lectures_on_knot_theory/lec_04_03.tex

288 lines
9.4 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\subsection{Existence of a Seifert surface - second proof}
%\begin{theorem}
%For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
%\end{theorem}
\begin{proof}(\Cref{theo:Seifert})\\
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
\begin{align*}
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
\end{align*}
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
\begin{center}
\begin{tikzcd}
[
column sep=0cm, fill=none,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
&\mathbb{Z}
\\
& H^0(S^3) \ar[u,isomorphic] \to
&H^0(S^3 \setminus N) \to
\\
\to H^1(S^3, S^3 \setminus N) \to
& H^1(S^3) \to
& H^1(S^3\setminus N) \to
\\
& 0 \ar[u,isomorphic]&
\\
\to H^2(S^3, S^3 \setminus N) \to
& H^2(S^3) \ar[u,isomorphic] \to
& H^2(S^3\setminus N) \to
\\
\to H^3(S^3, S^3\setminus N)\to
& H^3(S) \to
& 0
\\
& \mathbb{Z} \ar[u,isomorphic] &\\
\end{tikzcd}
\end{center}
The tubular neighbourhood of the knot is homomorphic to
$D^2 \times S^1$.
So its boundary
$\partial N \cong \ S^1 \times S^1$ and therefore:
$H^1(N, \partial N) \cong \ \mathbb{Z} \oplus \mathbb{Z}$. By excision theorem we have:
\begin{align*}
H^* (S^3, S^3 \setminus N) &\cong H^* (N, \partial N).
\end{align*}
Therefore:
\begin{align*}
H^ 1 (S^3\setminus N) &\cong H^1(S^3\setminus K) \cong \mathbb{Z}.
\end{align*}
Let us consider the following diagram:
\begin{equation*}
\begin{tikzcd}[row sep=huge]
H^1(S^3 \setminus K) \arrow[r,] \arrow[d,"\widetilde{\Theta}"] &
H^1(N \setminus K) \arrow[d,"\Theta"] \\
{[S^3 \setminus K, S^1]} \arrow[r,]&
{[N \setminus K, S^1]}
\end{tikzcd}
\end{equation*}
\noindent
$\Sigma = \widetilde{\Theta}^{-1}(X)$ is a surface, such that $\partial \Sigma = K$, so it is a Seifert surface.
%
% picture for excision theorem
% Thom isomorphism,
\end{proof}
%$S$ - equivalence $\Sigma$\\
%simple closed curves $\alpha_1, ... \alpha_n \in H_1(\Sigma, \mathbb{Z})$ basis for $H_1$
\subsection{Alexander polynomial}
\begin{definition}
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
\[
\Delta_K(t) := \det (tS - S^T) \in
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
\]
\end{definition}
\begin{theorem}
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
\end{theorem}
\begin{proof}
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
\begin{enumerate}[label={(\arabic*)}]
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
\begin{align*}
&\det(tS\prime - S\prime^T) =
\det(tCSC^T - (CSC^T)^T) =\\
&\det(tCSC^T - CS^TC^T) =
\det C(tS - S^T)C^T =
\det(tS - S^T)
\end{align*}
\item
Let \\
$ A := t
\begin{pmatrix}
\begin{array}{c|c}
S &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 0\\
1 & 0
\end{matrix}
\end{array}
\end{pmatrix}
-
\begin{pmatrix}
\begin{array}{c|c}
S^T &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 1\\
0 & 0
\end{matrix}
\end{array}
\end{pmatrix}
=
\begin{pmatrix}
\begin{array}{c|c}
tS - S^T &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & -1\\
t & 0
\end{matrix}
\end{array}
\end{pmatrix}
$
\\
\\
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
\end{enumerate}
\end{proof}
%
%
%
\begin{example}
If $K$ is a trefoil then we can take
$S = \begin{pmatrix}
-1 & -1 \\
0 & -1
\end{pmatrix}$. Then
\[
\Delta_K(t) = \det
\begin{pmatrix}
-t + 1 & -t\\
1 & -t +1
\end{pmatrix}
= (t -1)^2 + t = t^2 - t +1 \ne 1
\Rightarrow \text{trefoil is not trivial.}
\]
\end{example}
\begin{lemma}
$\Delta_K(t)$ is symmetric.
\end{lemma}
\begin{proof}
Let $S$ be an $n \times n$ matrix.
\begin{align*}
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
\end{align*}
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
\end{proof}
\begin{lemma}
\begin{align*}
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
\text{ where } deg (a_n t^n + \dots + a_1 t^l )= k - l.
\end{align*}
\end{lemma}
\begin{proof}
If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so $S$ is an $2g \times 2g$ matrix. Therefore $\det (tS - S^T)$ is a polynomial of degree at most $2g$.
