lectures_on_knot_theory/lec_mess.tex

49 lines
1.2 KiB
TeX

\begin{lemma}[Milnor Singular Points of Complex Hypersurfaces]
\end{lemma}
%\end{comment}
\noindent
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
\begin{problem}
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
$\mathscr{C}$.
%
%\\
%Hint: $ -K = m(K)^r = (K^r)^r = K$
\end{problem}
\begin{example}
Figure 8 knot is negative amphichiral.
\end{example}
%
%
\begin{theorem}
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
\[
H_p = H_{p, 1} \oplus \dots \oplus H_{p, r_p}.
\]
$H_{p, i}$ is a cyclic module:
\[
H_{p, i} = \quot{\mathbb{Z}[t, t^{-1}]}{p^{k_i} \mathbb{Z} [t, t^{-1}]}
\]
\end{theorem}
\noindent
The proof is the same as over $\mathbb{Z}$.
\noindent
%Add NotePrintSaveCiteYour opinionEmailShare
%Saveliev, Nikolai
%Lectures on the Topology of 3-Manifolds
%An Introduction to the Casson Invariant
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
}
%\caption{Sketch for Fact %%\label{fig:concordance_m}
\end{figure}