148 lines
4.6 KiB
TeX
148 lines
4.6 KiB
TeX
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
|
|
$H_2$ is free (exercise).
|
|
|
|
\begin{align*}
|
|
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z})
|
|
\end{align*}
|
|
|
|
Intersection form:
|
|
$H_2(X, \mathbb{Z}) \times
|
|
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ is symmetric and non singular.
|
|
\\
|
|
Let $A$ and $B$ be closed, oriented surfaces in $X$.
|
|
\\
|
|
\begin{figure}[h]
|
|
\fontsize{20}{10}\selectfont
|
|
\centering{
|
|
\def\svgwidth{\linewidth}
|
|
\resizebox{0.5\textwidth}{!}{\input{images/intersection_form_A_B.pdf_tex}}
|
|
}
|
|
\caption{$T_X A + T_X B = T_X X$
|
|
}\label{fig:torus_alpha_beta}
|
|
\end{figure}
|
|
???????????????????????
|
|
\begin{align*}
|
|
x \in A \cap B\\
|
|
T_XA \oplus T_X B = T_X X\\
|
|
\{\epsilon_1, \dots , \epsilon_n \} = A \cap C\\
|
|
A \cdot B = \sum^n_{i=1} \epsilon_i
|
|
\end{align*}
|
|
\begin{proposition}
|
|
Intersection form $A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes:
|
|
\[
|
|
[A], [B] \in H_2(X, \mathbb{Z}).
|
|
\]
|
|
\end{proposition}
|
|
\noindent
|
|
\\
|
|
|
|
If $M$ is an $m$ - dimensional close, connected and orientable manifold, then $H_m(M, \mathbb{Z})$ and the orientation if $M$ determined a cycle $[M] \in H_m(M, \mathbb{Z})$, called the fundamental cycle.
|
|
\begin{example}
|
|
If $\omega$ is an $m$ - form then:
|
|
\[
|
|
\int_M \omega = [\omega]([M]), \quad [\omega] \in H^m_\Omega(M), \ [M] \in H_m(M).
|
|
\]
|
|
|
|
\end{example}
|
|
????????????????????????????????????????????????
|
|
\begin{figure}[h]
|
|
\fontsize{20}{10}\selectfont
|
|
\centering{
|
|
\def\svgwidth{\linewidth}
|
|
\resizebox{0.8\textwidth}{!}{\input{images/torus_alpha_beta.pdf_tex}}
|
|
}
|
|
\caption{$\beta$ cross $3$ times the disk bounded by $\alpha$.
|
|
$T_X \alpha + T_X \beta = T_X \Sigma$
|
|
}\label{fig:torus_alpha_beta}
|
|
\end{figure}
|
|
\begin{example}
|
|
?????????????????????????\\
|
|
Let $X = S^2 \times S^2$.
|
|
We know that:
|
|
\begin{align*}
|
|
&H_2(S^2, \mathbb{Z}) =\mathbb{Z}\\
|
|
&H_1(S^2, \mathbb{Z}) = 0\\
|
|
&H_0(S^2, \mathbb{Z}) =\mathbb{Z}
|
|
\end{align*}
|
|
We can construct a long exact sequence for a pair:
|
|
\begin{align*}
|
|
&H_2(\partial X) \to H_2(X)
|
|
\to H_2(X, \partial X) \to \\
|
|
\to &H_1(\partial X) \to H_1(X) \to H_1(X, \partial X) \to
|
|
\end{align*}
|
|
????????????????????\\
|
|
Simple case $H_1(\partial X)$ \\????????????\\
|
|
is torsion.
|
|
$H_2(\partial X)$ is torsion free (by universal coefficient theorem),\\
|
|
???????????????????????\\
|
|
therefore it is $0$.
|
|
\\?????????????????????\\
|
|
We know that $b_1(X) = b_2(X)$. Therefore by Poincar\'e duality:
|
|
\begin{align*}
|
|
b_1(X) =
|
|
\dim_{\mathbb{Q}} H_1(X, \mathbb{Q})
|
|
\overset{\mathrm{PD}}{=}
|
|
\dim_{\mathbb{Q}} H^2(X, \mathbb{Q}) =
|
|
\dim_{\mathbb{Q}} H_2(X, \mathbb{Q}) = b_2(X)
|
|
\end{align*}
|
|
???????????????????????????????\\
|
|
$H_2(X, \mathbb{Z})$ is torsion free and
|
|
$H_2(X_1, \mathbb{Q}) = 0$, therefore $H_2(X, \mathbb{Z}) = 0$.
|
|
The map
|
|
$H_2(X, \mathbb{Z}) \longrightarrow H_2(X, \partial X, \mathbb{Z})$ is a monomorphism. \\??????????\\ (because it is an isomorphism after tensoring by $\mathbb{Q}$.
|
|
\\
|
|
Suppose $\alpha_1, \dots, \alpha_n$ is a basis of $H_2(X, \mathbb{Z})$.
|
|
Let $A$ be the intersection matrix in this basis. Then:
|
|
\begin{enumerate}
|
|
\item
|
|
A has integer coefficients,
|
|
\item
|
|
$\det A \neq 0$,
|
|
\item
|
|
$\vert \det A \vert =
|
|
\vert H_1 (\partial X, \mathbb{Z}) \vert =
|
|
\vert \coker H_2(X) \longrightarrow H_2(X, \partial X) \vert$.
|
|
\end{enumerate}
|
|
\end{example}
|
|
???????????????????\\
|
|
If $CVC^T = W$, then for
|
|
$\binom{a}{b} = C^{-1} \binom{1}{0}$ we have $\binom{a}{b} $ \\
|
|
????????????????\\
|
|
$\omega \binom{a}{b} = \binom{1}{0} u \binom{1}{0} = 1$.
|
|
|
|
\begin{theorem}[Whitehead]
|
|
Any non-degenerate form
|
|
\[
|
|
A : \mathbb{Z}^4 \times \mathbb{Z}^4 \longrightarrow \mathbb{Z}
|
|
\]
|
|
can be realized as an intersection form of a simple connected $4$-dimensional manifold.
|
|
\end{theorem}
|
|
??????????????????????????
|
|
\begin{theorem}[Donaldson, 1982]
|
|
If $A$ is an even definite intersection form of a smooth $4$-manifold then it is diagonalizable over $\mathbb{Z}$.
|
|
\end{theorem}
|
|
??????????????????????????
|
|
??????????????????????????
|
|
??????????????????????????
|
|
??????????????????????????
|
|
\begin{definition}
|
|
even define
|
|
\end{definition}
|
|
Suppose $X$ us $4$ -manifold with a boundary such that $H_1(X) = 0$.
|
|
|
|
%$A \cdot B$ gives the pairing as ??
|
|
\begin{proof}
|
|
Obviously:
|
|
\[H_1(\partial X, \mathbb{Z}) = \coker H_2(X) \longrightarrow H_2(X, \partial X) = \quot{H_2(X, \partial X)}{H_2(X)}.
|
|
\]
|
|
Let $A$ be an $n \times n$ matrix. $A$ determines a \\
|
|
??????????????/\\
|
|
\begin{align*}
|
|
\mathbb{Z}^n \longrightarrow \Hom (\mathbb{Z}^n, \mathbb{Z})\\
|
|
a \mapsto (b \mapsto b^T A a)\\
|
|
\vert \coker A \vert = \vert \det A \vert
|
|
\end{align*}
|
|
all homomorphisms $b = (b_1, \dots, b_n) $???????\\?????????\\
|
|
|
|
\end{proof}
|