\end{proof}
\begin{example}
There are not trivial knots with Alexander polynomial equal $1$, for example:
\includegraphics[width=0.3\textwidth]{11n34.png}
$\Delta_{11n34} \equiv 1$.
\end{example}
\subsection{Decomposition of \texorpdfstring{
$3$-sphere}{3-sphere}}
We know that $3$ - sphere can be obtained by gluing two solid tori:
\[
S^3 = \partial D^4 = \partial (D^2 \times D^2) = (D^2 \times S^1) \cup (S^1 \times D^2).
\]
So the complement of solid torus in $S^3$ is another solid torus.\\
Analytically it can be describes as follow. \\
Take $(z_1, z_2) \in \mathbb{C}$ such that ${\max(\vert z_1 \vert, \vert z_2\vert) = 1.}
$
Define following sets:
\begin{align*}
S_1 = \{ (z_1, z_2) \in S^3: \vert z_1 \vert = 0\} \cong S^1 \times D^2 ,\\
S_2 = \{(z_1, z_2) \in S ^3: \vert z_2 \vert = 1 \} \cong D^2 \times S^1.
\end{align*}
The intersection
$S_1 \cap S_2 = \{(z_1, z_2): \vert z_1 \vert = \vert z_2 \vert = 1 \} \cong S^1 \times S^1$.
\begin{figure}[h]
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.3\textwidth}{!}{\includegraphics[width=0.3\textwidth]{sphere_as_torus.png}}
\caption{The complement of solid torus in $S^3$ is another solid torus.}
\label{fig:sphere_as_tori}
}
\end{figure}
\subsection{Dehn lemma and sphere theorem}
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
%
%
%
\begin{lemma}[Dehn]
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f\big|_{\partial D^2}$ is an embedding. Then there exists an embedding
${D^2 \overset{g}\longhookrightarrow M}$ such that:
\[
g\big|_{\partial D^2} = f\big|_{\partial D^2.}
\]
\end{lemma}
\noindent
Remark: Dehn lemma doesn't hold for dimension four.\\
Let $M$ be connected, compact three manifold with boundary.
Suppose $\pi_1(\partial M) \longrightarrow \pi_1(M)$ has non-trivial kernel. Then there exists a map $f: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $f\big|_{\partial D^2}$ is non-trivial loop in $\partial M$.
\begin{theorem}[Sphere theorem]
Suppose $\pi_1(M) \ne 0$. Then there exists an embedding $f: S^2 \hookrightarrow M$ that is homotopy non-trivial.
\end{theorem}
\begin{problem}
Prove that $S^3 \ K$ is EilenbergMacLane space of type $K(\pi, 1)$.
\end{problem}
\begin{corollary}
Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathbb{Z})$. Then $K$ is trivial.
\end{corollary}
\begin{proof}
Let $N$ be a tubular neighbourhood of a knot $K$ and $M = S^3 \setminus N$ its complement. Then $\partial M = S^1 \times S^1$. Let $f : \pi_1(\partial M ) \longrightarrow \pi_1(M)$.
If $\pi_1(M)$ is infinite cyclic group then the map $f$ is non-trivial. Suppose ${\lambda \in \ker (\pi_1(S^1 \times S^1) \longrightarrow \pi_1(M))}$.
There is a map $g: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $g(\partial D^2) = \lambda$.\\
By Dehn's lemma there exists an embedding ${h: (D^2, \partial D^2) \longhookrightarrow (M, \partial M)}$ such that
$h\big|_{\partial D^2} = f \big|_{\partial D^2}$ and $h(\partial D^2) = \lambda$.
Let $\Sigma$ be a union of the annulus and the image of $\partial D^2$.
%$g_3$
If $g_3(\Sigma) = 0$, then $K$ is trivial. \\
Now we should proof that:
\[
H_1(M) \cong \mathbb{Z} \Longrightarrow \lambda \in \ker ( \pi_1(S^1 \times S^1) \longrightarrow \pi_1(M)).
\]
\begin{figure}[h]
\fontsize{40}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.4\textwidth}{!}{\input{images/torus_lambda.pdf_tex}}
}
\caption{$\mu$ is a meridian and $\lambda$ is a longitude.}
\label{fig:meridian_and_longitude}
\end{figure}
Choose a meridian $\mu$ such that $\Lk (\mu, K) = 1$. Recall the definition of linking number via homology group (Definition \ref{def:lk_via_homo}).
$[\mu]$ represents the generator of $H_1(S^3\setminus K, \mathbb{Z})$. From definition of $\lambda$ we know that $\lambda$ is trivial in $H_1(M)$ ($\Lk(\lambda, K) =0$, therefore $[\lambda]$ was trivial in $pi_1(M)$). If $K$ is non-trivial then $\lambda$ is non-trivial in $\pi_1(M)$, but it is trivial in $H_1(M)$.
\end{proof}