollary} \noindent Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008). \begin{definition} Suppose $\alpha$ and $\beta$ are two simple closed curves in $\mathbb{R}^3$. On a diagram $L$ consider all crossings between $\alpha$ and $\beta$. Let $N_+$ be the number of positive crossings, $N_-$ - negative. Then the linking number: $\Lk(\alpha, \beta) = \frac{1}{2}(N_+ - N_-)$. \end{definition} \begin{definition} \label{def:lk_via_homo} Let $\alpha$ and $\beta$ be two disjoint simple cross curves in $S^3$. Let $\nu(\beta)$ be a tubular neighbourhood of $\beta$. The linking number can be interpreted via first homology group, where $\Lk(\alpha, \beta)$ is equal to evaluation of $\alpha$ as element of first homology group of the complement of $\beta$: \[ \alpha \in H_1(S^3 \setminus \nu(\beta), \mathbb{Z}) \cong \mathbb{Z}.\] \end{definition} \begin{example} \begin{itemize} \item A Hopf link: \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.4\textwidth}{!}{\input{images/linking_hopf.pdf_tex}}, } \end{figure} \item $T(6, 2)$ link: \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.4\textwidth}{!}{\input{images/linking_torus_6_2.pdf_tex}}. } \end{figure} \end{itemize} \end{example} \begin{fact} $ g_3(\Sigma) = \frac{1}{2} b_1 (\Sigma) = \frac{1}{2} \dim_{\mathbb{R}}H_1(\Sigma, \mathbb{R}), $ where $b_1$ is first Betti number of $\Sigma$. \end{fact} \subsection{Seifert matrix} Let $L$ be a link and $\Sigma$ be an oriented Seifert surface for $L$. Choose a basis for $H_1(\Sigma, \mathbb{Z})$ consisting of simple closed curves $\alpha_1, \dots, \alpha_n$. Let $\alpha_1^+, \dots \alpha_n^+$ be copies of $\alpha_i$ lifted up off the surface (push up along a vector field normal to $\Sigma$). Note that elements $\alpha_i$ are contained in the Seifert surface while all $\alpha_i^+$ don't intersect the surface. Let $\Lk(\alpha_i, \alpha_j^+) = \{a_{ij}\}$. Then the matrix $S = \{a_{ij}\}_{i, j =1}^n$ is called a Seifert matrix for $L$. Note that by choosing a different basis we get a different matrix. \begin{figure}[h] \fontsize{20}{10}\selectfont \centering{ \def\svgwidth{\linewidth} \resizebox{0.8\textwidth}{!}{\input{images/seifert_matrix.pdf_tex}} } \end{figure} \begin{theorem} The Seifert matrices $S_1$ and $S_2$ for the same link $L$ are S-equivalent, that is, $S_2$ can be obtained from $S_1$ by a sequence of following moves: \begin{enumerate}[label={(\arabic*)}] \item $V \rightarrow AVA^T$, where $A$ is a matrix with integer coefficients, \item $V \rightarrow \begin{pmatrix} \begin{array}{c|c} V & \begin{matrix} \ast & 0 \\ \sdots & \sdots\\ \ast & 0 \end{matrix} \\ \hline \begin{matrix} \ast & \dots & \ast\\ 0 & \dots & 0 \end{matrix} & \begin{matrix} 0 & 0\\ 1 & 0 \end{matrix} \end{array} \end{pmatrix} \quad$ or $\quad V \rightarrow \begin{pmatrix} \begin{array}{c|c} V & \begin{matrix} \ast & 0 \\ \sdots & \sdots\\ \ast & 0 \end{matrix} \\ \hline \begin{matrix} \ast & \dots & \ast\\ 0 & \dots & 0 \end{matrix} & \begin{matrix} 0 & 1\\ 0 & 0 \end{matrix} \end{array} \end{pmatrix},$ \item inverse of (2). \end{enumerate} \end{theorem}