lectures_on_knot_theory/images/polynomial_and_surface.pdf_tex

68 lines
3.7 KiB
Plaintext

%% Creator: Inkscape inkscape 0.92.2, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'polynomial_and_surface.pdf' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{1105.59918261bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.52520142)%
\put(0,0){\includegraphics[width=\unitlength,page=1]{polynomial_and_surface.pdf}}%
\put(0.82922973,0.41966706){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.22482957\unitlength}\raggedright $F^{-1}(0)$\\ \end{minipage}}}%
\put(1.67978829,0.06708039){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.54940718\unitlength}\raggedright \end{minipage}}}%
\put(0.50472618,0.03452544){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.64564478\unitlength}\raggedright $L = F^{-1}(0) \cap S^3$\\ \end{minipage}}}%
\put(1.77501885,-0.11605532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{2.00716731\unitlength}\raggedright \end{minipage}}}%
\put(2.2438462,-0.38709612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.63357075\unitlength}\raggedright \end{minipage}}}%
\put(2.23652083,-0.37244532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.66287204\unitlength}\raggedright \end{minipage}}}%
\put(0,0){\includegraphics[width=\unitlength,page=2]{polynomial_and_surface.pdf}}%
\put(0.32142492,0.41966706){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.22482957\unitlength}\raggedright $F^{-1}(0)$\\ \end{minipage}}}%
\put(1.17198349,0.06708039){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.54940718\unitlength}\raggedright \end{minipage}}}%
\put(-0.00307862,0.03452544){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.64564478\unitlength}\raggedright $L = F^{-1}(0) \cap S^3$\\ \end{minipage}}}%
\put(1.26721404,-0.11605532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{2.00716731\unitlength}\raggedright \end{minipage}}}%
\put(1.73604139,-0.38709612){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.63357075\unitlength}\raggedright \end{minipage}}}%
\put(1.72871603,-0.37244532){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{1.66287204\unitlength}\raggedright \end{minipage}}}%
\end{picture}%
\endgroup%